Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Postbiotic Bioactive Packaging Systems: A Review

Author(s): Roya Abedi Soleimani, Seyed Mohamad Javad Shokouhian, Jalil Houshyar, Nader Khani, Soheila Abachi, Payam Gonbari Milani, Elnaz Panahi and Aziz Homayouni-Rad*

Volume 20, Issue 3, 2024

Published on: 06 June, 2023

Page: [296 - 304] Pages: 9

DOI: 10.2174/1573401319666230309122819

Price: $65

Open Access Journals Promotions 2
Abstract

A bioactive containing packaging system is not only a traditional protective structure for a food product but also offers additional health-benefiting properties. Postbiotics (nonbiotics) are metabolites produced by probiotic microorganisms that have numerous health benefits. The safety and non-toxicity of postbiotics and their capability to prevent the growth of food spoilage microbes are the significant features of postbiotics (cell-free supernatants) in using these components in food manufacturing. In this comprehensive review, authors discuss the characteristics of postbiotics, different types and sources of postbiotics, their application in active packaging and the possibilities of their application in increasing the shelf-life of products with active packaging.

Keywords: Probiotics, lactic acid bacteria, edible films, coating, antimicrobial activity, anti-oxidants.

Graphical Abstract
[1]
Wyrwa J, Barska A. Innovations in the food packaging market: Active packaging. Eur Food Res Technol 2017; 243(10): 1681-92.
[http://dx.doi.org/10.1007/s00217-017-2878-2]
[2]
Majeed M, Majeed S, Nagabhushanam K, et al. Novel topical application of a postbiotic, lactosporin®, in mild to moderate acne: A randomized, comparative clinical study to evaluate its efficacy, tolerability and safety. Cosmetics 2020; 7(3): 70.
[http://dx.doi.org/10.3390/cosmetics7030070]
[3]
Pop OL, Pop CR, Dufrechou M, et al. Edible films and coatings functionalization by probiotic incorporation: A review. Polymers 2019; 12(1): 12.
[http://dx.doi.org/10.3390/polym12010012] [PMID: 31861657]
[4]
Cizeikiene D, Juodeikiene G, Paskevicius A, Bartkiene E. Antimicrobial activity of lactic acid bacteria against pathogenic and spoilage microorganism isolated from food and their control in wheat bread. Food Control 2013; 31(2): 539-45.
[http://dx.doi.org/10.1016/j.foodcont.2012.12.004]
[5]
Homayouni Rad A, Aghebati Maleki L, Samadi Kafil H, Fathi Zavoshti H, Abbasi A. Postbiotics as promising tools for cancer adjuvant therapy. Adv Pharm Bull 2020; 11(1): 1-5.
[http://dx.doi.org/10.34172/apb.2021.007] [PMID: 33747846]
[6]
Wong KE, Ngai SC, Chan KG, Lee LH, Goh BH, Chuah LH. Curcumin nanoformulations for colorectal cancer: A review. Front Pharmacol 2019; 10: 152.
[http://dx.doi.org/10.3389/fphar.2019.00152] [PMID: 30890933]
[7]
Akbari MR, Haghighi HR, Chambers JR, Brisbin J, Read LR, Sharif S. Expression of antimicrobial peptides in cecal tonsils of chickens treated with probiotics and infected with Salmonella enterica serovar typhimurium. Clin Vaccine Immunol 2008; 15(11): 1689-93.
[http://dx.doi.org/10.1128/CVI.00242-08] [PMID: 18827189]
[8]
Tomar S, Anand S, Sharma P, Sangwan V, Mandal S, et al. Role of probiotics, prebiotics, synbiotics and postbiotics in inhibition of pathogens The Battle against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs. Badajoz, Spain: Formatex 2015.
[9]
Lopez-Rubio A, Gavara R, Lagaron JM. Bioactive packaging: Turning foods into healthier foods through biomaterials. Trends Food Sci Technol 2006; 17(10): 567-75.
[http://dx.doi.org/10.1016/j.tifs.2006.04.012]
[10]
Salgado PR, Ortiz CM, Musso YS, Di Giorgio L, Mauri AN. Edible films and coatings containing bioactives. Curr Opin Food Sci 2015; 5: 86-92.
[http://dx.doi.org/10.1016/j.cofs.2015.09.004]
[11]
Callon C, Arliguie C, Montel MC. Control of shigatoxin-producing escherichia coli in cheese by dairy bacterial strains. Food Microbiol 2016; 53((Pt B)): 63-70.
[http://dx.doi.org/10.1016/j.fm.2015.08.009] [PMID: 26678131]
[12]
Ke CL, Deng FS, Chuang CY, Lin CH. Antimicrobial actions and applications of chitosan. Polymers 2021; 13(6): 904.
[http://dx.doi.org/10.3390/polym13060904] [PMID: 33804268]
[13]
Wińska K, Mączka W, Łyczko J, Grabarczyk M, Czubaszek A, Szumny A. Essential oils as antimicrobial agents-myth or real alternative? Molecules 2019; 24(11): 2130.
[http://dx.doi.org/10.3390/molecules24112130] [PMID: 31195752]
[14]
Sfiligoj SM, Hribernik KSK, Kreže T, et al. Plant fibres for textile and technical applications. Int Agrophys 2013; 369-98.
[http://dx.doi.org/10.5772/52372]
[15]
Sánchez-López E, Gomes D, Esteruelas G, et al. Metal-based nanoparticles as antimicrobial agents: An overview. Nanomaterials 2020; 10(2): 292.
[http://dx.doi.org/10.3390/nano10020292] [PMID: 32050443]
[16]
Nguyen V, Vu V, Nguyen T, Nguyen T, Tran V, Nguyen-Tri P. Antibacterial activity of TiO2-and ZnO-decorated with silver nanoparticles. J Compos Sci 2019; 3(2): 61.
[http://dx.doi.org/10.3390/jcs3020061]
[17]
Ebrahimi H, Abedi B, Bodaghi H, Davarynejad G, Haratizadeh H, Conte A. Investigation of developed clay‐nanocomposite packaging film on quality of peach fruit (Prunus persica Cv. Alberta) during cold storage. J Food Process Preserv 2018; 42(2): e13466.
[http://dx.doi.org/10.1111/jfpp.13466]
[18]
Mohamed NA, Abd El-Ghany NA, Fahmy MM, Khalaf-Alla PA. Novel polymaleimide containing dibenzoyl hydrazine pendant group as chelating agent for antimicrobial activity. Int J Polym Mater 2018; 67(2): 68-77.
[http://dx.doi.org/10.1080/00914037.2017.1297944]
[19]
Chen M, Chen X, Ray S, Yam K. Stabilization and controlled release of gaseous/volatile active compounds to improve safety and quality of fresh produce. Trends Food Sci Technol 2020; 95: 33-44.
[http://dx.doi.org/10.1016/j.tifs.2019.11.005]
[20]
Gómez-García M, Sol C, de Nova PJG, et al. Antimicrobial activity of a selection of organic acids, their salts and essential oils against swine enteropathogenic bacteria. Porcine Health Manag 2019; 5(1): 32.
[http://dx.doi.org/10.1186/s40813-019-0139-4] [PMID: 31890256]
[21]
Thyavihalli GYG, Mavinkere RS, Parameswaranpillai J, Siengchin S. Natural fibers as sustainable and renewable resource for development of eco-friendly composites: A comprehensive review. Front Mater 2019; 6: 226.
[http://dx.doi.org/10.3389/fmats.2019.00226]
[22]
Bouasker M, Belayachi N, Hoxha D, Al-Mukhtar M. Physical characterization of natural straw fibers as aggregates for construction materials applications. Materials 2014; 7(4): 3034-48.
[http://dx.doi.org/10.3390/ma7043034] [PMID: 28788605]
[23]
Khan R. Fiber bridging in composite laminates: A literature review. Compos Struct 2019; 229: 111418.
[http://dx.doi.org/10.1016/j.compstruct.2019.111418]
[24]
Greco F, Leonetti L, Lonetti P, Nevone BP. Crack propagation analysis in composite materials by using moving mesh and multiscale techniques. Comput Struc 2015; 153: 201-16.
[http://dx.doi.org/10.1016/j.compstruc.2015.03.002]
[25]
Yao L, Cui H, Sun Y, et al. Fibre-bridged fatigue delamination in multidirectional composite laminates. Compos, Part A Appl Sci Manuf 2018; 115: 175-86.
[http://dx.doi.org/10.1016/j.compositesa.2018.09.027]
[26]
Swolfs Y, Verpoest I, Gorbatikh L. Recent advances in fibre-hybrid composites: Materials selection, opportunities and applications. Int Mater Rev 2019; 64(4): 181-215.
[http://dx.doi.org/10.1080/09506608.2018.1467365]
[27]
Ma Q, Rejab MRM, Siregar JP, Guan Z. A review of the recent trends on core structures and impact response of sandwich panels. J Compos Mater 2021; 55(18): 2513-55.
[http://dx.doi.org/10.1177/0021998321990734]
[28]
Soukoulis C, Behboudi-Jobbehdar S, Macnaughtan W, Parmenter C, Fisk ID. Stability of Lactobacillus rhamnosus GG incorporated in edible films: Impact of anionic biopolymers and whey protein concentrate. Food Hydrocoll 2017; 70: 345-55.
[http://dx.doi.org/10.1016/j.foodhyd.2017.04.014] [PMID: 28867864]
[29]
Soukoulis C, Behboudi-Jobbehdar S, Yonekura L, Parmenter C, Fisk ID. Stability of Lactobacillus rhamnosus GG in prebiotic edible films. Food Chem 2014; 159(100): 302-8.
[http://dx.doi.org/10.1016/j.foodchem.2014.03.008] [PMID: 24767059]
[30]
Falguera V, Quintero JP, Jiménez A, Muñoz JA, Ibarz A. Edible films and coatings: Structures, active functions and trends in their use. Trends Food Sci Technol 2011; 22(6): 292-303.
[http://dx.doi.org/10.1016/j.tifs.2011.02.004]
[31]
Romano N, Tavera-Quiroz MJ, Bertola N, Mobili P, Pinotti A, Gómez-Zavaglia A. Edible methylcellulose-based films containing fructo-oligosaccharides as vehicles for lactic acid bacteria. Food Res Int 2014; 64: 560-6.
[http://dx.doi.org/10.1016/j.foodres.2014.07.018] [PMID: 30011689]
[32]
Homayoni Rad A, Akbarzadeh F, Mehrabany EV. Which are more important: Prebiotics or probiotics? Nutrition 2012; 28(11-12): 1196-7.
[http://dx.doi.org/10.1016/j.nut.2012.03.017] [PMID: 22840387]
[33]
Wegh CAM, Geerlings SY, Knol J, Roeselers G, Belzer C. Postbiotics and their potential applications in early life nutrition and beyond. Int J Mol Sci 2019; 20(19): 4673.
[http://dx.doi.org/10.3390/ijms20194673] [PMID: 31547172]
[34]
Homayouni Rad A, Torab R, Mortazavian AM, Mehrabany EV, Mehrabany LV. Can probiotics prevent or improve common cold and influenza? Nutrition 2013; 29(5): 805-6.
[http://dx.doi.org/10.1016/j.nut.2012.10.009] [PMID: 23306139]
[35]
Dunand E, Burns P, Binetti A, et al. Postbiotics produced at laboratory and industrial level as potential functional food ingredients with the capacity to protect mice against Salmonella infection. J Appl Microbiol 2019; 127(1): 219-29.
[http://dx.doi.org/10.1111/jam.14276] [PMID: 30973185]
[36]
Homayouni RA, Aghebati ML, Samadi KH, Fathi ZH, Abbasi A. Postbiotics as novel health-promoting ingredients in functional foods. Health Promot Perspect 2020; 10(1): 3-4.
[http://dx.doi.org/10.15171/hpp.2020.02] [PMID: 32104650]
[37]
Sotoudegan F, Daniali M, Hassani S, Nikfar S, Abdollahi M. Reappraisal of probiotics’ safety in human. Food Chem Toxicol 2019; 129: 22-9.
[http://dx.doi.org/10.1016/j.fct.2019.04.032] [PMID: 31009735]
[38]
Gaggìa F, Mattarelli P, Biavati B. Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol 2010; 141 (Suppl. 1): S15-28.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2010.02.031] [PMID: 20382438]
[39]
Morniroli D, Giulia V, Alessandra C, et al. Postbiotic supplementation for children and newborn’s health. Nutrients 2021; 13: 781.
[http://dx.doi.org/10.3390/nu13030781]
[40]
Angiari S, Marah R, Caroline ES, et al. Pharmacological activation of pyruvate kinase M2 inhibits CD4+ T cell pathogenicity and suppresses autoimmunity. Cell Metab 2020; 31(2): 391-405.
[http://dx.doi.org/10.1016/j.cmet.2019.10.015] [PMID: 31761564]
[41]
Karl JP, Hatch AM, Arcidiacono SM, et al. Effects of psychological, environmental and physical stressors on the gut microbiota. Front Microbiol 2018; 9: 2013.
[http://dx.doi.org/10.3389/fmicb.2018.02013] [PMID: 30258412]
[42]
Awaisheh S, Obeidat MM, At-Tamumi HJ, et al. In vitro cytotoxic activity of probiotic bacterial cell extracts against Caco-2 and HRT-18 colorectal cancer cells. Milchwissenschaft 2016; 69(7): 33-7.
[43]
Izuddin WI, Loh TC, Foo HL, Samsudin AA, Humam AM. Postbiotic L. plantarum RG14 improves ruminal epithelium growth, immune status and upregulates the intestinal barrier function in post-weaning lambs. Sci Rep 2019; 9(1): 9938.
[http://dx.doi.org/10.1038/s41598-019-46076-0] [PMID: 31289291]
[44]
Izuddin WI, Humam AM, Loh TC, Foo HL, Samsudin AA. Dietary postbiotic Lactobacillus plantarum improves serum and ruminal antioxidant activity and upregulates hepatic antioxidant enzymes and ruminal barrier function in post-weaning lambs. Antioxidants 2020; 9(3): 250.
[http://dx.doi.org/10.3390/antiox9030250] [PMID: 32204511]
[45]
Anderson RC. Are postbiotics the long sought-after solution for a leaky gut? J Nutr 2019; 149(11): 1873-4.
[http://dx.doi.org/10.1093/jn/nxz171] [PMID: 31504745]
[46]
Sawada D, Sugawara T, Ishida Y, et al. Effect of continuous ingestion of a beverage prepared with Lactobacillus gasseri CP2305 inactivated by heat treatment on the regulation of intestinal function. Food Res Int 2016; 79: 33-9.
[http://dx.doi.org/10.1016/j.foodres.2015.11.032]
[47]
Abbasi A, Hajipour N, Hasannezhad P, Baghbanzadeh A, Aghebati-Maleki L, et al. Potential in vivo delivery routes of postbiotics. Crit Rev Food Sci Nutr 2022; 62(12): 3345-69.
[PMID: 33356449]
[48]
Klemashevich C, Wu C, Howsmon D, Alaniz RC, Lee K, Jayaraman A. Rational identification of diet-derived postbiotics for improving intestinal microbiota function. Curr Opin Biotechnol 2014; 26: 85-90.
[http://dx.doi.org/10.1016/j.copbio.2013.10.006] [PMID: 24679263]
[49]
Sharma M, Shukla G. Metabiotics: One step ahead of probiotics; an insight into mechanisms involved in anticancerous effect in colorectal cancer. Front Microbiol 2016; 7: 1940.
[http://dx.doi.org/10.3389/fmicb.2016.01940] [PMID: 27994577]
[50]
Gill PA, van Zelm MC, Muir JG, Gibson PR. Review article: Short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment Pharmacol Ther 2018; 48(1): 15-34.
[http://dx.doi.org/10.1111/apt.14689] [PMID: 29722430]
[51]
Scocchi M, Mardirossian M, Runti G, Benincasa M. Non-membrane permeabilizing modes of action of antimicrobial peptides on bacteria. Curr Top Med Chem 2015; 16(1): 76-88.
[http://dx.doi.org/10.2174/1568026615666150703121009] [PMID: 26139115]
[52]
Chung PY, Khanum R. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria. J Microbiol Immunol Infect 2017; 50(4): 405-10.
[http://dx.doi.org/10.1016/j.jmii.2016.12.005] [PMID: 28690026]
[53]
Amalaradjou MAR, Bhunia AK. Bioengineered probiotics, a strategic approach to control enteric infections. Bioengineered 2013; 4(6): 379-87.
[http://dx.doi.org/10.4161/bioe.23574] [PMID: 23327986]
[54]
Anderson AE, Pratt AG, Sedhom MAK, et al. IL-6-driven STAT signalling in circulating CD4+ lymphocytes is a marker for early anticitrullinated peptide antibody-negative rheumatoid arthritis. Ann Rheum Dis 2016; 75(2): 466-73.
[http://dx.doi.org/10.1136/annrheumdis-2014-205850] [PMID: 25649145]
[55]
van der Es D, Hogendorf WFJ, Overkleeft HS, van der Marel GA, Codée JDC. Teichoic acids: Synthesis and applications. Chem Soc Rev 2017; 46(5): 1464-82.
[http://dx.doi.org/10.1039/C6CS00270F] [PMID: 27990523]
[56]
Saeui CT, Urias E, Liu L, Mathew MP, Yarema KJ. Metabolic glycoengineering bacteria for therapeutic, recombinant protein, and metabolite production applications. Glycoconj J 2015; 32(7): 425-41.
[http://dx.doi.org/10.1007/s10719-015-9583-9] [PMID: 25931032]
[57]
Mohamed MF, Brezden A, Mohammad H, Chmielewski J, Seleem MN. A short D-enantiomeric antimicrobial peptide with potent immunomodulatory and antibiofilm activity against multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Sci Rep 2017; 7(1): 6953.
[http://dx.doi.org/10.1038/s41598-017-07440-0] [PMID: 28761101]
[58]
Wu H, Teng C, Liu B, Tian H, Wang J. Characterization and long term antimicrobial activity of the nisin anchored cellulose films. Int J Biol Macromol 2018; 113: 487-93.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.194] [PMID: 29425865]
[59]
Fernandes Messias MC, Mecatti GC, Figueiredo Angolini CF, et al. Plasma lipidomic signature of rectal adenocarcinoma reveals potential biomarkers. Front Oncol 2018; 7: 325.
[http://dx.doi.org/10.3389/fonc.2017.00325] [PMID: 29359123]
[60]
Reid G. Probiotic Lactobacilli for urogenital health in women. J Clin Gastroenterol 2008; 42(S3): S234-6.
[http://dx.doi.org/10.1097/MCG.0b013e31817f1298] [PMID: 18685506]
[61]
Burnett S, Lords BR, Finley M, Magnuson J, Hilgren J, et al. Halogens, surface-active agents and peroxides Antimicrobials in food. (3rd ed.). Boca Raton, FL: CRC Press 2005; pp. 537-41.
[62]
Osborn HT, Akoh CC. Structured lipids‐novel fats with medical, nutraceutical, and food applications. Compr Rev Food Sci Food Saf 2002; 1(3): 110-20.
[http://dx.doi.org/10.1111/j.1541-4337.2002.tb00010.x] [PMID: 33451231]
[63]
Liu P, Stenger S, Li H, et al. Vitamin D3–triggered antimicrobial response—another pleiotropic effect beyond mineral and bone metabolism: Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311: 1770–1773, 2006. J Am Soc Nephrol 2006; 17(11): 2949-53.
[http://dx.doi.org/10.1681/ASN.2006091030] [PMID: 16988060]
[64]
Georgieva V, Kamolvit W, Herthelius M, Lüthje P, Brauner A, Chromek M. Association between vitamin D, antimicrobial peptides and urinary tract infection in infants and young children. Acta Paediatr 2019; 108(3): 551-6.
[http://dx.doi.org/10.1111/apa.14499] [PMID: 30003595]
[65]
Rossi M, Amaretti A, Raimondi S. Folate production by probiotic bacteria. Nutrients 2011; 3(1): 118-34.
[http://dx.doi.org/10.3390/nu3010118] [PMID: 22254078]
[66]
Pedrós-Garrido S, Clemente I, Calanche JB, et al. Antimicrobial activity of natural compounds against listeria spp. and their effects on sensory attributes in salmon (Salmo salar) and cod (Gadus morhua). Food Control 2020; 107: 106768.
[http://dx.doi.org/10.1016/j.foodcont.2019.106768]
[67]
Iordache F, Gheorghe I, Hazar V, et al. Nanostructurated materials for prolonged and safe food preservation Food Preservation. Elsevier 2017; pp. 305-35.
[http://dx.doi.org/10.1016/B978-0-12-804303-5.00009-2]
[68]
O’Bryan CA, Koo OK, Sostrin ML, et al. Characteristics of bacteriocins and use as food antimicrobials in the United States. Food and Feed Safety Systems and Analysis 2018; pp. 273-86.
[http://dx.doi.org/10.1016/B978-0-12-811835-1.00015-4]
[69]
Razavi Rohani SM, Moradi M, Mehdizadeh T, Saei-Dehkordi SS, Griffiths MW. The effect of nisin and garlic (Allium sativum L.) essential oil separately and in combination on the growth of Listeria monocytogenes. Lebensm Wiss Technol 2011; 44(10): 2260-5.
[http://dx.doi.org/10.1016/j.lwt.2011.07.020]
[70]
Mbye M, Baig MA, AbuQamar SF, et al. Updates on understanding of probiotic lactic acid bacteria responses to environmental stresses and highlights on proteomic analyses. Compr Rev Food Sci Food Saf 2020; 19(3): 1110-24.
[http://dx.doi.org/10.1111/1541-4337.12554] [PMID: 33331686]
[71]
Ahmad V, Khan MS, Jamal QMS, Alzohairy MA, Al Karaawi MA, Siddiqui MU. Antimicrobial potential of bacteriocins: In therapy, agriculture and food preservation. Int J Antimicrob Agents 2017; 49(1): 1-11.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.08.016] [PMID: 27773497]
[72]
Hundschell CS, Wagemans AM. Rheology of common uncharged exopolysaccharides for food applications. Curr Opin Food Sci 2019; 27: 1-7.
[http://dx.doi.org/10.1016/j.cofs.2019.02.011]
[73]
Urish KL, DeMuth PW, Kwan BW, et al. Antibiotic-tolerant Staphylococcus aureus biofilm persists on arthroplasty materials. Clin Orthop Relat Res 2016; 474(7): 1649-56.
[http://dx.doi.org/10.1007/s11999-016-4720-8] [PMID: 26831479]
[74]
Andrade JC, João AL, Alonso CS, Barreto AS, Henriques AR. genetic subtyping, biofilm-forming ability and biocide susceptibility of Listeria monocytogenes strains isolated from a ready-to-eat food industry. Antibiotics 2020; 9(7): 416.
[http://dx.doi.org/10.3390/antibiotics9070416] [PMID: 32708754]
[75]
Sharma V, Harjai K, Shukla G. Effect of bacteriocin and exopolysaccharides isolated from probiotic on P. aeruginosa PAO1 biofilm. Folia Microbiol 2018; 63(2): 181-90.
[http://dx.doi.org/10.1007/s12223-017-0545-4] [PMID: 28905285]
[76]
Moradi M, Mardani K, Tajik H. Characterization and application of postbiotics of Lactobacillus spp. on Listeria monocytogenes in vitro and in food models. Lebensm Wiss Technol 2019; 111: 457-64.
[http://dx.doi.org/10.1016/j.lwt.2019.05.072]
[77]
Vilela C, Kurek M, Hayouka Z, et al. A concise guide to active agents for active food packaging. Trends Food Sci Technol 2018; 80: 212-22.
[http://dx.doi.org/10.1016/j.tifs.2018.08.006]
[78]
Espitia PJP, Batista RA, Azeredo HMC, Otoni CG. Probiotics and their potential applications in active edible films and coatings. Food Res Int 2016; 90: 42-52.
[http://dx.doi.org/10.1016/j.foodres.2016.10.026] [PMID: 29195890]
[79]
Odila Pereira J, Soares J, Sousa S, Madureira AR, Gomes A, Pintado M. Edible films as carrier for lactic acid bacteria. Lebensm Wiss Technol 2016; 73: 543-50.
[http://dx.doi.org/10.1016/j.lwt.2016.06.060]
[80]
Motalebi Moghanjougi Z, Rezazadeh Bari M, Alizadeh Khaledabad M, Almasi H, Amiri S. Bio-preservation of white brined cheese (Feta) by using probiotic bacteria immobilized in bacterial cellulose: Optimization by response surface method and characterization. Lebensm Wiss Technol 2020; 117: 108603.
[http://dx.doi.org/10.1016/j.lwt.2019.108603]
[81]
Bambace MF, Alvarez MV, Moreira MR. Novel functional blueberries: Fructo-oligosaccharides and probiotic lactobacilli incorporated into alginate edible coatings. Food Res Int 2019; 122: 653-60.
[http://dx.doi.org/10.1016/j.foodres.2019.01.040] [PMID: 31229124]
[82]
Zabihollahi N, Alizadeh A, Almasi H, Hanifian S, Hamishekar H. Development and characterization of carboxymethyl cellulose based probiotic nanocomposite film containing cellulose nanofiber and inulin for chicken fillet shelf life extension. Int J Biol Macromol 2020; 160: 409-17.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.066] [PMID: 32416305]
[83]
Bagde P, Nadanathangam V. Mechanical, antibacterial and biodegradable properties of starch film containing bacteriocin immobilized crystalline nanocellulose. Carbohydr Polym 2019; 222: 115021.
[http://dx.doi.org/10.1016/j.carbpol.2019.115021] [PMID: 31320086]
[84]
Aguilar-Toalá JE, Garcia-Varela R, Garcia HS, et al. Postbiotics: An evolving term within the functional foods field. Trends Food Sci Technol 2018; 75: 105-14.
[http://dx.doi.org/10.1016/j.tifs.2018.03.009]
[85]
Molaei R, Tajik H, Moradi M. Magnetic solid phase extraction based on mesoporous silica-coated iron oxide nanoparticles for simultaneous determination of biogenic amines in an Iranian traditional dairy product. Kashk Food Control 2019; 101: 1-8.
[http://dx.doi.org/10.1016/j.foodcont.2019.02.011]
[86]
Ibarguren C, Céliz G, Díaz AS, Bertuzzi MA, Daz M, Audisio MC. Gelatine based films added with bacteriocins and a flavonoid ester active against food-borne pathogens. Innov Food Sci Emerg Technol 2015; 28: 66-72.
[http://dx.doi.org/10.1016/j.ifset.2015.01.007]
[87]
Meira SMM, Zehetmeyer G, Werner JO, Brandelli A. A novel active packaging material based on starch-halloysite nanocomposites incorporating antimicrobial peptides. Food Hydrocoll 2017; 63: 561-70.
[http://dx.doi.org/10.1016/j.foodhyd.2016.10.013]
[88]
Beristain-Bauza SC, Mani-López E, Palou E, López-Malo A. Antimicrobial activity of whey protein films supplemented with Lactobacillus sakei cell-free supernatant on fresh beef. Food Microbiol 2017; 62: 207-11.
[http://dx.doi.org/10.1016/j.fm.2016.10.024] [PMID: 27889150]
[89]
Sharaf OM, Al-Gamal MS, Ibrahim GA, et al. Evaluation and characterization of some protective culture metabolites in free and nano-chitosan-loaded forms against common contaminants of Egyptian cheese. Carbohydr Polym 2019; 223: 115094.
[http://dx.doi.org/10.1016/j.carbpol.2019.115094] [PMID: 31426998]
[90]
Woraprayote W, Malila Y, Sorapukdee S, Swetwiwathana A, Benjakul S, Visessanguan W. Bacteriocins from lactic acid bacteria and their applications in meat and meat products. Meat Sci 2016; 120: 118-32.
[http://dx.doi.org/10.1016/j.meatsci.2016.04.004] [PMID: 27118166]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy