Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Micronutrients throughout the Life Cycle: Needs and Functions in Health and Disease

Author(s): Mohit Kumar, Devesh Kumar, Ankita Sharma, Shivam Bhadauria, Anil Thakur and Amit Bhatia*

Volume 20, Issue 1, 2024

Published on: 19 May, 2023

Page: [62 - 84] Pages: 23

DOI: 10.2174/1573401319666230420094603

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Micronutrients play a vital role in the maintenance and proper functioning of body tissues. Micronutrients broadly consist of minerals and vitamins. These vitamins and minerals are of supreme importance in the treatment of an eclectic variety of diseases and are obligatory for many metabolic processes.

Objective: The objective of this review is to give a comprehensive overview on the role of micronutrients in the treatment of broad-spectrum diseases and also give insightful knowledge regarding the numerous food sources for obtaining nutrients, their dietary reference values, and their deficiencies. In this review, the authors have also highlighted the role of micronutrients in COVID- 19.

Findings: A properly balanced diet provides an acceptable amount of nutrients in the body. Deficiency and excessive nutrients in an individual’s diet may cause diseases or abnormal conditions. An improper diet may be responsible for the occurrence of deficiencies in iron, calcium, and iodine. Minerals like iron, boron, calcium, cobalt, phosphorous, and vitamins like K, E, A, D, and Riboflavin can cure and treat fatal diseases like Alzheimer’s, bone development conditions, osteoporosis, anemia, inflammatory bowel, and HIV Infections.

Conclusion: Micronutrients are essential for metabolism and tissue function. Sufficient consumption is thus required, but providing additional supplements to persons who do not require them may be detrimental. Large-scale studies of varied micronutrient dosages with accurate outcome indicators are needed to optimize intakes in different patient groups and the general population at large. In this review, the authors have highlighted the crucial role of micronutrients in health and disease.

Keywords: Micronutrients, vitamins, minerals, diseases, deficiency, COVID-19, osteoporosis, HIV infections.

Graphical Abstract
[1]
Pravina P, Sayaji D, Avinash M. Calcium and its role in human body. Int J Res Pharm Biomed Sci 2013; 4(2): 659-68.
[2]
Trailokya A, Srivastava A, Bhole M, Zalte N. Calcium and calcium salts. J Assoc Physicians India 2017; 65(2): 100-3.
[PMID: 28457049]
[3]
Bates JA. Phosphorus: A quick reference. Vet Clin North Am Small Anim Pract 2008; 38(3): 471-5. [viii.
[http://dx.doi.org/10.1016/j.cvsm.2008.02.002] [PMID: 18402871]
[4]
Segawa H, Hanazaki A, Miyamoto K. Intracellular and extracellular functions of phosphorus compound in the body. Clin Calcium 2016; 26(2): 187-91.
[PMID: 26813497]
[5]
Peterson LN. Potassium in nutrition. Handb Nutr Essent Miner 1997; pp. 153-83.
[6]
Darling M. Potassium: Its functions and Sources University of Minnesota. Agricultural Extension Service 1982.
[7]
Sharp RL. Role of sodium in fluid homeostasis with exercise. J Am Coll Nutr 2006; 25(3) (Suppl.): 231S-9S.
[http://dx.doi.org/10.1080/07315724.2006.10719572]
[8]
Strazzullo P, Leclercq C. Sodium. Adv Nutr 2014; 5(2): 188-90.
[http://dx.doi.org/10.3945/an.113.005215] [PMID: 24618759]
[9]
Crichton R, Crichton RR, Boelaert JR. Inorganic biochemistry of iron metabolism: From molecular mechanisms to clinical consequences. John Wiley & Sons 2001.
[http://dx.doi.org/10.1002/0470845791]
[10]
King JC. Zinc: An essential but elusive nutrient. Am J Clin Nutr 2011; 94(2): S679-84.
[http://dx.doi.org/10.3945/ajcn.110.005744] [PMID: 21715515]
[11]
Beigi PKM, Maverakis E. Role of zinc in different body systems Acrodermatitis Enteropathica. Springer 2015; pp. 61-75.
[http://dx.doi.org/10.1007/978-3-319-17819-6_7]
[12]
Linder MC, Hazegh-Azam M. Copper biochemistry and molecular biology. Am J Clin Nutr 1996; 63(5): 797S-811S.
[PMID: 8615367]
[13]
Angelova M, Asenova S, Nedkova V, Koleva-Kolarova R. Copper in the human organism. Trakia J Sci 2011; 9(1): 88-98.
[14]
Khaliq H, Juming Z, Ke-Mei P. The physiological role of boron on health. Biol Trace Elem Res 2018; 186(1): 31-51.
[http://dx.doi.org/10.1007/s12011-018-1284-3] [PMID: 29546541]
[15]
Donoiu I, Militaru C, Obleagă O, et al. Effects of boron-containing compounds on cardiovascular disease risk factors-A review. J Trace Elem Med Biol 2018; 50: 47-56.
[http://dx.doi.org/10.1016/j.jtemb.2018.06.003] [PMID: 30262316]
[16]
Fath MK, Naderi M, Hamzavi H, et al. Molecular mechanisms and therapeutic effects of different vitamins and minerals in COVID-19 patients. J Trace Elem Med Biol 2022; 73: 127044.
[http://dx.doi.org/10.1016/j.jtemb.2022.127044] [PMID: 35901669]
[17]
Khaliq H, Ke X, Keli Y, et al. Morphological and transcriptomic analysis of the supplemental boron in the liver of ostrich chicks. Biol Trace Elem Res 2023; 1-21. Epub ahead of print
[http://dx.doi.org/10.1007/s12011-022-03489-9] [PMID: 36600166]
[18]
Uysal T, Ustdal A, Sonmez MF, Ozturk F. Stimulation of bone formation by dietary boron in an orthopedically expanded suture in rabbits. Angle Orthod 2009; 79(5): 984-90.
[http://dx.doi.org/10.2319/112708-604.1] [PMID: 19705952]
[19]
Hakki SS, Bozkurt BS, Hakki EE. Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1). J Trace Elem Med Biol 2010; 24(4): 243-50.
[http://dx.doi.org/10.1016/j.jtemb.2010.03.003] [PMID: 20685097]
[20]
Gümüşderelioğlu M, Tunçay EÖ, Kaynak G, Demirtaş TT, Aydın ST, Hakkı SS. Encapsulated boron as an osteoinductive agent for bone scaffolds. J Trace Elem Med Biol 2015; 31: 120-8.
[http://dx.doi.org/10.1016/j.jtemb.2015.03.008] [PMID: 26004902]
[21]
Capati MLF, Nakazono A, Igawa K, et al. Boron accelerates cultured osteoblastic cell activity through calcium flux. Biol Trace Elem Res 2016; 174(2): 300-8.
[http://dx.doi.org/10.1007/s12011-016-0719-y] [PMID: 27129314]
[22]
Gorustovich AA, Steimetz T, Nielsen FH, Guglielmotti MB. A histomorphometric study of alveolar bone modelling and remodelling in mice fed a boron-deficient diet. Arch Oral Biol 2008; 53(7): 677-82.
[http://dx.doi.org/10.1016/j.archoralbio.2008.01.011] [PMID: 18313642]
[23]
Nielsen FH, Stoecker BJ. Boron and fish oil have different beneficial effects on strength and trabecular microarchitecture of bone. J Trace Elem Med Biol 2009; 23(3): 195-203.
[http://dx.doi.org/10.1016/j.jtemb.2009.03.003] [PMID: 19486829]
[24]
Cheng J, Peng K, Jin E, et al. Effect of additional boron on tibias of African ostrich chicks. Biol Trace Elem Res 2011; 144(1-3): 538-49.
[http://dx.doi.org/10.1007/s12011-011-9024-y] [PMID: 21461669]
[25]
Juza RM, Pauli EM. Clinical and surgical anatomy of the liver: A review for clinicians. Clin Anat 2014; 27(5): 764-9.
[http://dx.doi.org/10.1002/ca.22350] [PMID: 24453062]
[26]
Rishi G, Subramaniam VN. The liver in regulation of iron homeostasis. Am J Physiol Gastrointest Liver Physiol 2017; 313(3): G157-65.
[http://dx.doi.org/10.1152/ajpgi.00004.2017] [PMID: 28596277]
[27]
Basoglu A, Sevinc M, Birdane FM, Boydak M. Efficacy of sodium borate in the prevention of fatty liver in dairy cows. J Vet Intern Med 2002; 16(6): 732-5.
[http://dx.doi.org/10.1111/j.1939-1676.2002.tb02416.x] [PMID: 12465773]
[28]
Kabu M, Civelek T. Effects of propylene glycol, methionine and sodium borate on metabolic profile in dairy cattle during periparturient period. Rev Med Vet 2012; 163(8): 419.
[29]
Pawa S, Ali S. Boron ameliorates fulminant hepatic failure by counteracting the changes associated with the oxidative stress. Chem Biol Interact 2006; 160(2): 89-98.
[http://dx.doi.org/10.1016/j.cbi.2005.12.002] [PMID: 16442087]
[30]
Basoglu A, Baspinar N, Ozturk AS, Akalin PP. Effects of long-term boron administrations on high-energy diet-induced obesity in rabbits: NMR-based metabonomic evaluation. J Anim Vet Adv 2011; 10(12): 1512-5.
[http://dx.doi.org/10.3923/javaa.2011.1512.1515]
[31]
Hegsted M, Keenan MJ, Siver F, Wozniak P. Effect of boron on vitamin D deficient rats. Biol Trace Elem Res 1991; 28(3): 243-55.
[http://dx.doi.org/10.1007/BF02990471] [PMID: 1713047]
[32]
Penland JG. The importance of boron nutrition for brain and psychological function. Biol Trace Elem Res 1998; 66(1-3): 299-317.
[http://dx.doi.org/10.1007/BF02783144] [PMID: 10050926]
[33]
Hassan MLM. Calcium and human health. Ministry of Higher Education 2022.
[34]
Daniels TE, Sadovnikoff AI, Ridout KK, Lesseur C, Marsit CJ, Tyrka AR. Associations of maternal diet and placenta leptin methylation. Mol Cell Endocrinol 2020; 505: 110739.
[http://dx.doi.org/10.1016/j.mce.2020.110739] [PMID: 32004678]
[35]
Bryant RJ, Cadogan J, Weaver CM. The new dietary reference intakes for calcium: Implications for osteoporosis. J Am Coll Nutr 1999; 18(5) (Suppl.): 406S-12S.
[http://dx.doi.org/10.1080/07315724.1999.10718905]
[36]
Heller HJ. The role of calcium in the prevention of kidney stones. J Am Coll Nutr 1999; 18(5 Suppl): 373S-S.
[http://dx.doi.org/10.1080/07315724.1999.10718901]
[37]
Holt PR. Dairy foods and prevention of colon cancer: Human studies. J Am Coll Nutr 1999; 18(5) (Suppl.): 379S-91S.
[http://dx.doi.org/10.1080/07315724.1999.10718902]
[38]
Lipkin M, Newmark HL. Vitamin D, calcium and prevention of breast cancer: A review J Am Coll Nutr 1999; 18(5 Suppl): 392SS.
[http://dx.doi.org/10.1080/07315724.1999.10718903]
[39]
Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: What clinicians need to know. J Clin Endocrinol Metab 2011; 96(1): 53-8.
[http://dx.doi.org/10.1210/jc.2010-2704] [PMID: 21118827]
[40]
McBean LD. Emerging dietary benefits of dairy foods: A meeting report. Nutr Today 1999; 34(1): 47-53.
[http://dx.doi.org/10.1097/00017285-199901000-00008]
[41]
Fardella C, Rodriguez-Portales JA. Intracellular calcium and blood pressure: Comparison between primary hyperparathyroidism and essential hypertension. J Endocrinol Invest 1995; 18(11): 827-32.
[http://dx.doi.org/10.1007/BF03349828] [PMID: 8778153]
[42]
Yim HE, Yoo KH. Renin-Angiotensin system - considerations for hypertension and kidney. Electrolyte Blood Press 2008; 6(1): 42-50.
[http://dx.doi.org/10.5049/EBP.2008.6.1.42] [PMID: 24459521]
[43]
Arvola P, Ruskoaho H, Pörsti I. Effects of high calcium diet on arterial smooth muscle function and electrolyte balance in mineralocorticoid-salt hypertensive rats. Br J Pharmacol 1993; 108(4): 948-58.
[http://dx.doi.org/10.1111/j.1476-5381.1993.tb13491.x] [PMID: 8485634]
[44]
Heaney RP. Calcium intake and disease prevention. Arq Bras Endocrinol Metabol 2006; 50(4): 685-93.
[http://dx.doi.org/10.1590/S0004-27302006000400014] [PMID: 17117294]
[45]
Belizán JM, Villar J, Self S, Pineda O, González I, Sainz E. The mediating role of the parathyroid gland in the effect of low calcium intake on blood pressure in the rat. Arch Latinoam Nutr 1984; 34(4): 666-75.
[PMID: 6545647]
[46]
Villa-Etchegoyen C, Lombarte M, Matamoros N, Belizán JM, Cormick G. Mechanisms involved in the relationship between low calcium intake and high blood pressure. Nutrients 2019; 11(5): 1112.
[http://dx.doi.org/10.3390/nu11051112] [PMID: 31109099]
[47]
World Health Organization Vitamin and mineral requirements in human nutrition. World Health Organization 2004.
[48]
Bolland MJ, Grey A, Avenell A, Gamble GD, Reid IR. Calcium supplements with or without vitamin D and risk of cardiovascular events: Reanalysis of the Women’s Health Initiative limited access dataset and meta-analysis. BMJ 2011; 342: d2040.
[http://dx.doi.org/10.1136/bmj.d2040] [PMID: 21505219]
[49]
Efsa N. Panel on dietetic products and allergies. Sci Opin Diet Ref Values Carbohydr Diet Fibre EFSA J 2010; 8: 1462-539.
[50]
Ma Y, Lin W, Ruan Y, et al. Advances of cobalt nanomaterials as anti-infection agents, drug carriers, and immunomodulators for potential infectious disease treatment. Pharmaceutics 2022; 14(11): 2351.
[http://dx.doi.org/10.3390/pharmaceutics14112351] [PMID: 36365168]
[51]
Unice KM, Monnot AD, Gaffney SH, et al. Inorganic cobalt supplementation: Prediction of cobalt levels in whole blood and urine using a biokinetic model. Food Chem Toxicol 2012; 50(7): 2456-61.
[http://dx.doi.org/10.1016/j.fct.2012.04.009] [PMID: 22538081]
[52]
Galanis A, Karapetsas A, Sandaltzopoulos R. Metal-induced carcinogenesis, oxidative stress and hypoxia signalling. Mutat Res Genet Toxicol Environ Mutagen 2009; 674(1-2): 31-5.
[http://dx.doi.org/10.1016/j.mrgentox.2008.10.008] [PMID: 19022395]
[53]
Battaglia V, Compagnone A, Bandino A, et al. Cobalt induces oxidative stress in isolated liver mitochondria responsible for permeability transition and intrinsic apoptosis in hepatocyte primary cultures. Int J Biochem Cell Biol 2009; 41(3): 586-94.
[http://dx.doi.org/10.1016/j.biocel.2008.07.012] [PMID: 18708157]
[54]
Karovic O, Tonazzini I, Rebola N, et al. Toxic effects of cobalt in primary cultures of mouse astrocytes. Biochem Pharmacol 2007; 73(5): 694-708.
[http://dx.doi.org/10.1016/j.bcp.2006.11.008] [PMID: 17169330]
[55]
Simonsen LO, Harbak H, Bennekou P. Cobalt metabolism and toxicology-A brief update. Sci Total Environ 2012; 432: 210-5.
[http://dx.doi.org/10.1016/j.scitotenv.2012.06.009] [PMID: 22732165]
[56]
Simonsen LO, Brown AM, Harbak H, Kristensen BI, Bennekou P. Cobalt uptake and binding in human red blood cells. Blood Cells Mol Dis 2011; 46(4): 266-76.
[http://dx.doi.org/10.1016/j.bcmd.2011.02.009] [PMID: 21420882]
[57]
Lombaert N, Lison D, Van Hummelen P, Kirsch-Volders M. In vitro expression of hard metal dust (WC–Co) responsive genes in human peripheral blood mononucleated cells. Toxicol Appl Pharmacol 2008; 227(2): 299-312.
[http://dx.doi.org/10.1016/j.taap.2007.11.002] [PMID: 18078969]
[58]
Dev S, Babitt JL. Overview of iron metabolism in health and disease. Hemodial Int 2017; 21 (Suppl. 1): S6-S20.
[http://dx.doi.org/10.1111/hdi.12542] [PMID: 28296010]
[59]
Capra S. Nutrient reference values for Australia and New Zealand: Including recommended dietary intakes 2006.
[60]
Qiu F, Wu L, Yang G, et al. The role of iron metabolism in chronic diseases related to obesity. Mol Med 2022; 28(1): 130.
[http://dx.doi.org/10.1186/s10020-022-00558-6] [PMID: 36335331]
[61]
MacKenzie S, Bergdahl A. Zinc homeostasis in diabetes mellitus and vascular complications. Biomedicines 2022; 10(1): 139.
[http://dx.doi.org/10.3390/biomedicines10010139] [PMID: 35052818]
[62]
Fawzi W, Msamanga G. Micronutrients and adverse pregnancy outcomes in the context of HIV infection. Nutr Rev 2004; 62(7): 269-75.
[http://dx.doi.org/10.1111/j.1753-4887.2004.tb00051.x] [PMID: 15384917]
[63]
Cuevas LE, Koyanagi A. Zinc and infection: A review. Ann Trop Paediatr 2005; 25(3): 149-60.
[http://dx.doi.org/10.1179/146532805X58076] [PMID: 16156979]
[64]
Caulfield L, Richard SA, Black R. Undernutrition as an underlying cause of malaria morbidity and mortality in children less than five years old. Intolerable Burd Malar II What’s New, What’s Needed Suppl to Vol 71. Am J Trop Med Hyg 2004; 71(2) (Suppl.): 55-63.
[http://dx.doi.org/10.4269/ajtmh.2004.71.55]
[65]
Singh P, Ali SA. Multifunctional role of S100 protein family in the immune system: An update. Cells 2022; 11(15): 2274.
[http://dx.doi.org/10.3390/cells11152274] [PMID: 35892571]
[66]
Prasad AS. Zinc in human health: Effect of zinc on immune cells. Mol Med 2008; 14(5-6): 353-7.
[http://dx.doi.org/10.2119/2008-00033.Prasad] [PMID: 18385818]
[67]
Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano T. Zinc homeostasis and signaling in health and diseases. J Biol Inorg Chem 2011; 16(7): 1123-34.
[http://dx.doi.org/10.1007/s00775-011-0797-4] [PMID: 21660546]
[68]
Aydemir TB, Liuzzi JP, McClellan S, Cousins RJ. Zinc transporter ZIP8 (SLC39A8) and zinc influence IFN-γ expression in activated human T cells. J Leukoc Biol 2009; 86(2): 337-48.
[http://dx.doi.org/10.1189/jlb.1208759] [PMID: 19401385]
[69]
Kaltenberg J, Plum LM, Ober-Blöbaum JL, Hönscheid A, Rink L, Haase H. Zinc signals promote IL‐2‐dependent proliferation of T cells. Eur J Immunol 2010; 40(5): 1496-503.
[http://dx.doi.org/10.1002/eji.200939574] [PMID: 20201035]
[70]
Yu M, Lee WW, Tomar D, et al. Regulation of T cell receptor signaling by activation-induced zinc influx. J Exp Med 2011; 208(4): 775-85.
[http://dx.doi.org/10.1084/jem.20100031] [PMID: 21422171]
[71]
Jarosz M, Olbert M, Wyszogrodzka G, Młyniec K, Librowski T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology 2017; 25(1): 11-24.
[http://dx.doi.org/10.1007/s10787-017-0309-4] [PMID: 28083748]
[72]
Hasan R, Rink L, Haase H. Zinc signals in neutrophil granulocytes are required for the formation of neutrophil extracellular traps. Innate Immun 2013; 19(3): 253-64.
[http://dx.doi.org/10.1177/1753425912458815] [PMID: 23008348]
[73]
Weston WL, Huff JC, Humbert JR, Hambidge KM, Neldner KH, Walravens PA. Zinc correction of defective chemotaxis in acrodermatitis enteropathica. Arch Dermatol 1977; 113(4): 422-5.
[http://dx.doi.org/10.1001/archderm.1977.01640040030002] [PMID: 848970]
[74]
Regan-Smith S, Fritzen R, Hierons SJ, Ajjan RA, Blindauer CA, Stewart AJ. Strategies for therapeutic amelioration of aberrant plasma Zn2+ handling in thrombotic disease: Targeting fatty acid/serum albumin-mediated effects. Int J Mol Sci 2022; 23(18): 10302.
[http://dx.doi.org/10.3390/ijms231810302] [PMID: 36142215]
[75]
Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G. The role of zinc in antiviral immunity. Adv Nutr 2019; 10(4): 696-710.
[http://dx.doi.org/10.1093/advances/nmz013] [PMID: 31305906]
[76]
Begum F, Me HM, Christov M. The role of zinc in cardiovascular disease. Cardiol Rev 2022; 30(2): 100-8.
[http://dx.doi.org/10.1097/CRD.0000000000000382] [PMID: 35119422]
[77]
Wahab A, Mushtaq K, Borak SG, Bellam N. Zinc‐induced copper deficiency, sideroblastic anemia, and neutropenia: A perplexing facet of zinc excess. Clin Case Rep 2020; 8(9): 1666-71.
[http://dx.doi.org/10.1002/ccr3.2987] [PMID: 32983473]
[78]
Willis MS, Monaghan SA, Miller ML, et al. Zinc-induced copper deficiency: A report of three cases initially recognized on bone marrow examination. Am J Clin Pathol 2005; 123(1): 125-31.
[http://dx.doi.org/10.1309/V6GVYW2QTYD5C5PJ] [PMID: 15762288]
[79]
Lönnerdal B. Dietary factors influencing zinc absorption. J Nutr 2000; 130(5) (Suppl.): S1378-83.
[http://dx.doi.org/10.1093/jn/130.5.1378S] [PMID: 10801947]
[80]
Maares M, Haase H. A guide to human zinc absorption: General overview and recent advances of in vitro intestinal models. Nutrients 2020; 12(3): 762.
[http://dx.doi.org/10.3390/nu12030762] [PMID: 32183116]
[81]
Maares M, Haase H. Zinc and immunity: An essential interrelation. Arch Biochem Biophys 2016; 611: 58-65.
[http://dx.doi.org/10.1016/j.abb.2016.03.022] [PMID: 27021581]
[82]
Culotta VC. Disorders of copper transport. Metab Mol bases Inherit Dis 2001; 3105-26.
[83]
Vulpe C, Levinson B, Whitney S, Packman S, Gitschier J. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet 1993; 3(1): 7-13.
[http://dx.doi.org/10.1038/ng0193-7] [PMID: 8490659]
[84]
Eaton-Evans J, Mcllrath EM, Jackson WE, McCartney H, Strain JJ. Copper supplementation and the maintenance of bone mineral density in middle-aged women. J Trace Elem Exp Med 1996; 9(3): 87-94.
[http://dx.doi.org/10.1002/(SICI)1520-670X(1996)9:3<87:AID-JTRA1>3.0.CO;2-E]
[85]
Al-khateeb E, Al-zayadneh E, Al-dalahmah O, et al. Relation between copper, lipid profile, and cognition in elderly Jordanians. J Alzheimers Dis 2014; 41(1): 203-11.
[http://dx.doi.org/10.3233/JAD-132180] [PMID: 24583404]
[86]
Farag MA, Hamouda S, Gomaa S, Agboluaje AA, Hariri MLM, Yousof SM. dietary micronutrients from zygote to senility: Updated review of minerals’ role and orchestration in human nutrition throughout life cycle with sex differences. Nutrients 2021; 13(11): 3740.
[http://dx.doi.org/10.3390/nu13113740] [PMID: 34835995]
[87]
Olivares M, Lönnerdal B, Abrams SA, Pizarro F, Uauy R. Age and copper intake do not affect copper absorption, measured with the use of 65Cu as a tracer, in young infants. Am J Clin Nutr 2002; 76(3): 641-5.
[http://dx.doi.org/10.1093/ajcn/76.3.641] [PMID: 12198012]
[88]
Domellöf M. Nutritional care of premature infants: Microminerals. World Rev Nutr Diet 2014; 110: 121-39.
[http://dx.doi.org/10.1159/000358462] [PMID: 24751625]
[89]
Chelly J, Tümer Z, Tønnesen T, et al. Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nat Genet 1993; 3(1): 14-9.
[http://dx.doi.org/10.1038/ng0193-14] [PMID: 8490646]
[90]
Bose S, French S, Evans FJ, Joubert F, Balaban RS. Metabolic network control of oxidative phosphorylation: Multiple roles of inorganic phosphate. J Biol Chem 2003; 278(40): 39155-65.
[http://dx.doi.org/10.1074/jbc.M306409200] [PMID: 12871940]
[91]
Ikizler TA, Greene JH, Wingard RL, Parker RA, Hakim RM. Spontaneous dietary protein intake during progression of chronic renal failure. J Am Soc Nephrol 1995; 6(5): 1386-91.
[http://dx.doi.org/10.1681/ASN.V651386] [PMID: 8589313]
[92]
Gupta UC, Gupta SC. Sources and deficiency diseases of mineral nutrients in human health and nutrition: A review. Pedosphere 2014; 24(1): 13-38.
[http://dx.doi.org/10.1016/S1002-0160(13)60077-6]
[93]
Anderson JJB, Garner SC. Controversy over dietary phosphorus. J Am Coll Nutr 2001; 20(4): 269-70.
[http://dx.doi.org/10.1080/07315724.2001.10719046]
[94]
Chande S, Bergwitz C. Role of phosphate sensing in bone and mineral metabolism. Nat Rev Endocrinol 2018; 14(11): 637-55.
[http://dx.doi.org/10.1038/s41574-018-0076-3] [PMID: 30218014]
[95]
Hernando N, Gagnon K, Lederer E. Phosphate transport in epithelial and nonepithelial tissue. Physiol Rev 2021; 101(1): 1-35.
[http://dx.doi.org/10.1152/physrev.00008.2019] [PMID: 32353243]
[96]
Contreras Angulo M, Palacios García N, Ferreira de Vasconcelos Carvalho R, Nocete Aragón I, Sanz-Aranguez Ávila B, Campos del Portillo R. Hyperphosphatemia during nutrition recovery in patients with severe anorexia nervosa. Endocrinología Diabetes y Nutrición (English ed) 2022; 69(9): 715-22.
[http://dx.doi.org/10.1016/j.endien.2021.12.010] [PMID: 36437197]
[97]
González-Parra E, Gracia-Iguacel C, Egido J, Ortiz A. Phosphorus and nutrition in chronic kidney disease. Int J Nephrol 2012; 2012: 1-5.
[http://dx.doi.org/10.1155/2012/597605] [PMID: 22701173]
[98]
Thomson CD. Assessment of requirements for selenium and adequacy of selenium status: A review. Eur J Clin Nutr 2004; 58(3): 391-402.
[http://dx.doi.org/10.1038/sj.ejcn.1601800] [PMID: 14985676]
[99]
Goldhaber SB. Trace element risk assessment: Essentiality vs. toxicity. Regul Toxicol Pharmacol 2003; 38(2): 232-42.
[http://dx.doi.org/10.1016/S0273-2300(02)00020-X] [PMID: 14550763]
[100]
McKenzie RC, Rafferty TS, Beckett GJ. Selenium: An essential element for immune function. Immunol Today 1998; 19(8): 342-5.
[http://dx.doi.org/10.1016/S0167-5699(98)01294-8] [PMID: 9709500]
[101]
Singh RB, Fedacko J, Fatima G, Magomedova A, Watanabe S, Elkilany G. Why and how the Indo-Mediterranean diet may be superior to other diets: the role of antioxidants in the diet. Nutrients 2022; 14(4): 898.
[http://dx.doi.org/10.3390/nu14040898] [PMID: 35215548]
[102]
Combs GF Jr. Food system-based approaches to improving micronutrient nutrition: The case for selenium. Biofactors 2000; 12(1-4): 39-43.
[http://dx.doi.org/10.1002/biof.5520120107] [PMID: 11216503]
[103]
Zimmermann MB, Köhrle J. The impact of iron and selenium deficiencies on iodine and thyroid metabolism: Biochemistry and relevance to public health. Thyroid 2002; 12(10): 867-78.
[http://dx.doi.org/10.1089/105072502761016494] [PMID: 12487769]
[104]
Singh M. Role of micronutrients for physical growth and mental development. Indian J Pediatr 2004; 71(1): 59-62.
[http://dx.doi.org/10.1007/BF02725658] [PMID: 14979388]
[105]
Jenzer H, Sadeghi L. Iodine: Biochemistry, Deficiency and Application in Clinical Nutrition. Canad J Clin Nutr 2017; 5(1): 1-9.
[http://dx.doi.org/10.14206/canad.j.clin.nutr.2017.01.01]
[106]
Zimmermann MB. Iodine deficiency. Endocr Rev 2009; 30(4): 376-408.
[http://dx.doi.org/10.1210/er.2009-0011] [PMID: 19460960]
[107]
Lazarus JH. The importance of iodine in public health. Environ Geochem Health 2015; 37(4): 605-18.
[http://dx.doi.org/10.1007/s10653-015-9681-4] [PMID: 25663362]
[108]
Sun X, Shan Z, Teng W. Effects of increased iodine intake on thyroid disorders. Endocrinol Metab 2014; 29(3): 240-7.
[http://dx.doi.org/10.3803/EnM.2014.29.3.240] [PMID: 25309781]
[109]
Ekweagwu E, Agwu AE, Madukwe E. The role of micronutrients in child health: A review of the literature. Afr J Biotechnol 2008; 7(21)
[110]
UNICEF The state of the world’s children 1998. New York: Oxford University Press 1998.
[111]
Onyezili FN, Alo IS, Tinorgah A. Micronutrient deficiency control and child survival in Nigeria. child survival and the right to adequate nutrition.In. Proceedings of the 34th Conference and Scientific Meeting of Nutrition Society of Nigeria Held at Michael Okpara University of Agriculture. Nov 26-29; Umudike, Abia State. 2003.
[112]
Tsongas TA, Meglen RR, Walravens PA, Chappell WR. Molybdenum in the diet: An estimate of average daily intake in the United States. Am J Clin Nutr 1980; 33(5): 1103-7.
[http://dx.doi.org/10.1093/ajcn/33.5.1103] [PMID: 7369160]
[113]
Novotny JA. Molybdenum nutriture in humans. J Evid Based Complementary Altern Med 2011; 16(3): 164-8.
[http://dx.doi.org/10.1177/2156587211406732]
[114]
Garrett RM, Johnson JL, Graf TN, Feigenbaum A, Rajagopalan KV. Human sulfite oxidase R160Q: Identification of the mutation in a sulfite oxidase-deficient patient and expression and characterization of the mutant enzyme. Proc Natl Acad Sci USA 1998; 95(11): 6394-8.
[http://dx.doi.org/10.1073/pnas.95.11.6394] [PMID: 9600976]
[115]
Wahl B, Reichmann D, Niks D, et al. Biochemical and spectroscopic characterization of the human mitochondrial amidoxime reducing components hmARC-1 and hmARC-2 suggests the existence of a new molybdenum enzyme family in eukaryotes. J Biol Chem 2010; 285(48): 37847-59.
[http://dx.doi.org/10.1074/jbc.M110.169532] [PMID: 20861021]
[116]
Trace elements in human nutrition and health. World Health Organization 1996.
[117]
Reiss J, Hahnewald R. Molybdenum cofactor deficiency: Mutations in GPHN, MOCS1, and MOCS2. Hum Mutat 2011; 32(1): 10-8.
[http://dx.doi.org/10.1002/humu.21390] [PMID: 21031595]
[118]
Novotny JA, Turnlund JR. Molybdenum intake influences molybdenum kinetics in men. J Nutr 2007; 137(1): 37-42.
[http://dx.doi.org/10.1093/jn/137.1.37] [PMID: 17182798]
[119]
Lee EJ, Dandamudi R, Granadillo JL, Grange DK, Kakajiwala A. Rare cause of xanthinuria: A pediatric case of molybdenum cofactor deficiency B. CEN Case Rep 2021; 10(3): 378-82.
[http://dx.doi.org/10.1007/s13730-021-00572-3] [PMID: 33502714]
[120]
Schuierer G, Kurlemann G, Bick U, Stephani U. Molybdenum-cofactor deficiency: CT and MR findings. Neuropediatrics 1995; 26(1): 51-4.
[http://dx.doi.org/10.1055/s-2007-979720] [PMID: 7791952]
[121]
Ma JF, Zhao FJ, Rengel Z, Cakmak I. Beneficial elements Marschner’s Mineral Nutrition of Plants. Elsevier 2023; pp. 387-418.
[http://dx.doi.org/10.1016/B978-0-12-819773-8.00012-5]
[122]
Hokin B, Adams M, Ashton J, Louie H. Comparison of the dietary cobalt intake in three different Australian diets. Asia Pac J Clin Nutr 2004; 13(3): 289-91.
[PMID: 15331342]
[123]
Adolfo FR, do Nascimento PC, Bohrer D, et al. Simultaneous determination of cobalt and nickel in vitamin B12 samples using high-resolution continuum source atomic absorption spectrometry. Talanta 2016; 147: 241-5.
[http://dx.doi.org/10.1016/j.talanta.2015.09.073] [PMID: 26592602]
[124]
Tvermoes BE, Finley BL, Unice KM, Otani JM, Paustenbach DJ, Galbraith DA. Cobalt whole blood concentrations in healthy adult male volunteers following two-weeks of ingesting a cobalt supplement. Food Chem Toxicol 2013; 53: 432-9.
[http://dx.doi.org/10.1016/j.fct.2012.11.033] [PMID: 23207477]
[125]
Chen P, Bornhorst J, Aschner MA. Manganese metabolism in humans. Front Biosci 2018; 23: 1655-79.
[http://dx.doi.org/10.2741/4665]
[126]
Kumar KK, Lowe EW Jr, Aboud AA, et al. Cellular manganese content is developmentally regulated in human dopaminergic neurons. Sci Rep 2014; 4(1): 6801.
[http://dx.doi.org/10.1038/srep06801] [PMID: 25348053]
[127]
Khayat S, Fanaei H, Ghanbarzehi A. Minerals in pregnancy and lactation: A review article. J Clin Diagn Res 2017; 11(9): QE01-5.
[http://dx.doi.org/10.7860/JCDR/2017/28485.10626] [PMID: 29207789]
[128]
Spinazzi M, Angelini C, Patrini C. Subacute sensory ataxia and optic neuropathy with thiamine deficiency. Nat Rev Neurol 2010; 6(5): 288-93.
[http://dx.doi.org/10.1038/nrneurol.2010.16] [PMID: 20308997]
[129]
Vora A, Patel P, Gohel P, Mistry P, Rathod Z, Saraf M. A review on vitamins: It’s biological role and deficiencies in humans. Vidya-J Gujarat Univ 2022; 1(2): 70-5.
[http://dx.doi.org/10.47413/vidya.v1i2.57]
[130]
EFSA Panel on Dietetic Products N and A (NDA) Scientific Opinion on the substantiation of health claims related to biotin and energy-yielding metabolism (ID 114, 117), macronutrient metabolism (ID 113, 114, 117), maintenance of skin and mucous membranes (ID 115), maintenance of hair (ID 118, 2876) an. EFSA J 2009; 7(10): 1209.
[http://dx.doi.org/10.2903/j.efsa.2009.1209]
[131]
Anastassakis K. Vit Β3 (Niacin) Androgenetic Alopecia From A to Z Vol 2 Drugs, Herbs Nutrition and Supplements Springer. 2022; pp. 303-7.
[132]
Prakash R, Gandotra S, Singh LK, Das B, Lakra A. Rapid resolution of delusional parasitosis in pellagra with niacin augmentation therapy. Gen Hosp Psychiatry 2008; 30(6): 581-4.
[http://dx.doi.org/10.1016/j.genhosppsych.2008.04.011] [PMID: 19061687]
[133]
Mataix VJ, Sánchez De Medina F. Vitamins With Enzymatic Functions. Intermediate Metabolism. Mataix Verdu J Nutr Y Aliment Humana Madrid Erg 2012; pp. 137-209.
[134]
Plecko B, Stöckler S. Vitamin B6 dependent seizures. Can J Neurol Sci 2009; 36 (Suppl. 2): S73-7.
[PMID: 19760909]
[135]
Schellack G, Harirari P, Schellack N. B-complex vitamin deficiency and supplementation. S Afr Pharm J 2016; 83(4): 14-9.
[136]
Mataix VJ, Vitaminas VMG. VMG vitamins. cell proliferation. Folic acid and vitamin B12.Mataix Verdú J. Ed Nutr y Aliment Madrid Ergón. 2002; pp. 159-73.
[137]
Ashor AW, Siervo M, Lara J, Oggioni C, Afshar S, Mathers JC. Effect of vitamin C and vitamin E supplementation on endothelial function: A systematic review and meta-analysis of randomised controlled trials. Br J Nutr 2015; 113(8): 1182-94.
[http://dx.doi.org/10.1017/S0007114515000227] [PMID: 25919436]
[138]
Hernandez AGDRT. Nutrition Treatise: Human Nutrition in Health Status. 2010.
[139]
Rao A, Rao L. Carotenoids and human health. Pharmacol Res 2007; 55(3): 207-16.
[http://dx.doi.org/10.1016/j.phrs.2007.01.012] [PMID: 17349800]
[140]
Lips P, van Schoor NM. The effect of vitamin D on bone and osteoporosis. Best Pract Res Clin Endocrinol Metab 2011; 25(4): 585-91.
[http://dx.doi.org/10.1016/j.beem.2011.05.002] [PMID: 21872800]
[141]
Mohammed MAB, Qaryaqos SH, Razaq MA. Correlzation between serum vitamin d3 level and calcium-phosphate product in people with osteomalacia. J Pharm Negat Results 2022; 4018-25.
[142]
Brigelius-Flohé R, Traber MG, Vitamin E. Function and metabolism. FASEB J 1999; 13(10): 1145-55.
[http://dx.doi.org/10.1096/fasebj.13.10.1145] [PMID: 10385606]
[143]
Li FJ, Shen L, Ji HF. Dietary intakes of vitamin E, vitamin C, and β-carotene and risk of Alzheimer’s disease: A meta-analysis. J Alzheimers Dis 2012; 31(2): 253-8.
[http://dx.doi.org/10.3233/JAD-2012-120349] [PMID: 22543848]
[144]
Doerflinger N, Linder C, Ouahchi K, et al. Ataxia with vitamin E deficiency: Refinement of genetic localization and analysis of linkage disequilibrium by using new markers in 14 families. Am J Hum Genet 1995; 56(5): 1116-24.
[PMID: 7726167]
[145]
Bügel S. Vitamin K and bone health. Proc Nutr Soc 2003; 62(4): 839-43.
[http://dx.doi.org/10.1079/PNS2003305] [PMID: 15018483]
[146]
Haas RH. Thiamin and the Brain. Annu Rev Nutr 1988; 8(1): 483-515.
[http://dx.doi.org/10.1146/annurev.nu.08.070188.002411] [PMID: 3060175]
[147]
Cardoso DR, Libardi SH, Skibsted LH. Riboflavin as a photosensitizer. Effects on human health and food quality. Food Funct 2012; 3(5): 487-502.
[http://dx.doi.org/10.1039/c2fo10246c] [PMID: 22406738]
[148]
Depeint F, Bruce WR, Shangari N, Mehta R, O’Brien PJ. Mitochondrial function and toxicity: Role of the B vitamin family on mitochondrial energy metabolism. Chem Biol Interact 2006; 163(1-2): 94-112.
[http://dx.doi.org/10.1016/j.cbi.2006.04.014] [PMID: 16765926]
[149]
Jungnickel PW, Maloley PA, Tuin EL, Peddicord TE, Campbell JR. Effect of two aspirin pretreatment regimens on niacin-induced cutaneous reactions. J Gen Intern Med 1997; 12(10): 591-6.
[http://dx.doi.org/10.1046/j.1525-1497.1997.07118.x] [PMID: 9346454]
[150]
Refsum H, Ueland PM, Nygård O, Vollset SE. Homocysteine and cardiovascular disease. Annu Rev Med 1998; 49(1): 31-62.
[http://dx.doi.org/10.1146/annurev.med.49.1.31] [PMID: 9509248]
[151]
Ballard FJ, Hanson RW. The citrate cleavage pathway and lipogenesis in rat adipose tissue: Replenishment of oxaloacetate. J Lipid Res 1967; 8(2): 73-9.
[http://dx.doi.org/10.1016/S0022-2275(20)38917-3] [PMID: 14564711]
[152]
Kim DO, Lee KW, Lee HJ, Lee CY. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J Agric Food Chem 2002; 50(13): 3713-7.
[http://dx.doi.org/10.1021/jf020071c] [PMID: 12059148]
[153]
Klibanski A, Adams-Campbell L, Bassford T, et al. Osteoporosis prevention, diagnosis, and therapy. JAMA 2001; 285(6): 785-95.
[http://dx.doi.org/10.1001/jama.285.6.785] [PMID: 11176917]
[154]
Buettner GR. The pecking order of free radicals and antioxidants: Lipid peroxidation, α-tocopherol, and ascorbate. Arch Biochem Biophys 1993; 300(2): 535-43.
[http://dx.doi.org/10.1006/abbi.1993.1074] [PMID: 8434935]
[155]
Josic D, Hoffer L, Buchacher A. Preparation of vitamin K-dependent proteins, such as clotting factors II, VII, IX and X and clotting inhibitor protein C. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 790(1-2): 183-97.
[http://dx.doi.org/10.1016/S1570-0232(03)00082-5] [PMID: 12767331]
[156]
Agus DB, Gambhir SS, Pardridge WM, et al. Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters. J Clin Invest 1997; 100(11): 2842-8.
[http://dx.doi.org/10.1172/JCI119832] [PMID: 9389750]
[157]
Jialal I, Fuller CJ. Effect of vitamin E, vitamin C and beta-carotene on LDL oxidation and atherosclerosis. Can J Cardiol 1995; 11 (Suppl. G): 97G-103G.
[PMID: 7585302]
[158]
Talaei M, Koh WP, Yuan JM, van Dam RM. DASH dietary pattern, mediation by mineral intakes, and the risk of coronary artery disease and stroke mortality. J Am Heart Assoc 2019; 8(5): e011054.
[http://dx.doi.org/10.1161/JAHA.118.011054] [PMID: 30806152]
[159]
Huang Z, Liu Y, Qi G, Brand D, Zheng S. Role of vitamin A in the immune system. J Clin Med 2018; 7(9): 258.
[http://dx.doi.org/10.3390/jcm7090258] [PMID: 30200565]
[160]
Shakoor H, Feehan J, Mikkelsen K, et al. Be well: A potential role for vitamin B in COVID-19. Maturitas 2021; 144: 108-11.
[http://dx.doi.org/10.1016/j.maturitas.2020.08.007] [PMID: 32829981]
[161]
Yoshii K, Hosomi K, Sawane K, Kunisawa J. Metabolism of dietary and microbial vitamin B family in the regulation of host immunity. Front Nutr 2019; 6: 48.
[http://dx.doi.org/10.3389/fnut.2019.00048] [PMID: 31058161]
[162]
Liu B, Li M, Zhou Z, Guan X, Xiang Y. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? J Autoimmun 2020; 111: 102452.
[http://dx.doi.org/10.1016/j.jaut.2020.102452] [PMID: 32291137]
[163]
Parra M, Stahl S, Hellmann H. Vitamin B6 and its role in cell metabolism and physiology. Cells 2018; 7(7): 84.
[http://dx.doi.org/10.3390/cells7070084] [PMID: 30037155]
[164]
Sheybani Z, Dokoohaki MH, Negahdaripour M, et al. The role of folic acid in the management of respiratory disease caused by COVID-19. ChemRxiv 2020.
[http://dx.doi.org/10.26434/chemrxiv.12034980.v1]
[165]
Hemilä H, Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev 2013; 2013(1): CD000980.
[http://dx.doi.org/10.1002/14651858.CD000980.pub4]
[166]
Baladia E, Pizarro AB, Rada G. Vitamin C for the treatment of COVID-19: A living systematic review. MedRxiv 2020; 20(6): 7978.
[http://dx.doi.org/10.1101/2020.04.28.20083360]
[167]
Laaksi I. Vitamin D and respiratory infection in adults. Proc Nutr Soc 2012; 71(1): 90-7.
[http://dx.doi.org/10.1017/S0029665111003351] [PMID: 22115013]
[168]
Martínez-Moreno J, Hernandez JC, Urcuqui-Inchima S. Effect of high doses of vitamin D supplementation on dengue virus replication, Toll-like receptor expression, and cytokine profiles on dendritic cells. Mol Cell Biochem 2020; 464(1-2): 169-80.
[http://dx.doi.org/10.1007/s11010-019-03658-w] [PMID: 31758375]
[169]
Howard AC, McNeil AK, McNeil PL. Promotion of plasma membrane repair by vitamin E. Nat Commun 2011; 2(1): 597.
[http://dx.doi.org/10.1038/ncomms1594] [PMID: 22186893]
[170]
Jiang Q, Wong J, Fyrst H, Saba JD, Ames BN. γ-Tocopherol or combinations of vitamin E forms induce cell death in human prostate cancer cells by interrupting sphingolipid synthesis. Proc Natl Acad Sci USA 2004; 101(51): 17825-30.
[http://dx.doi.org/10.1073/pnas.0408340102] [PMID: 15596715]
[171]
McCann JC, Ames BN. Vitamin K, an example of triage theory: Is micronutrient inadequacy linked to diseases of aging? Am J Clin Nutr 2009; 90(4): 889-907.
[http://dx.doi.org/10.3945/ajcn.2009.27930] [PMID: 19692494]
[172]
Klok FA, Kruip M, van der Meer NJM, Arbous MS. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020; 191: 145-7.
[173]
Tsaioun KI. Vitamin K-dependent proteins in the developing and aging nervous system. Nutr Rev 1999; 57(8): 231-40.
[http://dx.doi.org/10.1111/j.1753-4887.1999.tb06950.x] [PMID: 10518409]
[174]
Carr AC. Micronutrient status of COVID-19 patients: A critical consideration. Crit Care 2020; 24(1): 349.
[http://dx.doi.org/10.1186/s13054-020-03085-0] [PMID: 32546195]
[175]
Muscogiuri G, Barrea L, Savastano S, Colao A. Nutritional recommendations for CoVID-19 quarantine. Eur J Clin Nutr 2020; 74(6): 850-1.
[http://dx.doi.org/10.1038/s41430-020-0635-2] [PMID: 32286533]
[176]
Grant W, Lahore H, McDonnell S, et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020; 12(4): 988.
[http://dx.doi.org/10.3390/nu12040988] [PMID: 32252338]
[177]
te Velthuis AJW, van den Worm SHE, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog 2010; 6(11): e1001176.
[http://dx.doi.org/10.1371/journal.ppat.1001176] [PMID: 21079686]
[178]
Raverdeau M, Mills KHG. Modulation of T cell and innate immune responses by retinoic Acid. J Immunol 2014; 192(7): 2953-8.
[http://dx.doi.org/10.4049/jimmunol.1303245] [PMID: 24659788]
[179]
Lippman SM, Glisson BS, Kavanagh JJ, et al. Retinoic acid and interferon combination studies in human cancer. Eur J Cancer 1993; 29 (Suppl. 5): S9-S13.
[http://dx.doi.org/10.1016/0959-8049(93)90618-P] [PMID: 8260265]
[180]
Karthik L, Kumar G, Keswani T, Bhattacharyya A, Chandar SS, Bhaskara Rao KV. Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PLoS One 2014; 9(3): e90972.
[http://dx.doi.org/10.1371/journal.pone.0090972] [PMID: 24618707]
[181]
Li B, Wang Y, Shen F, et al. Identification of retinoic acid receptor agonists as potent hepatitis B virus inhibitors via a drug repurposing screen. Antimicrob Agents Chemother 2018; 62(12): e00465-18.
[http://dx.doi.org/10.1128/AAC.00465-18] [PMID: 30224536]
[182]
Lee H, Ko G. Antiviral effect of vitamin A on norovirus infection via modulation of the gut microbiome. Sci Rep 2016; 6(1): 25835.
[http://dx.doi.org/10.1038/srep25835] [PMID: 27180604]
[183]
Mikkelsen K, Apostolopoulos V. Vitamin B1, B2, B3, B5, and B6 and the immune system Nutrition and immunity. Springer 2019; pp. 115-25.
[http://dx.doi.org/10.1007/978-3-030-16073-9_7]
[184]
Benvenuto Angelo, Lagattolla Valeria, Marinelli Teresa, et al. Vitamin supplements in the Era of SARS-Cov2 pandemic. GSC Biol Pharm Sci 2020; 11(2): 007-19.
[http://dx.doi.org/10.30574/gscbps.2020.11.2.0114]
[185]
Özdemir ZÖ, Şentürk M, Ekinci D. Inhibition of mammalian carbonic anhydrase isoforms I, II and VI with thiamine and thiamine-like molecules. J Enzyme Inhib Med Chem 2013; 28(2): 316-9.
[http://dx.doi.org/10.3109/14756366.2011.637200] [PMID: 22145674]
[186]
Ragan I, Hartson L, Pidcoke H, Bowen R, Goodrich R. Pathogen reduction of SARS-CoV-2 virus in plasma and whole blood using riboflavin and UV light. PLoS One 2020; 15(5): e0233947.
[http://dx.doi.org/10.1371/journal.pone.0233947] [PMID: 32470046]
[187]
Mehmel M, Jovanović N, Spitz U. Nicotinamide riboside- The current state of research and therapeutic uses. Nutrients 2020; 12(6): 1616.
[http://dx.doi.org/10.3390/nu12061616] [PMID: 32486488]
[188]
Nix WA, Zirwes R, Bangert V, et al. Vitamin B status in patients with type 2 diabetes mellitus with and without incipient nephropathy. Diabetes Res Clin Pract 2015; 107(1): 157-65.
[http://dx.doi.org/10.1016/j.diabres.2014.09.058] [PMID: 25458341]
[189]
Kumar V, Kancharla S, Jena MK. In silico virtual screening-based study of nutraceuticals predicts the therapeutic potentials of folic acid and its derivatives against COVID-19. Virus Disease 2021; 32(1): 29-37.
[http://dx.doi.org/10.1007/s13337-020-00643-6] [PMID: 33532517]
[190]
Grangé S, Bekri S, Artaud-Macari E, et al. Adult-onset renal thrombotic microangiopathy and pulmonary arterial hypertension in cobalamin C deficiency. Lancet 2015; 386(9997): 1011-2.
[http://dx.doi.org/10.1016/S0140-6736(15)00076-8] [PMID: 26369474]
[191]
Zabetakis I, Lordan R, Norton C, Tsoupras A. COVID-19: The inflammation link and the role of nutrition in potential mitigation. Nutrients 2020; 12(5): 1466.
[http://dx.doi.org/10.3390/nu12051466] [PMID: 32438620]
[192]
Hemilä H, Chalker E. Vitamin C can shorten the length of stay in the ICU: A meta-analysis. Nutrients 2019; 11(4): 708.
[http://dx.doi.org/10.3390/nu11040708] [PMID: 30934660]
[193]
Carr AC, Rowe S. The emerging role of vitamin C in the prevention and treatment of COVID-19. Nutrients 2020; 12(11): 3286.
[194]
Bae M, Kim H. The role of vitamin C, vitamin D, and selenium in immune system against COVID-19. Molecules 2020; 25(22): 5346.
[http://dx.doi.org/10.3390/molecules25225346] [PMID: 33207753]
[195]
Fowler AA III, Truwit JD, Hite RD, et al. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: The CITRIS-ALI randomized clinical trial. JAMA 2019; 322(13): 1261-70.
[http://dx.doi.org/10.1001/jama.2019.11825] [PMID: 31573637]
[196]
Waqas Khan HM, Parikh N, Megala SM, Predeteanu GS. Unusual early recovery of a critical COVID-19 patient after administration of intravenous vitamin C. Am J Case Rep 2020; 21: e925521-31.
[http://dx.doi.org/10.12659/AJCR.925521] [PMID: 32709838]
[197]
Calder PC. Nutrition, immunity and COVID-19. BMJ Nutrition. Prevention & Health 2020; 3(1): 74-92.
[http://dx.doi.org/10.1136/bmjnph-2020-000085] [PMID: 33230497]
[198]
Sabetta JR, DePetrillo P, Cipriani RJ, Smardin J, Burns LA, Landry ML. Serum 25-hydroxyvitamin d and the incidence of acute viral respiratory tract infections in healthy adults. PLoS One 2010; 5(6): e11088.
[http://dx.doi.org/10.1371/journal.pone.0011088] [PMID: 20559424]
[199]
Science M, Maguire JL, Russell ML, Smieja M, Walter SD, Loeb M. Low serum 25-hydroxyvitamin D level and risk of upper respiratory tract infection in children and adolescents. Clin Infect Dis 2013; 57(3): 392-7.
[http://dx.doi.org/10.1093/cid/cit289] [PMID: 23677871]
[200]
Han JE, Jones JL, Tangpricha V, et al. High dose vitamin D administration in ventilated intensive care unit patients: A pilot double blind randomized controlled trial. J Clin Transl Endocrinol 2016; 4: 59-65.
[http://dx.doi.org/10.1016/j.jcte.2016.04.004] [PMID: 27419080]
[201]
Smith EM, Jones JL, Han JE, et al. High‐dose vitamin D3 administration is associated with increases in hemoglobin concentrations in mechanically ventilated critically ill adults: A pilot double‐blind, randomized, placebo‐controlled trial. JPEN J Parenter Enteral Nutr 2018; 42(1): 87-94.
[PMID: 29505145]
[202]
López-Medina E, López P, Hurtado IC, et al. Effect of ivermectin on time to resolution of symptoms among adults with mild COVID-19: A randomized clinical trial. JAMA 2021; 325(14): 1426-35.
[http://dx.doi.org/10.1001/jama.2021.3071] [PMID: 33662102]
[203]
Munshi R, Hussein MH, Toraih EA, et al. Vitamin D insufficiency as a potential culprit in critical COVID‐19 patients. J Med Virol 2021; 93(2): 733-40.
[http://dx.doi.org/10.1002/jmv.26360] [PMID: 32716073]
[204]
Carpagnano GE, Di Lecce V, Quaranta VN, et al. Vitamin D deficiency as a predictor of poor prognosis in patients with acute respiratory failure due to COVID-19. J Endocrinol Invest 2021; 44(4): 765-71.
[http://dx.doi.org/10.1007/s40618-020-01370-x] [PMID: 32772324]
[205]
Chavance M, Herbeth B, Fournier C, Janot C, Vernhes G. Vitamin status, immunity and infections in an elderly population. Eur J Clin Nutr 1989; 43(12): 827-35.
[PMID: 2627929]
[206]
Wang JZ, Zhang RY, Bai J. An anti-oxidative therapy for ameliorating cardiac injuries of critically ill COVID-19-infected patients. Int J Cardiol 2020; 312: 137-8.
[http://dx.doi.org/10.1016/j.ijcard.2020.04.009] [PMID: 32321655]
[207]
Zhou Y, Frey TK, Yang JJ. Viral calciomics: Interplays between Ca2+ and virus. Cell Calcium 2009; 46(1): 1-17.
[http://dx.doi.org/10.1016/j.ceca.2009.05.005] [PMID: 19535138]
[208]
Cappellini F, Brivio R, Casati M, Cavallero A, Contro E, Brambilla P. Low levels of total and ionized calcium in blood of COVID-19 patients. Clin Chem Lab Med 2020; 58(9): e171-3.
[http://dx.doi.org/10.1515/cclm-2020-0611] [PMID: 32459190]
[209]
Sun JK, Zhang WH, Zou L, et al. Serum calcium as a biomarker of clinical severity and prognosis in patients with coronavirus disease 2019. Aging 2020; 12(12): 11287-95.
[http://dx.doi.org/10.18632/aging.103526] [PMID: 32589164]
[210]
Vickers NJ. Animal communication: When i’m calling you, will you answer too? Curr Biol 2017; 27(14): R713-5.
[http://dx.doi.org/10.1016/j.cub.2017.05.064] [PMID: 28743020]
[211]
Suara RO, Crowe JE Jr. Effect of zinc salts on respiratory syncytial virus replication. Antimicrob Agents Chemother 2004; 48(3): 783-90.
[http://dx.doi.org/10.1128/AAC.48.3.783-790.2004] [PMID: 14982765]
[212]
Olechnowicz J, Tinkov A, Skalny A, Suliburska J. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J Physiol Sci 2018; 68(1): 19-31.
[http://dx.doi.org/10.1007/s12576-017-0571-7] [PMID: 28965330]
[213]
Iotti S, Wolf F, Mazur A, Maier JA. The COVID-19 pandemic: Is there a role for magnesium? Hypotheses and perspectives. Magnes Res 2020; 33(2): 21-7.
[http://dx.doi.org/10.1684/mrh.2020.0465] [PMID: 32554340]
[214]
Price LC, McCabe C, Garfield B, Wort SJ. Thrombosis and COVID-19 pneumonia: The clot thickens! European Respiratory Journal 2020; 56(1): 2001608.
[215]
Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sci 2014; 19(2): 164-74.
[PMID: 24778671]
[216]
Harun-Ur-Rashid M, Foyez T, Jahan I, Pal K, Imran AB. Rapid diagnosis of COVID-19 via nano-biosensor-implemented biomedical utilization: A systematic review. RSC Advances 2022; 12(15): 9445-65.
[http://dx.doi.org/10.1039/D2RA01293F] [PMID: 35424900]
[217]
Taneri PE, Gómez-Ochoa SA, Llanaj E, et al. Anemia and iron metabolism in COVID-19: A systematic review and meta-analysis. Eur J Epidemiol 2020; 35(8): 763-73.
[http://dx.doi.org/10.1007/s10654-020-00678-5] [PMID: 32816244]
[218]
Bellmann-Weiler R, Lanser L, Barket R, et al. Prevalence and predictive value of anemia and dysregulated iron homeostasis in patients with COVID-19 infection. J Clin Med 2020; 9(8): 2429.
[http://dx.doi.org/10.3390/jcm9082429] [PMID: 32751400]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy