Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Interaction of Human Gut Microflora with Commonly Consumed Herbs and Spices: A Review

Author(s): Aksa Irshad, Prasad Rasane*, Sushma Gurumayum, Jyoti Singh, Sawinder Kaur, Avinash Singh Patel, Ashwani Kumar, Jaspreet Kaur, Mahendra Gunjal and Kanu Sharma

Volume 20, Issue 3, 2024

Published on: 13 June, 2023

Page: [317 - 330] Pages: 14

DOI: 10.2174/1573401319666230412110343

Price: $65

Open Access Journals Promotions 2
Abstract

Herbs and spices are used since time memorable to transfuse color and add flavors to food. Their antibacterial properties also help preserve raw and cooked foods. Various diets composed of herbs and spices, as consistent with various researches, have been shown to influence life within the human digestive tract. This modulation forms the basis of various health effects that the herbs and spices and the microflora have on the human health. The intestinal microbiota is engaged in a critical function of promoting health, composed of favourable microbes (Lactobacillus and Bifidobacterium) and potentially harmful microorganisms (Salmonella thyphimurium and Escherichia coli). Spices and herbs make double oddities, i.e., inhibiting the proliferation of hazardous microbes while promoting favorable ones. The paper reviews the relevant manuscripts published in the past 20 years to understand the microbial modulation dynamics of herbs and spices. PubMed, Mendeley, SciELO, Scopus, Science Direct, and other peer-reviewed databases were accessed for the review. Microbial modulation is achieved by means of herbs and spices owing to the reduction of oxidative stress caused by reactive oxygen radicals, such as OHˉ, singlet O2, hydrogen peroxide, and superoxide radical, which leads to a threat to the intestinal microbiota. Spices and herbs have essential oils that serve as prebiotics, reducing the demand to impart artificial antioxidants, thus avoiding the associated health risks. Thus, the present review explores the mechanisms and underlying functions of herbs and spices in the human gut biome.

Keywords: Herbs, antibacterial, therapeutic, microbiota, antioxidant, good health.

Graphical Abstract
[1]
Ekor M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 2014; 4(177): 177.
[http://dx.doi.org/10.3389/fphar.2013.00177] [PMID: 24454289]
[2]
Opara EI, Chohan M. Culinary herbs and spices: their bioactive properties, the contribution of polyphenols and the challenges in deducing their true health benefits. Int J Mol Sci 2014; 15(10): 19183-202.
[http://dx.doi.org/10.3390/ijms151019183] [PMID: 25340982]
[3]
Lv J, Qi L, Yu C, et al. Consumption of spicy foods and total and cause specific mortality: Population based cohort study. BMJ 2015; 351: h3942.
[http://dx.doi.org/10.1136/bmj.h3942] [PMID: 26242395]
[4]
Nazzaro F, Fratianni F, Dacierno A. Gut microbiota and polyphenols: A strict connection enhancing human health. In: Advanc Food Biotechnol . 2015; pp. 335-50.
[http://dx.doi.org/10.1002/9781118864463.ch20]
[5]
Temple NJ, Wilson T, Jacobs DR Jr. Nutritional health: Strategies for disease prevention. Springer Science & Business Media 2012.
[6]
Shan B, Cai YZ, Sun M, Corke H. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J Agric Food Chem 2005; 53(20): 7749-59.
[http://dx.doi.org/10.1021/jf051513y] [PMID: 16190627]
[7]
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39(1): 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[8]
Winter SE, Lopez CA, Bäumler AJ. The dynamics of gut-associated microbial communities during inflammation. EMBO Rep 2013; 14(4): 319-27.
[http://dx.doi.org/10.1038/embor.2013.27] [PMID: 23478337]
[9]
Platel K, Rao A, Saraswathi G, Srinivasan K. Digestive stimulant action of three Indian spice mixes in experimental rats. Nahrung 2002; 46: 394-8.
[10]
Srinivasan K. Ginger rhizomes (Zingiber officinale): A spice with multiple health beneficial potentials. PharmaNutrition 2017; 5(1): 18-28.
[http://dx.doi.org/10.1016/j.phanu.2017.01.001]
[11]
Platel K, Srinivasan K. Digestive stimulant action of spices: A myth or reality? Indian J Med Res 2004; 119(5): 167-79.
[PMID: 15218978]
[12]
Platel K, Srinivasan K. Studies on the influence of dietary spices on food transit time in experimental rats. Nutr Res 2001; 21(9): 1309-14.
[http://dx.doi.org/10.1016/s0271-5317(01)00331-1]
[13]
Rubió L, Motilva MJ, Romero MP. Recent advances in biologically active compounds in herbs and spices: A review of the most effective antioxidant and anti-inflammatory active principles. Crit Rev Food Sci Nutr 2013; 53(9): 943-53.
[http://dx.doi.org/10.1080/10408398.2011.574802] [PMID: 23768186]
[14]
Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 2001; 21(21): 8370-7.
[http://dx.doi.org/10.1523/jneurosci.21-21-08370.2001] [PMID: 11606625]
[15]
Singh G, Singh OP, Maurya S. Chemical and biocidal investigations on essential oils of some Indian Curcuma species. Prog Cryst Growth Charact Mater 2002; 45(1-2): 75-81.
[http://dx.doi.org/10.1016/s0960-8974(02)00030-x]
[16]
Hossain M, Brunton N, Barry-Ryan C, et al. Antioxidant activity of spice extracts and phenolics in comparison to synthetic antioxidants. Rasayan J Chem 2008; 4: 751-6.
[http://dx.doi.org/10.21427/D7105D]
[17]
Suresh D, Gurudutt KN, Srinivasan K. Degradation of bioactive spice compound: curcumin during domestic cooking. Eur Food Res Technol 2008; 228(5): 807-12.
[http://dx.doi.org/10.1007/s00217-008-0993-9]
[18]
Ravindran PN, Kallupurackal JA. Black pepper research under the all India coordinated research project on spices. Indian Indian J Arec Spice Med Plants 2000; 2(3): 71-8.
[19]
Singh G, Marimuthu P, Murali HS, et al. Antioxidative and antibacterial potentials of essential oils and extracts isolated from various spice materials. J Food Saf 2005; 25(2): 130-45.
[http://dx.doi.org/10.1111/j.1745-4565.2005.00564.x]
[20]
Chaudhry NMA, Tariq P. Anti-microbial activity of Cinnamomum cassia against diverse microbial flora with its nutritional and medicinal impacts. Pak J Bot 2006; 38(1): 169-74.
[21]
Benkeblia N. Free-radical scavenging capacity and antioxidant properties of some selected onions (Allium cepa L.) and garlic (Allium sativum L.) extracts. Braz Arch Biol Technol 2005; 48(5): 753-9.
[http://dx.doi.org/10.1590/s1516-89132005000600011]
[22]
Devi AS, Rajkumar J. in vitro antibacterial activity and stability of Avicennia marina against urinary tract infection pathogens at different parameters. Pak J Biol Sci 2013; 16(19): 1034-9.
[http://dx.doi.org/10.3923/PJBS.2013.1034.1039] [PMID: 24502167]
[23]
Friedman M, Henika PR, Mandrell RE. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J Food Prot 2002; 65(10): 1545-60.
[http://dx.doi.org/10.4315/0362-028x-65.10.1545] [PMID: 12380738]
[24]
Kivçak B, Mert T. Preliminary evaluation of cytotoxic properties of Laurus nobilis leaf extracts. Fitoterapia 2002; 73(3): 242-3.
[http://dx.doi.org/10.1016/s0367-326x(02)00060-6] [PMID: 12048018]
[25]
Díaz-Maroto MC, Pérez-Coello MS, Cabezudo MD. Effect of drying method on the volatiles in bay leaf (Laurus nobilis L.). J Agric Food Chem 2002; 50(16): 4520-4.
[http://dx.doi.org/10.1021/jf011573d] [PMID: 12137470]
[26]
Elmastaş M, Gülçin İ, Işildak Ö, et al. Radical scavenging activity and antioxidant capacity of bay leaf extracts. J Iran Chem Soc 2006; 3(3): 258-66.
[http://dx.doi.org/10.1007/bf03247217]
[27]
Ali BH, Blunden G. Pharmacological and toxicological properties of Nigella sativa. Phytother Res 2003; 17(4): 299-305.
[http://dx.doi.org/10.1002/ptr.1309] [PMID: 12722128]
[28]
Arici M, Sagdic O, Gecgel U. Antibacterial effect of Turkish black cumin (Nigella sativa L.) oils. Grasas Aceites 2005; 56(4): 259-62.
[http://dx.doi.org/10.3989/gya.2005.v56.i4.90]
[29]
Chaieb K, Hajlaoui H, Zmantar T, et al. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): A short review. Phytother Res 2007; 21(6): 501-6.
[http://dx.doi.org/10.1002/ptr.2124] [PMID: 17380552]
[30]
Ayoola GA, Lawore FM, Adelowotan T, et al. Chemical analysis and antimicrobial activity of the essential oil of Syzigium aromaticum (clove). Afr J Microbiol Res 2008; 2(7): 162-6.
[http://dx.doi.org/10.4314/ajtcam.v4i3.31227]
[31]
Oktay M, Gülçin L, Küfrevioğlu R. Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. Lebensm Wiss Technol 2003; 36(2): 263-71.
[http://dx.doi.org/10.1016/s0023-6438(02)00226-8]
[32]
Anwar F, Ali M, Hussain AI, et al. Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare Mill.) seeds from Pakistan. Flavour Fragrance J 2009; 24(4): 170-6.
[http://dx.doi.org/10.1002/ffj.1929]
[33]
Shahat AA, Ibrahim AY, Hendawy SF, et al. Chemical composition, antimicrobial and antioxidant activities of essential oils from organically cultivated fennel cultivars. Molecules 2011; 16(2): 1366-77.
[http://dx.doi.org/10.3390/molecules16021366] [PMID: 21285921]
[34]
Rawson A, Hossain MB, Patras A, et al. Effect of boiling and roasting on the polyacetylene and polyphenol content of fennel (Foeniculum vulgare) bulb. Int Food Res J 2013; 50(2): 513-8.
[http://dx.doi.org/10.1016/j.foodres.2011.01.009]
[35]
Onyeagba R, Ugbogu O, Okeke C, et al. Studies on the antimicrobial effects of garlic (Allium sativum Linn), ginger (Zingiber officinale Roscoe) and lime (Citrus aurantifolia Linn). Afr J Biotechnol 2004; 3(10): 552-4.
[http://dx.doi.org/10.5897/ajb2004.000-2108]
[36]
Mallikarjuna K, Sahitya CP, Sathyavelu RK, Rajendra W. Ethanol toxicity: Rehabilitation of hepatic antioxidant defense system with dietary ginger. Fitoterapia 2008; 79(3): 174-8.
[http://dx.doi.org/10.1016/j.fitote.2007.11.007] [PMID: 18182172]
[37]
Yusha’u M, Garba L, Shamsuddeen U. In vitro inhibitory activity of garlic and ginger extracts on some respiratory tract isolates of gram-negative organisms. Int J Biomed Heal Sci 2008; 4(2): 57-60.
[38]
Chaudhry NM, Tariq P. Bactericidal activity of black pepper, bay leaf, aniseed and coriander against oral isolates. Pak J Pharm Sci 2006; 19(3): 214-8.
[PMID: 16935829]
[39]
Bagamboula CF, Uyttendaele M, Debevere J. Antimicrobial effect of spices and herbs on Shigella sonnei and Shigella flexneri. J Food Prot 2003; 66(4): 668-73.
[http://dx.doi.org/10.4315/0362-028x-66.4.668] [PMID: 12696694]
[40]
Baydar HASAN, Özkan G, Erbaş S, et al. Yield, chemical composition and antioxidant properties of extracts and essential oils of sage and rosemary depending on seasonal variations. Acta Hortic 2007; (826): 383-90.
[http://dx.doi.org/10.17660/actahortic.2009.826.54]
[41]
Bousbia N, Abert VM, Ferhat MA, et al. Comparison of two isolation methods for essential oil from rosemary leaves: Hydrodistillation and microwave hydrodiffusion and gravity. Food Chem 2009; 114(1): 355-62.
[http://dx.doi.org/10.1016/j.foodchem.2008.09.106]
[42]
Okoh O, Sadimenko A, Afolayan A. Comparative evaluation of the antibacterial activities of the essential oils of Rosmarinus officinalis L. obtained by hydrodistillation and solvent free microwave extraction methods. Food Chem 2010; 120(1): 308-12.
[http://dx.doi.org/10.1016/j.foodchem.2009.09.084]
[43]
Kubo I, Fujita K, Kubo A, Nihei K, Ogura T. Antibacterial activity of coriander volatile compounds against Salmonella choleraesuis. J Agric Food Chem 2004; 52(11): 3329-32.
[http://dx.doi.org/10.1021/jf0354186] [PMID: 15161192]
[44]
Gómez-Estaca J, Bravo L, Gómez-Guillén M, et al. Antioxidant properties of tuna-skin and bovine-hide gelatin films induced by the addition of oregano and rosemary extracts. Food Chem 2009; 112(1): 18-25.
[http://dx.doi.org/10.1016/j.foodchem.2008.05.034]
[45]
Ocaña-Fuentes A, Arranz-Gutiérrez E, Señorans FJ, Reglero G. Supercritical fluid extraction of oregano (Origanum vulgare) essentials oils: Anti-inflammatory properties based on cytokine response on THP-1 macrophages. Food Chem Toxicol 2010; 48(6): 1568-75.
[http://dx.doi.org/10.1016/j.fct.2010.03.026] [PMID: 20332013]
[46]
Teixeira B, Marques A, Ramos C, et al. Chemical composition and bioactivity of different oregano (Origanum vulgare) extracts and essential oil. J Sci Food Agric 2013; 93(11): 2707-14.
[http://dx.doi.org/10.1002/jsfa.6089] [PMID: 23553824]
[47]
Pedro AC, Moreira F, Granato D, Rosso ND. Extraction of bioactive compounds and free radical scavenging activity of purple basil (Ocimum basilicum L.) leaf extracts as affected by temperature and time. An Acad Bras Cienc 2016; 88(2): 1055-68.
[http://dx.doi.org/10.1590/0001-3765201620150197] [PMID: 27192193]
[48]
Tassou C, Koutsoumanis K, Nychas GJ. Inhibition of Salmonella enteritidis and Staphylococcus aureus in nutrient broth by mint essential oil. Int Food Res J 2000; 33(3-4): 273-80.
[http://dx.doi.org/10.1016/s0963-9969(00)00047-8]
[49]
Singh R, Shushni MA, Belkheir A. Antibacterial and antioxidant activities of Mentha piperita L. Arab J Chem 2015; 8(3): 322-8.
[http://dx.doi.org/10.1016/j.arabjc.2011.01.019]
[50]
Howlett J. Functional foods-From science to health claims. In: ILSI Europe Concise Monograph Series (Peter Aggett, ed University of Central Lancashire (UK)) ILSI Europe, Brussels . 2008.
[51]
An X, Bao Q, Di S, et al. The interaction between the gut Microbiota and herbal medicines. Biomed Pharmacother 2019; 118: 109252.
[http://dx.doi.org/10.1016/j.biopha.2019.109252] [PMID: 31545247]
[52]
Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 2003; 108(14): 1664-72.
[http://dx.doi.org/10.1161/01.cir.0000087480.94275.97] [PMID: 14530185]
[53]
Van den Ende W, Peshev D, de Gara L. Disease prevention by natural antioxidants and prebiotics acting as ROS scavengers in the gastrointestinal tract. Trends Food Sci Technol 2011; 22(12): 689-97.
[http://dx.doi.org/10.1016/j.tifs.2011.07.005]
[54]
Engelkirk PG, Duben-Engelkirk J, Fader RC. Burton’s microbiology for the health sciences. Jones & Bartlett Publishers 2020.
[55]
Molan A, Flanagan J, Wei W, et al. Selenium-containing green tea has higher antioxidant and prebiotic activities than regular green tea. Food Chem 2009; 114(3): 829-35.
[http://dx.doi.org/10.1016/j.foodchem.2008.10.028]
[56]
Molan AL, Lila MA, Mawson J, et al. in vitro and in vivo evaluation of the prebiotic activity of water-soluble blueberry extracts. World J Microbiol Biotechnol 2009; 25: 1243-9.
[http://dx.doi.org/10.1007/s11274-009-0011-9]
[57]
Jin JS, Touyama M, Hisada T, Benno Y. Effects of green tea consumption on human fecal microbiota with special reference to Bifidobacterium species. Microbiol Immunol 2012; 56(11): 729-39.
[http://dx.doi.org/10.1111/j.1348-0421.2012.00502.x] [PMID: 22924537]
[58]
Yu X, Yin J, Li L, et al. Prebiotic potential of xylooligosaccharides derived from corn cobs and their in vitro antioxidant activity when combined with Lactobacillus. J Microbiol Biotechnol 2015; 25(7): 1084-92.
[http://dx.doi.org/10.4014/jmb.1501.01022] [PMID: 25791856]
[59]
González-Barrio R, Borges G, Mullen W, Crozier A. Bioavailability of anthocyanins and ellagitannins following consumption of raspberries by healthy humans and subjects with an ileostomy. J Agric Food Chem 2010; 58(7): 3933-9.
[http://dx.doi.org/10.1021/jf100315d] [PMID: 20218618]
[60]
Lacombe A, Li RW, Klimis-Zacas D, et al. Lowbush wild blueberries have the potential to modify gut microbiota and xenobiotic metabolism in the rat colon. PLoS One 2013; 8(6): e67497.
[http://dx.doi.org/10.1371/journal.pone.0067497] [PMID: 23840722]
[61]
Tzounis X, Rodriguez-Mateos A, Vulevic J, Gibson GR, Kwik-Uribe C, Spencer JP. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am J Clin Nutr 2011; 93(1): 62-72.
[http://dx.doi.org/10.3945/ajcn.110.000075] [PMID: 21068351]
[62]
Serena C, Ceperuelo-Mallafré V, Keiran N, et al. Elevated circulating levels of succinate in human obesity are linked to specific gut microbiota. ISME J 2018; 12(7): 1642-57.
[http://dx.doi.org/10.1038/s41396-018-0068-2] [PMID: 29434314]
[63]
Anprung P, Sangthawan S. Prebiotic activity and bioactive compounds of the enzymatically depolymerized thailand-grown mangosteen aril. J Food Res 2012; 1(1): 268-76.
[http://dx.doi.org/10.5539/jfr.v1n1p268]
[64]
Campos D, Betalleluz-Pallardel I, Chirinos R, Aguilar-Galvez A, Noratto G, Pedreschi R. Prebiotic effects of yacon (Smallanthus sonchifolius Poepp. & Endl), a source of fructooligosaccharides and phenolic compounds with antioxidant activity. Food Chem 2012; 135(3): 1592-9.
[http://dx.doi.org/10.1016/j.foodchem.2012.05.088] [PMID: 22953898]
[65]
Juśkiewicz J, Zduńczyk Z, Żary-Sikorska E, Król B, Milala J, Jurgoński A. Effect of the dietary polyphenolic fraction of chicory root, peel, seed and leaf extracts on caecal fermentation and blood parameters in rats fed diets containing prebiotic fructans. Br J Nutr 2011; 105(5): 710-20.
[http://dx.doi.org/10.1017/s0007114510004344] [PMID: 21134333]
[66]
González-Sarrías A, Larrosa M, Tomás-Barberán FA, Dolara P, Espín JC. NF-kappaB-dependent anti-inflammatory activity of urolithins, gut microbiota ellagic acid-derived metabolites, in human colonic fibroblasts. Br J Nutr 2010; 104(4): 503-12.
[http://dx.doi.org/10.1017/s0007114510000826] [PMID: 20338073]
[67]
Del Chierico F, Vernocchi P, Dallapiccola B, Putignani L. Mediterranean diet and health: Food effects on gut microbiota and disease control. Int J Mol Sci 2014; 15(7): 11678-99.
[http://dx.doi.org/10.3390/ijms150711678] [PMID: 24987952]
[68]
Attri S, Sharma K, Raigond P, Goel G. Colonic fermentation of polyphenolics from Sea buckthorn (Hippophae rhamnoides) berries: Assessment of effects on microbial diversity by Principal Component Analysis. Food Res Int 2018; 105: 324-32.
[http://dx.doi.org/10.1016/j.foodres.2017.11.032] [PMID: 29433221]
[69]
Dethlefsen L, McFall-Ngai M, Relman DA. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 2007; 449(7164): 811-8.
[http://dx.doi.org/10.1038/nature06245] [PMID: 17943117]
[70]
Duncan SH, Louis P, Flint HJ. Cultivable bacterial diversity from the human colon. Lett Appl Microbiol 2007; 44(4): 343-50.
[http://dx.doi.org/10.1111/j.1472-765x.2007.02129.x] [PMID: 17397470]
[71]
Kleerebezem M, Hols P, Bernard E, et al. The extracellular biology of the lactobacilli. FEMS Microbiol Rev 2010; 34(2): 199-230.
[http://dx.doi.org/10.1111/j.1574-6976.2009.00208.x] [PMID: 20088967]
[72]
Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 1999; 63(1): 174-229.
[http://dx.doi.org/10.1128/mmbr.63.1.174-229.1999] [PMID: 10066836]
[73]
Walle T, Browning AM, Steed LL, Reed SG, Walle UK. Flavonoid glucosides are hydrolyzed and thus activated in the oral cavity in humans. J Nutr 2005; 135(1): 48-52.
[http://dx.doi.org/10.1093/jn/135.1.48] [PMID: 15623831]
[74]
Scalbert A, Morand C, Manach C, Rémésy C. Absorption and metabolism of polyphenols in the gut and impact on health. Biomed Pharmacother 2002; 56(6): 276-82.
[http://dx.doi.org/10.1016/s0753-3322(02)00205-6] [PMID: 12224598]
[75]
Selma MV, Espín JC, Tomás-Barberán FA. Interaction between phenolics and gut microbiota: Role in human health. J Agric Food Chem 2009; 57(15): 6485-501.
[http://dx.doi.org/10.1021/jf902107d] [PMID: 19580283]
[76]
Jefferson RA, Burgess SM, Hirsh D. beta-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci 1986; 83(22): 8447-51.
[http://dx.doi.org/10.1073/pnas.83.22.8447] [PMID: 3534890]
[77]
Clavel T, Henderson G, Engst W, Doré J, Blaut M. Phylogeny of human intestinal bacteria that activate the dietary lignan secoisolariciresinol diglucoside. FEMS Microbiol Ecol 2006; 55(3): 471-8.
[http://dx.doi.org/10.1111/j.1574-6941.2005.00057.x] [PMID: 16466386]
[78]
Aura AM. Microbial metabolism of dietary phenolic compounds in the colon. Phytochem Rev 2008; 7(3): 407-29.
[http://dx.doi.org/10.1007/s11101-008-9095-3]
[79]
Donovan JL, Bell JR, Kasim-Karakas S, et al. Catechin is present as metabolites in human plasma after consumption of red wine. J Nutr 1999; 129(9): 1662-8.
[http://dx.doi.org/10.1093/jn/129.9.1662] [PMID: 10460201]
[80]
Kleessen EB, Jaa B. Culture-based knowledge on biodiversity, development and stability of human gastrointestinal microflora. Microb Ecol Health Dis 2000; 12(2): 53-63.
[http://dx.doi.org/10.1080/089106000750060305]
[81]
Heidker RM. Metabolic effects of a grape seed procyanidin extract and its relation to bile acid homeostasis. Reno: University of Nevada 2016.
[82]
Adlercreutz H, van der Wildt J, Kinzel J, et al. Lignan and isoflavonoid conjugates in human urine. J Steroid Biochem Mol Biol 1995; 52(1): 97-103.
[http://dx.doi.org/10.1016/0960-0760(94)00146-d] [PMID: 7857879]
[83]
Li S, Zhao Y, Zhang L, et al. Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chem 2012; 135(3): 1914-9.
[http://dx.doi.org/10.1016/j.foodchem.2012.06.048] [PMID: 22953940]
[84]
Sohail MU, Rahman ZU, Ijaz A, et al. Single or combined effects of mannan-oligosaccharides and probiotic supplements on the total oxidants, total antioxidants, enzymatic antioxidants, liver enzymes, and serum trace minerals in cyclic heat-stressed broilers. Poult Sci 2011; 90(11): 2573-7.
[http://dx.doi.org/10.3382/ps.2011-01502] [PMID: 22010243]
[85]
Castex M, Lemaire P, Wabete N, et al. Effect of dietary probiotic Pediococcus acidilactici on antioxidant defences and oxidative stress status of shrimp Litopenaeus stylirostris. Aquaculture 2009; 294(3-4): 306-13.
[http://dx.doi.org/10.1016/j.aquaculture.2009.06.016]
[86]
Bhor VM, Raghuram N, Sivakami S. Oxidative damage and altered antioxidant enzyme activities in the small intestine of streptozotocin-induced diabetic rats. Int J Biochem Cell Biol 2004; 36(1): 89-97.
[http://dx.doi.org/10.1016/s1357-2725(03)00142-0] [PMID: 14592535]
[87]
Deitch EA, Xu D, Naruhn MB, Deitch DC, Lu Q, Marino AA. Elemental diet and IV-TPN-induced bacterial translocation is associated with loss of intestinal mucosal barrier function against bacteria. Ann Surg 1995; 221(3): 299-307.
[http://dx.doi.org/10.1097/00000658-199503000-00013] [PMID: 7717784]
[88]
Swamy MK, Akhtar MS, Sinniah UR. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: An updated review. Evid Based Complement Alternat Med 2016; 2016: 3012462.
[http://dx.doi.org/10.1155/2016/3012462] [PMID: 28090211]
[89]
Koohsari H, Ghaemi EA, Sadegh SM, Jahedi M, Zahiri M. The investigation of antibacterial activity of selected native plants from North of Iran. J Med Life 2015; 8: 38-42.
[PMID: 28255395]
[90]
Dairi S, Madani K, Aoun M, et al. Antioxidative properties and ability of phenolic compounds of Myrtus communis leaves to counteract in vitro LDL and phospholipid aqueous dispersion oxidation. J Food Sci 2014; 79(7): C1260-70.
[http://dx.doi.org/10.1111/1750-3841.12517] [PMID: 24962212]
[91]
Mason TL, Bruce PW. Inactivation of red beet β-glucan synthase by native and oxidized phenolic compounds. Phytochemistry 1987; 26(8): 2197-202.
[http://dx.doi.org/10.1016/s0031-9422(00)84683-x]
[92]
Verma S, Karkun A, Siddiqui HN. Comparative study of clove oil against bacteria and fungal species. Int J Clin Biochem Res 2015; 2: 73-6.
[93]
Habimana O, Semião A, Casey E. The role of cell-surface interactions in bacterial initial adhesion and consequent biofilm formation on nanofiltration/reverse osmosis membranes. J Membr Sci 2014; 454: 82-96.
[http://dx.doi.org/10.1016/j.memsci.2013.11.043]
[94]
Skocibusic M, Bezic N, Dunkic V. Phytochemical composition and antimicrobial activities of the essential oils from Vis. growing in Croatia. Food Chem 2006; 96(1): 20-8.
[http://dx.doi.org/10.1016/j.foodchem.2005.01.051]
[95]
Barbosa LN, Rall VLM, Fernandes AAH, Ushimaru PI, da Silva PI, Fernandes A Jr. Essential oils against foodborne pathogens and spoilage bacteria in minced meat. Foodborne Pathog Dis 2009; 6(6): 725-8.
[http://dx.doi.org/10.1089/fpd.2009.0282] [PMID: 19580445]
[96]
Laparra JM, Sanz Y. Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol Res 2010; 61(3): 219-25.
[http://dx.doi.org/10.1016/j.phrs.2009.11.001] [PMID: 19914380]
[97]
Mastura YH, Hasnah H, Yap YT. Total phenolic content and antioxidant capacities of instant mix spices cooking pastes. Int Food Res J 2017; 24: 68-74.
[98]
Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature 2012; 489(7415): 242-9.
[http://dx.doi.org/10.1038/nature11552] [PMID: 22972297]
[99]
Sánchez‐Moreno C, Larrauri JA, Saura‐Calixto F. A procedure to measure the antiradical efficiency of polyphenols. J Sci Food Agric 1998; 76: 270-6. 10.1002/(SICI)1097-0010(199802)76:2%3C270:AID JSFA945%3E3.0.CO;2-9
[100]
Kumar Singh A, Cabral C, Kumar R, et al. Beneficial effects of dietary polyphenols on gut microbiota and strategies to improve delivery efficiency. Nutrients 2019; 11(9): 2216.
[http://dx.doi.org/10.3390/nu11092216] [PMID: 31540270]
[101]
Fares MM, Salem MS. Dissolution enhancement of curcumin via curcumin-prebiotic inulin nanoparticles. Drug Dev Ind Pharm 2015; 41(11): 1785-92.
[http://dx.doi.org/10.3109/03639045.2015.1004184] [PMID: 25632979]
[102]
Mensah P, Yeboah-Manu D, Owusu-Darko K, Ablordey A. Street foods in Accra, Ghana: How safe are they? Bull World Health Organ 2002; 80(7): 546-54.
[PMID: 12163918]
[103]
Martínez Y, Más D. Role of herbs and medicinal spices as modulators of gut microbiota. In: Herbs and Spices. 2020; 13: p. 11.
[http://dx.doi.org/10.5772/intechopen.91208]
[104]
Rathore SS, Saxena SN, Singh B. Potential health benefits of major seed spices. Int J Seed Spices 2013; 3(2): 1-12.
[105]
Chohan M, Forster-Wilkins G, Opara EI. Determination of the antioxidant capacity of culinary herbs subjected to various cooking and storage processes using the ABTS(*+) radical cation assay. Plant Foods Hum Nutr 2008; 63(2): 47-52.
[http://dx.doi.org/10.1007/s11130-007-0068-2] [PMID: 18224444]
[106]
Kim S, Jeong S, Park W. Effect of heating conditions of grape seeds on the antioxidant activity of grape seed extracts. Food Chem 2006; 97(3): 472-9.
[http://dx.doi.org/10.1016/j.foodchem.2005.05.027]
[107]
Morales FJ, Jiménez-Pérez S. Free radical scavenging capacity of Maillard reaction products as related to colour and fluorescence. Food Chem 2001; 72(1): 119-25.
[http://dx.doi.org/10.1016/s0308-8146(00)00239-9]
[108]
Chohan M, Naughton DP, Jones L, Opara EI. An investigation of the relationship between the anti-inflammatory activity, polyphenolic content, and antioxidant activities of cooked and in vitro digested culinary herbs. Oxid Med Cell Longev 2012; 2012: 627843.
[http://dx.doi.org/10.1155/2012/627843] [PMID: 22685620]
[109]
Cilla A, González-Sarrías A, Tomás-Barberán FA. Availability of polyphenols in fruit beverages subjected to in vitro gastrointestinal digestion and their effects on proliferation, cell-cycle and apoptosis in human colon cancer Caco-2 cells. Food Chem 2009; 114(3): 813-20.
[http://dx.doi.org/10.1016/j.foodchem.2008.10.019]
[110]
Gião MS, Gomes S, Madureira AR, et al. Effect of in vitro digestion upon the antioxidant capacity of aqueous extracts of Agrimonia eupatoria, Rubus idaeus, Salvia sp. and Satureja montana. Food Chem 2012; 131(3): 761-7.
[http://dx.doi.org/10.1016/j.foodchem.2011.09.030]
[111]
Henning SM, Zhang Y, Rontoyanni VG, et al. Variability in the antioxidant activity of dietary supplements from pomegranate, milk thistle, green tea, grape seed, goji, and acai: Effects of in vitro digestion. J Agric Food Chem 2014; 62(19): 4313-21.
[http://dx.doi.org/10.1021/jf500106r] [PMID: 24745654]
[112]
Minekus M, Alminger M, Alvito P, et al. A standardised static in vitro digestion method suitable for food - an international consensus. Food Funct 2014; 5(6): 1113-24.
[http://dx.doi.org/10.1039/c3fo60702j] [PMID: 24803111]
[113]
Chohan MBN. The impact of digestion and gut bioavailability, in vitro, on the polyphenolic associated activity of cooked culinary herbs. 2011. Available from :[https://eprints.kingston.ac.uk/id/eprint/22530/
[114]
Baker I, Chohan M, Opara EI. Impact of cooking and digestion, in vitro, on the antioxidant capacity and anti-inflammatory activity of cinnamon, clove and nutmeg. Plant Foods Hum Nutr 2013; 68(4): 364-9.
[http://dx.doi.org/10.1007/s11130-013-0379-4] [PMID: 23975332]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy