Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Research Article

Effects of Combined Pure Cultures of Rhizopus sp. (Rhizopus oryzae, Rhizopus oligosporus, and Rhizopus stolonifer) on Tempeh Extract Yogurt as a Functional Food

Author(s): Vira Putri Yarlina*, Dea Indriani Astuti, Mohammad Djali, Robi Andoyo and Mohd Nizam Lani

Volume 19, Issue 3, 2023

Published on: 30 August, 2022

Page: [307 - 316] Pages: 10

DOI: 10.2174/1573401318666220328101155

Price: $65

Abstract

Background: Tempeh Extract Yogurt offers an alternative to raw tempeh in a new method for developing yogurt that can be used as a functional product to benefit human health. This study aimed to determine the functional food potential of yogurt made with tempeh extract combined with the use of mixed cultures of Rhizopus and lactic acid bacteria.

Methods: This method evaluated five specific ratios of three Rhizopus species for making tempeh, including Rhizopus oryzae, Rhizopus oligosporus, Rhizopus stolonifer inoculums of 1:1:1, 1:2:1, 2:1:2, 1:1:2, and 2:1:1. RAPRIMA tempeh starter was used as a control group, fermented with Lactic Acid Bacteria to produce tempeh extract yogurt.

Results: Tempeh extract yogurt has characteristics determined by the Indonesian National standard (SNI 2891:2009) such as thick liquid, specific aroma, sour taste, and homogeneous consistency. The highest content of vitamin B12 and folate in tempeh extract yogurt was at a 1:2:1 ratio (0.072 g/100 mL and 0.059 g/100 mL), and the genistein isoflavone in RAPRIMA was 3.669 g/100 mL with a pH value of 4.2 and a total bacterial content of 14,3 x 108 CFU/mL.

Conclusion: Tempeh extract yogurt contains several beneficial characteristics, including vitamin B12, folate, isoflavones, and total bacteria. Therefore, tempeh extract yogurt is available as a healthy, functional food.

Keywords: Tempeh extract yogurt, functional food, vitamin B12, folate, genistein, fermentation.

Graphical Abstract
[1]
Cao ZH, Green-Johnson JM, Buckley ND, Lin QY. Bioactivity of soy-based fermented foods: A review. Biotechnol Adv 2019; 37(1): 223-38.
[http://dx.doi.org/10.1016/j.biotechadv.2018.12.001] [PMID: 30521852]
[2]
Nout MJR, Kiers JL. Tempe fermentation, innovation and functionality: Update into the third millenium. J Appl Microbiol 2005; 98(4): 789-805.
[http://dx.doi.org/10.1111/j.1365-2672.2004.02471.x] [PMID: 15752324]
[3]
Saha A, Mandal S. Nutritional benefit of soybean and its advancement in research. Sustain Food Prod 2019; 5: 6-16.
[http://dx.doi.org/10.18052/www.scipress.com/SFP.5.6]
[4]
Maryati Y, Susilowati A, Melanie H, Lotulung PD. Fermentation of soybean (Glycine max (l.) merr) using mix inocula of Rhizopus sp. and Sacharomyces cereviceae for alternative source of folic acid. IOP Conf Ser Mater Sci Eng. 536: 012124.
[http://dx.doi.org/10.1088/1757-899X/536/1/012124]
[5]
Tamam B, Syah D, Suhartono MT, Kusuma WA, Tachibana S, Lioe HN. Proteomic study of bioactive peptides from tempe. J Biosci Bioeng 2019; 128(2): 241-8.
[http://dx.doi.org/10.1016/j.jbiosc.2019.01.019] [PMID: 30930003]
[6]
Ikasari L, Mitchell DA. Effect of two-step fermentation by Rhizopus oligosporus and Bacillus subtilis on protein of fermented soybean. Enzyme Microb Technol 1996; 19(1): 171-5.
[http://dx.doi.org/10.1016/0141-0229(95)00227-8]
[7]
Yulifianti R, Ginting E. Proteolytic activity of selected moulds in the first fermentation of black-seeded soysauce. IOP Conf Ser Earth Environ Sci 2018; 102(1): 012097.
[http://dx.doi.org/10.1088/1755-1315/102/1/012097]
[8]
López-Fernández J, Benaiges MD, Valero F. Rhizopus oryzae lipase, a promising industrial enzyme: Biochemical characteristics, production and biocatalytic applications. Catalysts 2020; 10(11): 1-50.
[http://dx.doi.org/10.3390/catal10111277]
[9]
Jennessen J, Schnürer J, Olsson J, Samson RA, Dijksterhuis J. Morphological characteristics of sporangiospores of the tempe fungus Rhizopus oligosporus differentiate it from other taxa of the R. microsporus group. Mycol Res 2008; 112(Pt 5): 547-63.
[http://dx.doi.org/10.1016/j.mycres.2007.11.006] [PMID: 18400482]
[10]
Benabda O, M’Hir S, Kasmi M, Mnif W, Hamdi M. Optimization of protease and amylase production by Rhizopus oryzae cultivated on bread waste using solid-state fermentation. J Chem 2019; 2019: 1-9.
[http://dx.doi.org/10.1155/2019/3738181]
[11]
Handoyo T, Morita N. Structural and functional properties of fermented soybean (Tempeh) by using Rhizopus oligosporus. Int J Food Prop 2006; 9(2): 347-55.
[http://dx.doi.org/10.1080/10942910500224746]
[12]
Heskamp ML, Barz W. Characterization of proteases from Rhizopus species after growth on soybean protein. Zeitschrift fur Naturforsch Sect C -. J Biosci 1997; 52(9-10): 595-604.
[13]
Yarlina VP, Astuti DI. Characterization of vitamin B12, folate and isoflavones of soybean tempeh with the pure isolate Rhizopus oryzae, Rhizopus oligosporus, and Rhizopus stolonifer as functional food. Teknol Pangan Media Inf Dan Komun Ilm Teknol Pertan 2021; 12(1): 95-105.
[14]
Astawan M, Mardhiyyah YS, Wijaya CH. Potential of bioactive components in tempe for the treatment of obesity J Gizi dan Pangan 2018; 13(2): 79-86.
[http://dx.doi.org/10.25182/jgp.2018.13.2.79-86]
[15]
Barus T, Suwanto A, Tri Wahyudi A, Wiyaya H. Role of bacteria in tempe bitter taste formation: Microbiological and molecular biological analysis based on 16S rRNA gene. Microbiol Indones 2008; 2(1): 17-21.
[http://dx.doi.org/10.5454/mi.2.1.4]
[16]
Astawan M, Wresdiyati T, Maknun L. Tempe is a source of nutrients and bioactive components for health. Bogor: Institut Pertanian Bogor 2017.
[17]
Radita R, Suwanto A, Kurosawa N, Wahyudi AT, Rusmana I. Metagenome analysis of tempeh production: Where did the bacterial community in tempeh come from? Malays J Microbiol 2017; 13(4): 280-8.
[http://dx.doi.org/10.21161/mjm.101417]
[18]
Mohanty D, Jena R, Choudhury PK, Pattnaik R, Mohapatra S, Saini MR. Milk derived antimicrobial bioactive peptides: A review. Int J Food Prop 2016; 19(4): 837-46.
[http://dx.doi.org/10.1080/10942912.2015.1048356]
[19]
Chen C, Zhao S, Hao G, Yu H, Tian H, Zhao G. Role of lactic acid bacteria on the yogurt flavour: A review. Int J Food Prop 2017; 20(1): S316-30.
[http://dx.doi.org/10.1080/10942912.2017.1295988]
[20]
Park YW, Nam MS. Bioactive peptides in milk and dairy products: A review. Han-gug Chugsan Sigpum Hag-hoeji 2015; 35(6): 831-40.
[http://dx.doi.org/10.5851/kosfa.2015.35.6.831] [PMID: 26877644]
[21]
Cifelli CJ, Agarwal S, Fulgoni VL III. Association of yogurt consumption with nutrient intakes, nutrient adequacy, and diet quality in American children and adults. Nutrients 2020; 12(11): 1-14.
[http://dx.doi.org/10.3390/nu12113435] [PMID: 33182430]
[22]
Chen XL, Peng M, Li J, et al. Preparation and functional evaluation of collagen oligopeptide-rich hydrolysate from fish skin with the serine collagenolytic protease from Pseudoalteromonas sp. SM9913. Sci Rep 2017; 7(1): 15716.
[http://dx.doi.org/10.1038/s41598-017-15971-9] [PMID: 29146927]
[23]
Sjarif DR, Yuliarti K, Iskandar WJ. Daily consumption of growing-up milk is associated with less stunting among Indonesian toddlers. Med J Indones 2019; 28(1): 70-6.
[http://dx.doi.org/10.13181/mji.v28i1.2607]
[24]
Morsy OM, Sharoba AM, Bahlol H, Abdel-Mawla E. Production and evaluation of extruded food products by using spirulina algae. Ann Agric Sci Moshtohor 2014; 52(4): 329-42.
[25]
Lovabyta NS, Jayus J, Nugraha AS. Bioconversion of isoflavones glycoside to aglycone during edamame (Glycine max) soygurt production using Streptococcus thermophillus FNCC40, Lactobacillus delbrueckii FNCC41, and L. plantarum FNCC26. Biodiversitas (Surak) 2020; 21(4): 1358-64.
[http://dx.doi.org/10.13057/biodiv/d210412]
[26]
Mo H, Kariluoto S, Piironen V, et al. Effect of soybean processing on content and bioaccessibility of folate, vitamin B12 and isoflavones in tofu and tempe. Food Chem 2013; 141(3): 2418-25.
[http://dx.doi.org/10.1016/j.foodchem.2013.05.017] [PMID: 23870976]
[27]
Watson RR, Preedy VR, Zibadi S. Polyphenols: Prevention and Treatment of Human Disease. Amsterdam: Elsevier Inc. 2018.
[28]
Sanjukta S, Rai AK. Production of bioactive peptides during soybean fermentation and their potential health benefits. Trends Food Sci Technol 2016; 50: 1-10.
[http://dx.doi.org/10.1016/j.tifs.2016.01.010]
[29]
Cahyadi W. Soybean Benefits and Technology. Bandung: Bumi Aksara 2006.
[30]
Barus T, Suwanto A, Agustina W. Metagenomic analysis of bacterial diversity in tempe using terminal restriction fragment length polymorphism (T-RFLP). Technique 2010; 15: 2.
[31]
Agume AS, Njintang NY, Mbofung CM. Effect of soaking and roasting on the physicochemical and pasting properties of soybean flour. Foods 2017; 6(2): 12.
[http://dx.doi.org/10.3390/foods6020012] [PMID: 28231091]
[32]
Kustyawati ME. Subeki, Murhadi, Rizal S, Astuti P. Vitamin B12 production in soybean fermentation for tempeh. AIMS Agric Food 2020; 5(2): 262-71.
[http://dx.doi.org/10.3934/agrfood.2020.2.262]
[33]
Pangastuti A, Alfisah RK, Istiana NI, et al. Metagenomic analysis of microbial community in over-fermented tempeh. Biodiversitas (Surak) 2019; 20(4): 1106-14.
[http://dx.doi.org/10.13057/biodiv/d200423]
[34]
Af’idah F, Trimulyono G. Antioxidant activity and lactic acid test of yoghurt soybean tempe (Glycine max)and yoghurt green bean tempe (Vigna radiata). LenteraBio 2019; 8(1): 17-24.
[35]
Sudarmadji S, Haryono B, Suhardi B. Analysis of foodstuffs and agriculture. Yogyakarta: Liberty Yogyakarta 2010.
[36]
AOAC International. Official Methods of Analysis of AOAC INTERNATIONAL 3172. 2006. Available from: https://www.tech-street.com/standards/official-methods-of-analysis-of-aoac-international-20th-edition-2016?product_id=1937367
[37]
Matela KS, Pillai MK, Thamae T. Evaluation of pH, titratable acidity, syneresis and sensory profiles of some yoghurt samples from the kingdom of Lesotho. Food Res 2019; 3(6): 693-7.
[http://dx.doi.org/10.26656/fr.2017.3(6).177]
[38]
Hasan GMMA, Parveen S, Sultana J. Microbiological quality analysis of raw milk and yogurt available in some selected areas of Bangladesh. In: IJIRSET 2016; 5(3): 2855-9.
[39]
Fardiaz S. Food microbiology 1. Jakarta: Gramedia Pustaka Utama 1992.
[40]
Aldaw II, Naufalin R, Dwiyanti EH. Effect of fermentation temperature and culture concentration on microbial and physicochemical properties of cow and goat milk yogurt. IOP Conf Ser Earth Environ Sci 2019; 406(1): 012009.
[http://dx.doi.org/10.1088/1755-1315/406/1/012009]
[41]
Hartanti AT, Rahayu G, Hidayat I. Rhizopus species from fresh tempeh collected from several regions in Indonesia. Hayati J Biosci 2015; 22(3): 136-42.
[http://dx.doi.org/10.1016/j.hjb.2015.10.004]
[42]
Pessione E. Lactic acid bacteria contribution to gut microbiota complexity: Lights and shadows. Front Cell Infect Microbiol 2012; 2: 86.
[http://dx.doi.org/10.3389/fcimb.2012.00086] [PMID: 22919677]
[43]
Kapilan R. Jacobs Journal of Enzymology and Enzyme Engineering 2016; (January) 2015.
[44]
Ahnan-Winarno AD, Cordeiro L, Winarno FG, Gibbons J, Xiao H. Tempeh: A semicentennial review on its health benefits, fermentation, safety, processing, sustainability, and affordability. Compr Rev Food Sci Food Saf 2021; 20(2): 1717-67.
[http://dx.doi.org/10.1111/1541-4337.12710] [PMID: 33569911]
[45]
Kobayashi J. D-amino acids and lactic acid bacteria. Microorganisms 2019; 7(12): 1-14.
[http://dx.doi.org/10.3390/microorganisms7120690] [PMID: 31842512]
[46]
Tomovska J, Gjorgievski N, Makarijoski B. Examination of pH, titratable acidity and antioxidant activity in fermented milk. J Mater Sci Eng A 2016; 6(6): 326-33.
[http://dx.doi.org/10.17265/2161-6213/2016.11-12.006]
[47]
Ashraf H, Allah A, El-Zubeir I, El Owni O. Microbial quality of set yoghurt from reconstituted whole and mixed milk powder. Ann Food Sci Technol 2011; 12: 64-70.
[48]
Puspitojati E, Cahyanto MN, Marsono Y, Indrati R. Changes in amino acid composition during fermentation and its effects on the inhibitory activity of angiotensin-I-converting enzyme of jack bean tempe following in vitro gastrointestinal digestion. J Food Nutr Res 2019; 58(4): 319-27.
[49]
David OJ. Indigenous Fermented Foods of Southeast Asia. (1st ed.), Boca Raton, FL, USA: CRC Press 2014.
[50]
Fang H, Kang J, Zhang D. Microbial production of vitamin B12: A review and future perspectives. Microb Cell Fact 2017; 16(1): 15.
[http://dx.doi.org/10.1186/s12934-017-0631-y] [PMID: 28137297]
[51]
LeBlanc JG, Laiño JE, del Valle MJ, et al. B-group vitamin production by lactic acid bacteria-current knowledge and potential applications. J Appl Microbiol 2011; 111(6): 1297-309.
[http://dx.doi.org/10.1111/j.1365-2672.2011.05157.x] [PMID: 21933312]
[52]
Wolkers – Rooijackers JCM. Endika MF, Smid EJ. Enhancing vitamin B12 in lupin tempeh by in situ fortification. Lwt 2018; 96: 513-8.
[http://dx.doi.org/10.1016/j.lwt.2018.05.062]
[53]
Yu O, Shi J, Hession AO, Maxwell CA, McGonigle B, Odell JT. Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 2003; 63(7): 753-63.
[http://dx.doi.org/10.1016/S0031-9422(03)00345-5] [PMID: 12877915]
[54]
Tsuda H, Shibata E. Bioconversion of daidzin to daidzein by lactic acid bacteria in fermented soymilk. Food Sci Technol Res 2017; 23(1): 157-62.
[http://dx.doi.org/10.3136/fstr.23.157]
[55]
Gaya P, Peirotén Á, Medina M, Landete JM. Isoflavone metabolism by a collection of lactic acid bacteria and bifidobacteria with biotechnological interest. Int J Food Sci Nutr 2016; 67(2): 117-24.
[http://dx.doi.org/10.3109/09637486.2016.1144724] [PMID: 26878882]
[56]
Tsangalis D, Ashton JF, McGill AEJ, Shah NP. Biotransformation of isoflavones by bifidobacteria in fermented soymilk supplemented with D-glucose and L-cysteine. J Food Sci 2003; 68(2): 623-31.
[http://dx.doi.org/10.1111/j.1365-2621.2003.tb05721.x]
[57]
Liu SQ, Tsao M. Enhancement of survival of probiotic and non-probiotic lactic acid bacteria by yeasts in fermented milk under non-refrigerated conditions. Int J Food Microbiol 2009; 135(1): 34-8.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2009.07.017] [PMID: 19666198]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy