Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Research Article

Impacts of High-Fiber Snack on Satiety Hormonal Responses and Glucose Homeostasis in Healthy Volunteers

Author(s): Sunarti*, Umar Santoso, Dianandha Septiana Rubi, Abrory Agus Cahya Pramana, Emy Huriyati and Nadia Yasmine

Volume 19, Issue 3, 2023

Published on: 12 September, 2022

Page: [291 - 299] Pages: 9

DOI: 10.2174/1573401318666220629160713

Price: $65

Abstract

Background: Dietary fiber decreases the glycemic index and produces short-chain fatty acids (SCFAs) that will affect gastrointestinal hormone secretion, such as glucagon-like peptide- 1 (GLP-1) and peptide YY (PYY). This study investigated the effects of high-fiber snacks on the glycemic index (GI), GLP-1, PYY, and ghrelin secretions.

Materials and Methods: The study involved ten participants who received both 42 g of tested snack and glucose solution as a standard by washout period for a week. The standard glucose was prepared by dissolving 50 g of glucose powder in 200 mL of water (200 kcal), while 42 g of snack (195.8 kcal) containing 11.70% fiber from arrowroot, pumpkin, sweet potato, and cassava. The blood samples were collected at 0, 30, 60, 90, and 120 minutes after consuming snacks or standard glucose.

Results: The GI of the tested snack is 69.14, which is categorized as medium. The area under the glucose curve of the tested snack was lower compared to standard glucose (p= <0.001), and the plasma glucose was lower than standard glucose. Compared to standard glucose, the tested snacks had the area under the insulin curve lower than standard glucose, but it was not statistically significant (p= 0.082). No statistically significant difference was also found in the GLP-1, PYY and ghrelin concentrations between both standard glucose and tested snack intervention (p= 0.948).

Conclusion: Our results suggest that consuming high-fiber snacks with a medium glycemic index may have no effect on GLP-1, PYY, and ghrelin, otherwise, it could improve glucose and insulin homeostasis.

Keywords: Fiber, Glycemic index, Homeostasis, GLP-1, PYY, Ghrelin.

Graphical Abstract
[1]
Ostman EM, Frid AH, Groop LC, Björck IM. A dietary exchange of common bread for tailored bread of low glycaemic index and rich in dietary fibre improved insulin economy in young women with impaired glucose tolerance. Eur J Clin Nutr 2006; 60(3): 334-41.
[http://dx.doi.org/10.1038/sj.ejcn.1602319] [PMID: 16234828]
[2]
Sekgala MD, Mchiza ZJ, Parker WA, Monyeki KD. Dietary fiber intake and metabolic syndrome risk factors among young South African adults. Nutrients 2018; 10(4): 504.
[http://dx.doi.org/10.3390/nu10040504] [PMID: 29670048]
[3]
Scazzina F, Siebenhandl-Ehn S, Pellegrini N. The effect of dietary fibre on reducing the glycaemic index of bread. Br J Nutr 2013; 109(7): 1163-74.
[http://dx.doi.org/10.1017/S0007114513000032] [PMID: 23414580]
[4]
Eleazu CO. The concept of low glycemic index and glycemic load foods as panacea for type 2 diabetes mellitus; prospects, challenges and solutions. Afr Health Sci 2016; 16(2): 468-79.
[http://dx.doi.org/10.4314/ahs.v16i2.15] [PMID: 27605962]
[5]
Lattimer JM, Haub MD. Effects of dietary fiber and its components on metabolic health. Nutrients 2010; 2(12): 1266-89.
[http://dx.doi.org/10.3390/nu2121266] [PMID: 22254008]
[6]
McRae MP. Dietary fiber intake and type 2 diabetes mellitus: An umbrella review of meta-analyses. J Chiropr Med 2018; 17(1): 44-53.
[http://dx.doi.org/10.1016/j.jcm.2017.11.002] [PMID: 29628808]
[7]
Papathanasopoulos A, Camilleri M. Dietary fiber supplements: Effects in obesity and metabolic syndrome and relationship to gastrointestinal functions. Gastroenterology 2010; 138(1): 65-72.
[http://dx.doi.org/10.1053/j.gastro.2009.11.045] [PMID: 19931537]
[8]
Bernstein AM, Titgemeier B, Kirkpatrick K, Golubic M, Roizen MF. Major cereal grain fibers and psyllium in relation to cardiovascular health. Nutrients 2013; 5(5): 1471-87.
[http://dx.doi.org/10.3390/nu5051471] [PMID: 23628720]
[9]
Tucker LA, Thomas KS. Increasing total fiber intake reduces risk of weight and fat gains in women. J Nutr 2009; 139(3): 576-81.
[http://dx.doi.org/10.3945/jn.108.096685] [PMID: 19158230]
[10]
Li YO, Komarek AR. Dietary fiber basics: Health, nutrition, analysis, and applications. Food Qual Saf 2017; 1: 47-59.
[http://dx.doi.org/10.1093/fqs/fyx007]
[11]
Tan J, McKenzie C, Vuillermin PJ, et al. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep 2016; 15(12): 2809-24.
[http://dx.doi.org/10.1016/j.celrep.2016.05.047] [PMID: 27332875]
[12]
Prasad KN, Bondy SC. Dietary fibers and their fermented short-chain fatty acids in prevention of human diseases. Mech Ageing Dev 2018; S0047-6374(18): 30013-7.
[http://dx.doi.org/10.1016/j.mad.2018.10.003]
[13]
den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 2013; 54(9): 2325-40.
[http://dx.doi.org/10.1194/jlr.R036012] [PMID: 23821742]
[14]
Gao Z, Yin J, Zhang J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009; 58(7): 1509-17.
[http://dx.doi.org/10.2337/db08-1637] [PMID: 19366864]
[15]
Kumar J, Rani K, Datt C. Molecular link between dietary fibre, gut microbiota and health. Mol Biol Rep 2020; 47(8): 6229-37.
[http://dx.doi.org/10.1007/s11033-020-05611-3] [PMID: 32623619]
[16]
Müller M, Canfora EE, Blaak EE. Gastrointestinal transit time, glucose homeostasis and metabolic health: Modulation by dietary fibers. Nutrients 2018; 10(3): E275.
[http://dx.doi.org/10.3390/nu10030275] [PMID: 29495569]
[17]
Psichas A, Sleeth ML, Murphy KG, et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes 2015; 39(3): 424-9.
[http://dx.doi.org/10.1038/ijo.2014.153] [PMID: 25109781]
[18]
Tirosh A, Calay ES, Tuncman G, et al. The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans. Sci Transl Med 2019; 11(489): 120.
[http://dx.doi.org/10.1126/scitranslmed.aav0120] [PMID: 31019023]
[19]
Chambers ES, Viardot A, Psichas A, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 2015; 64(11): 1744-54.
[http://dx.doi.org/10.1136/gutjnl-2014-307913] [PMID: 25500202]
[20]
Christiansen CB, Gabe MBN, Svendsen B, Dragsted LO, Rosenkilde MM, Holst JJ. The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon. Am J Physiol Gastrointest Liver Physiol 2018; 315(1): G53-65.
[http://dx.doi.org/10.1152/ajpgi.00346.2017] [PMID: 29494208]
[21]
Holst JJ, Gribble F, Horowitz M, Rayner CK. Roles of the gut in glucose homeostasis. Diabetes Care 2016; 39(6): 884-92.
[http://dx.doi.org/10.2337/dc16-0351] [PMID: 27222546]
[22]
Campolier M, Thondre SP, Clegg M, Shafat A, Mcintosh A, Lightowler H. Changes in PYY and gastric emptying across the phases of the menstrual cycle and the influence of the ovarian hormones. Appetite 2016; 107: 106-15.
[http://dx.doi.org/10.1016/j.appet.2016.07.027] [PMID: 27453552]
[23]
Shah M, Vella A. Effects of GLP-1 on appetite and weight. Rev Endocr Metab Disord 2014; 15(3): 181-7.
[http://dx.doi.org/10.1007/s11154-014-9289-5] [PMID: 24811133]
[24]
Amin T, Mercer JG. Hunger and satiety mechanisms and their potential exploitation in the regulation of food intake. Curr Obes Rep 2016; 5(1): 106-12.
[http://dx.doi.org/10.1007/s13679-015-0184-5] [PMID: 26762623]
[25]
De Silva A, Bloom SR. Gut hormones and appetite control: A focus on PYY and GLP-1 as therapeutic targets in obesity. Gut Liver 2012; 6(1): 10-20.
[http://dx.doi.org/10.5009/gnl.2012.6.1.10] [PMID: 22375166]
[26]
Samocha-Bonet D, Wong O, Synnott EL, et al. Glutamine reduces postprandial glycemia and augments the glucagon-like peptide-1 response in type 2 diabetes patients. J Nutr 2011; 141(7): 1233-8.
[http://dx.doi.org/10.3945/jn.111.139824] [PMID: 21593352]
[27]
Filippello A, Urbano F, Di Mauro S, et al. Chronic exposure to palmitate impairs insulin signaling in an intestinal L-cell line: A possible shift from GLP-1 to glucagon production. Int J Mol Sci 2018; 19(12): 3791.
[http://dx.doi.org/10.3390/ijms19123791] [PMID: 30487448]
[28]
Jones B, Bloom SR, Buenaventura T, Tomas A, Rutter GA. Control of insulin secretion by GLP-1. Peptides 2018; 100: 75-84.
[http://dx.doi.org/10.1016/j.peptides.2017.12.013] [PMID: 29412835]
[29]
Drucker DJ. The role of gut hormones in glucose homeostasis. J Clin Invest 2007; 117(1): 24-32.
[http://dx.doi.org/10.1172/JCI30076] [PMID: 17200703]
[30]
Larraufie P, Martin-Gallausiaux C, Lapaque N, et al. SCFAs strongly stimulate PYY production in human enteroendocrine cells. Sci Rep 2018; 8(1): 74.
[http://dx.doi.org/10.1038/s41598-017-18259-0] [PMID: 29311617]
[31]
Helou N, Obeid O, Azar ST, Hwalla N. Variation of postprandial PYY 3-36 response following ingestion of differing macronutrient meals in obese females. Ann Nutr Metab 2008; 52(3): 188-95.
[http://dx.doi.org/10.1159/000138122] [PMID: 18544972]
[32]
Ripken D, van der Wielen N, Wortelboer HM, Meijerink J, Witkamp RF, Hendriks HF. Steviol glycoside rebaudioside A induces glucagon-like peptide-1 and peptide YY release in a porcine ex vivo intestinal model. J Agric Food Chem 2014; 62(33): 8365-70.
[http://dx.doi.org/10.1021/jf501105w] [PMID: 25062288]
[33]
Chabot F, Caron A, Laplante M, St-Pierre DH. Interrelationships between ghrelin, insulin and glucose homeostasis: Physiological relevance. World J Diabetes 2014; 5(3): 328-41.
[http://dx.doi.org/10.4239/wjd.v5.i3.328] [PMID: 24936254]
[34]
Zhang CS, Wang LX, Wang R, et al. The correlation between circulating ghrelin and insulin resistance in obesity: A meta-analysis. Front Physiol 2018; 9: 1308.
[http://dx.doi.org/10.3389/fphys.2018.01308] [PMID: 30298019]
[35]
Ibrahim Abdalla MM. Ghrelin: Physiological functions and regulation. Eur Endocrinol 2015; 11(2): 90-5.
[http://dx.doi.org/10.17925/EE.2015.11.02.90] [PMID: 29632576]
[36]
Kazemi M, Eshraghian A, Hamidpour L, Taghavi S. Changes in serum ghrelin level in relation to meal-time in patients with functional dyspepsia. United European Gastroenterol J 2015; 3(1): 11-6.
[http://dx.doi.org/10.1177/2050640614563373] [PMID: 25653854]
[37]
Sangiao-Alvarellos S, Cordido F. Effect of ghrelin on glucose-insulin homeostasis: Therapeutic implications. Int J Pept 2010; 2010: 1-25.
[http://dx.doi.org/10.1155/2010/234709] [PMID: 20700401]
[38]
Lin L, Nuotio-Antar AM, Ma X, Liu F, Fiorotto ML, Sun Y. Ghrelin receptor regulates appetite and satiety during aging in mice by regulating meal frequency and portion size but not total food intake. J Nutr 2014; 144(9): 1349-55.
[http://dx.doi.org/10.3945/jn.114.191171] [PMID: 24991043]
[39]
Poher AL, Tschöp MH, Müller TD. Ghrelin regulation of glucose metabolism. Peptides 2018; 100: 236-42.
[http://dx.doi.org/10.1016/j.peptides.2017.12.015] [PMID: 29412824]
[40]
Tong J, Davis HW, Gastaldelli A, D’Alessio D. Ghrelin impairs prandial glucose tolerance and insulin secretion in healthy humans despite increasing GLP-1. J Clin Endocrinol Metab 2016; 101(6): 2405-14.
[http://dx.doi.org/10.1210/jc.2015-4154] [PMID: 27055279]
[41]
Zigman JM, Nakano Y, Coppari R, et al. Mice lacking ghrelin receptors resist the development of diet-induced obesity. 2005; 115: 3564-72.
[http://dx.doi.org/10.1172/JCI26002]
[42]
World Health Organization. Food and agriculture organization of the United Nations, carbohydrates in human nutrition report of a joint FAO/WHO expert consultation. WHO. 1998; pp. 1-140.
[43]
Nilson A, Johansson E, Ekstrom L, Bjork I. Effects of a brown beans evening meal on metabolic risk marker and appetite regulating hormones at a subsequent standardized breakfast: A randomized cross-over study. PLoS One 2013; 8: 1-10.
[http://dx.doi.org/10.1371/journal.pone.0059985]
[44]
Lestari LA, Huriyati E, Marsono Y. The development of low glycemic index cookie bars from foxtail millet (Setaria italica), arrowroot (Maranta arundinacea) flour, and kidney beans (Phaseolus vulgaris). J Food Sci Technol 2017; 54(6): 1406-13.
[http://dx.doi.org/10.1007/s13197-017-2552-5] [PMID: 28559599]
[45]
Törrönen R, Sarkkinen E, Niskanen T, Tapola N, Kilpi K, Niskanen L. Postprandial glucose, insulin and glucagon-like peptide 1 responses to sucrose ingested with berries in healthy subjects. Br J Nutr 2012; 107(10): 1445-51.
[http://dx.doi.org/10.1017/S0007114511004557] [PMID: 21929838]
[46]
Soliman GA. Dietary fiber, atherosclerosis, and cardiovascular disease. Nutrients 2019; 11(5): 1155.
[http://dx.doi.org/10.3390/nu11051155] [PMID: 31126110]
[47]
Samra RA, Anderson GH. Insoluble cereal fiber reduces appetite and short-term food intake and glycemic response to food consumed 75 min later by healthy men. Am J Clin Nutr 2007; 86(4): 972-9.
[http://dx.doi.org/10.1093/ajcn/86.4.972] [PMID: 17921373]
[48]
Slavin J. Fiber and prebiotics: Mechanisms and health benefits. Nutrients 2013; 5(4): 1417-35.
[http://dx.doi.org/10.3390/nu5041417] [PMID: 23609775]
[49]
Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilán CG, Salazar N. Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 2016; 7: 185.
[http://dx.doi.org/10.3389/fmicb.2016.00185] [PMID: 26925050]
[50]
Weitkunat K, Stuhlmann C, Postel A, et al. Short-chain fatty acids and inulin, but not guar gum, prevent diet-induced obesity and insulin resistance through differential mechanisms in mice. Sci Rep 2017; 7(1): 6109.
[http://dx.doi.org/10.1038/s41598-017-06447-x] [PMID: 28733671]
[51]
Silva FM, Kramer CK, Crispim D, Azevedo MJ. A high-glycemic index, low-fiber breakfast affects the postprandial plasma glucose, insulin, and ghrelin responses of patients with type 2 diabetes in a randomized clinical trial. J Nutr 2015; 145(4): 736-41.
[http://dx.doi.org/10.3945/jn.114.195339] [PMID: 25833777]
[52]
Nugraha IBA, Saraswati MR, Suastika K. The pattern of fasting and post 75 G glucose loading of glucagon-like peptide 1 levels in obese and non-obese subjects. Open Access Maced J Med Sci 2019; 7(3): 358-62.
[http://dx.doi.org/10.3889/oamjms.2019.030] [PMID: 30834001]
[53]
Zhou J, Martin RJ, Tulley RT, et al. Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. Am J Physiol Endocrinol Metab 2008; 295(5): E1160-6.
[http://dx.doi.org/10.1152/ajpendo.90637.2008] [PMID: 18796545]
[54]
Bosch-Sierra N, Marqués-Cardete R, Gurrea-Martínez A, et al. Effect of fibre-enriched orange juice on postprandial glycemic response and satiety in healthy individuals: An acute, randomised, placebo-controlled, double-blind, crossover study. Nutrients 2019; 11(12): 1-14.
[http://dx.doi.org/10.3390/nu11123014] [PMID: 31835476]
[55]
Nadkarni P, Chepurny OG, Holz GG. Regulation of glucose homeostasis by GLP-1. Prog Mol Biol Transl Sci 2014; 121: 23-65.
[http://dx.doi.org/10.1016/B978-0-12-800101-1.00002-8] [PMID: 24373234]
[56]
Meloni AR, DeYoung MB, Lowe C, Parkes DG. GLP-1 receptor activated insulin secretion from pancreatic β-cells: Mechanism and glucose dependence. Diabetes Obes Metab 2013; 15(1): 15-27.
[http://dx.doi.org/10.1111/j.1463-1326.2012.01663.x] [PMID: 22776039]
[57]
Dailey MJ, Moran TH. Glucagon-like peptide 1 and appetite. Trends Endocrinol Metab 2013; 24(2): 85-91.
[http://dx.doi.org/10.1016/j.tem.2012.11.008] [PMID: 23332584]
[58]
Juvonen KR, Purhonen AK, Salmenkallio-Marttila M, et al. Viscosity of oat bran-enriched beverages influences gastrointestinal hormonal responses in healthy humans. J Nutr 2009; 139(3): 461-6.
[http://dx.doi.org/10.3945/jn.108.099945] [PMID: 19176745]
[59]
Brubaker PL. Incretin-based therapies: Mimetics versus protease inhibitors. Trends Endocrinol Metab 2007; 18(6): 240-5.
[http://dx.doi.org/10.1016/j.tem.2007.06.005] [PMID: 17629492]
[60]
El-Salhy M, Mazzawi T, Gundersen D, Hatlebakk JG, Hausken T. The role of peptide YY in gastrointestinal diseases and disorders (review). Int J Mol Med 2013; 31(2): 275-82.
[http://dx.doi.org/10.3892/ijmm.2012.1222] [PMID: 23292145]
[61]
Han H, Yi B, Zhong R, et al. From gut microbiota to host appetite: Gut microbiota-derived metabolites as key regulators. Microbiome 2021; 9(1): 162.
[http://dx.doi.org/10.1186/s40168-021-01093-y] [PMID: 34284827]
[62]
Lehmann A, Hornby PJ. Intestinal SGLT1 in metabolic health and disease. Am J Physiol Gastrointest Liver Physiol 2016; 310(11): G887-98.
[http://dx.doi.org/10.1152/ajpgi.00068.2016] [PMID: 27012770]
[63]
Gandhi M, Swaminathan S. Ghrelin and obesity-an update. Int J Pharm Clin Res 2017; 9: 51-4.
[64]
Pradhan G, Samson SL, Sun Y. Ghrelin: Much more than a hunger hormone. Curr Opin Clin Nutr Metab Care 2013; 16(6): 619-24.
[http://dx.doi.org/10.1097/MCO.0b013e328365b9be] [PMID: 24100676]
[65]
Fujimiya M, Asakawa A, Ataka K, Chen CY, Kato I, Inui A. Ghrelin, des-acyl ghrelin, and obestatin: Regulatory roles on the gastrointestinal motility. Int J Pept 2010; 2010: 305192.
[http://dx.doi.org/10.1155/2010/305192] [PMID: 20721292]
[66]
Nishi Y, Yoh J, Hiejima H, Kojima M. Structures and molecular forms of the ghrelin-family peptides. Peptides 2011; 32(11): 2175-82.
[http://dx.doi.org/10.1016/j.peptides.2011.07.024] [PMID: 21839128]
[67]
Heppner KM, Tong J. Mechanisms in endocrinology: Regulation of glucose metabolism by the ghrelin system: Multiple players and multiple actions. Eur J Endocrinol 2014; 171(1): R21-32.
[http://dx.doi.org/10.1530/EJE-14-0183] [PMID: 24714083]
[68]
Heppner KM, Piechowski CL, Müller A, et al. Both acyl and des-acyl ghrelin regulate adiposity and glucose metabolism via central nervous system ghrelin receptors. Diabetes 2014; 63(1): 122-31.
[http://dx.doi.org/10.2337/db13-0414] [PMID: 24062249]
[69]
Dezaki K. Ghrelin function in insulin release and glucose metabolism. Endocr Dev 2013; 25: 135-43.
[http://dx.doi.org/10.1159/000346064] [PMID: 23652399]
[70]
Korek E, Krauss H, Gibas-Dorna M, Kupsz J. Piątek M, Piątek J. Fasting and postprandial levels of ghrelin, leptin and insulin in lean, obese and anorexic subjects. Prz Gastroenterol 2013; 8(6): 383-9.
[http://dx.doi.org/10.5114/pg.2013.39922] [PMID: 24868288]
[71]
Elabadlah H, Hameed R, D’Souza C, Mohsin S, Adeghate EA. Exogenous ghrelin increases plasma insulin level in diabetic rats. Biomolecules 2020; 10(4): 633.
[http://dx.doi.org/10.3390/biom10040633] [PMID: 32325912]
[72]
Yada T, Damdindorj B, Rita RS, et al. Ghrelin signalling in β-cells regulates insulin secretion and blood glucose. Diabetes Obes Metab 2014; 16(1) (Suppl. 1): 111-7.
[http://dx.doi.org/10.1111/dom.12344] [PMID: 25200304]
[73]
Puglisi MJ, Mutungi G, Brun PJ, et al. Raisins and walking alter appetite hormones and plasma lipids by modifications in lipoprotein metabolism and up-regulation of the low-density lipoprotein receptor. Metabolism 2009; 58(1): 120-8.
[http://dx.doi.org/10.1016/j.metabol.2008.08.014] [PMID: 19059539]
[74]
Li H, Zhang X, Feng L. Ghrelin regulates cyclooxygenase-2 expression and promotes gastric cancer cell progression. Comput Math Methods Med 2021; 2021: 5576808.
[http://dx.doi.org/10.1155/2021/5576808] [PMID: 34122616]
[75]
Chacko SK, Haymond MW, Sun Y, et al. Effect of ghrelin on glucose regulation in mice. Am J Physiol Endocrinol Metab 2012; 302(9): E1055-62.
[http://dx.doi.org/10.1152/ajpendo.00445.2011] [PMID: 22338071]
[76]
Tong J, Prigeon RL, Davis HW, et al. Ghrelin suppresses glucose-stimulated insulin secretion and deteriorates glucose tolerance in healthy humans. Diabetes 2010; 59(9): 2145-51.
[http://dx.doi.org/10.2337/db10-0504] [PMID: 20584998]
[77]
Mani BK, Shankar K, Zigman JM. Ghrelin’s Relationship to Blood Glucose. Endocrinology 2019; 160(5): 1247-61.
[http://dx.doi.org/10.1210/en.2019-00074] [PMID: 30874792]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy