Review Article

β地中海贫血的基因治疗和其他靶向治疗方法的最新进展

卷 20, 期 16, 2019

页: [1603 - 1623] 页: 21

弟呕挨: 10.2174/1389450120666190726155733

价格: $65

摘要

β地中海贫血是一种遗传性疾病,其特征是成年血红蛋白的β珠蛋白链合成受损。该疾病具有影响多个器官系统的复杂病理生理学。 β地中海贫血的主要并发症是无效的红细胞生成,慢性溶血性贫血和含铁血黄素引起的器官功能障碍。定期输血是重度β地中海贫血的主要治疗方法;但是,这种治疗可能会导致心脏和肝脏含铁血黄素沉着症-这些患者最常见的死亡原因。这篇综述的重点是针对地中海贫血的独特的未来治疗性干预措施,可以逆转脾肿大,减少输血频率,降低器官中的铁毒性以及纠正慢性贫血。有针对性的有效方案包括血红蛋白胎儿诱导剂,无效的红细胞生成纠正剂,抗氧化剂,维生素和天然产物。白藜芦醇是一种新的草药治疗方法,可作为β地中海贫血的胎儿血红蛋白诱导剂。造血干细胞移植(HSCT)是治疗重型β地中海贫血的唯一疗法,与铁螯合和输血相比,造血干细胞移植更可确保这些患者的长寿。同时,已经出现了几种分子疗法,例如ActRIIB / IgG1 Fc重组蛋白,以解决β地中海贫血的并发症或现有药物的不良反应。关于基因校正策略,一项名为HGB-207(Northstar-2; NCT02906202)的III期临床试验正在评估LentiGlobin自体细胞移植的有效性和安全性。先进的基因编辑方法旨在在婴儿期切割目标位点的DNA并将HbF转换为HbA,例如抑制BCL11A(B细胞淋巴瘤11A),HPFH(胎儿血红蛋白的遗传性持久性)和锌指核酸酶。基因疗法发展迅速,许多国家都在进行多项临床试验,并且有望在不久的将来提供商业产品。

关键词: 地中海贫血,基因疗法,铁螯合疗法,HbF诱导剂,分子疗法,地中海贫血并发症。

Next »
图形摘要
[1]
Tari K, Valizadeh Ardalan P, Abbaszadehdibavar M, Atashi A, Jalili A, Gheidishahran M. Thalassemia an update: molecular basis, clinical features and treatment. IJBMPH 2018; 1(1): 48-58.
[http://dx.doi.org/10.22631/ijbmph.2018.56102]
[2]
Li C-K. New trend in the epidemiology of thalassaemia. Best Pract Res Clin Obstet Gynaecol 2017; 39: 16-26.
[http://dx.doi.org/10.1016/j.bpobgyn.2016.10.013] [PMID: 27847257]
[3]
Weatherall DJ. The evolving spectrum of the epidemiology of thalassemia. Hematol Oncol Clin North Am 2018; 32(2): 165-75.
[http://dx.doi.org/10.1016/j.hoc.2017.11.008] [PMID: 29458724]
[4]
Finotti A, Breda L, Lederer CW, et al. Recent trends in the gene therapy of β-thalassemia. J Blood Med 2015; 6: 69-85.
[PMID: 25737641]
[5]
Feola M, Zamperone A, Bao W, et al. Role of activated pleckstrin-2 and down-stream effects on ineffective erythropoiesis in β-thalassemic mice. Am Soc Hematology 2016; 128(22): 1011-110.
[6]
Mokhtar GM, Gadallah M, El Sherif NH, Ali HT. Morbidities and mortality in transfusion-dependent Beta-thalassemia patients (single-center experience). Pediatr Hematol Oncol 2013; 30(2): 93-103.
[http://dx.doi.org/10.3109/08880018.2012.752054] [PMID: 23301991]
[7]
Soni S. Novel and innovative approaches for treatment of β-thalassemia. Pediatric Hematology Oncology Journal 2017; 2(4): 121-6.
[http://dx.doi.org/10.1016/j.phoj.2017.11.153]
[8]
Leboulch PL, Pawliuk R, Westerman K. Therapeutic retroviral vectors for gene therapy Google Patents 2019.
[9]
Darvishi P, Sharifi Z, Azarkeivan A, Akbari A, Pourfathollah AA. HLA-DRB1*15:03 and HLA-DRB1*11: useful predictive alleles for alloantibody production in thalassemia patients. Transfus Med 2019; 29(3): 179-84.
[http://dx.doi.org/10.1111/tme.12531] [PMID: 29691938]
[10]
Bordbar M, Pasalar M, Safaei S, et al. Complementary and alternative medicine use in thalassemia patients in Shiraz, southern Iran: A cross-sectional study. J Tradit Complement Med 2017; 8(1): 141-6.
[http://dx.doi.org/10.1016/j.jtcme.2017.05.002] [PMID: 29322002]
[11]
Kolnagou A, Kontoghiorghes GJ. Chelation protocols for the elimination and prevention of iron overload in thalassaemia. Front Biosci 2018; 23: 1082-98.
[http://dx.doi.org/10.2741/4634] [PMID: 28930590]
[12]
Adly AA, Ismail EA. Management of children with β-thalassemia intermedia: overview, recent advances, and treatment challenges. J Pediatr Hematol Oncol 2018; 40(4): 253-68.
[http://dx.doi.org/10.1097/MPH.0000000000001148] [PMID: 29629992]
[13]
Jones E, Pasricha SR, Allen A, et al. Hepcidin is suppressed by erythropoiesis in hemoglobin E β-thalassemia and β-thalassemia trait. Blood 2015; 125(5): 873-80.
[http://dx.doi.org/10.1182/blood-2014-10-606491] [PMID: 25519750]
[14]
Vichinsky E. Non-transfusion-dependent thalassemia and thalassemia intermedia: epidemiology, complications, and management. Curr Med Res Opin 2016; 32(1): 191-204.
[http://dx.doi.org/10.1185/03007995.2015.1110128] [PMID: 26479125]
[15]
Zhao P, Wu H, Zhong Z, et al. Molecular prenatal diagnosis of alpha and beta thalassemia in pregnant Hakka women in southern China. J Clin Lab Anal 2018; 32(3)e22306
[http://dx.doi.org/10.1002/jcla.22306] [PMID: 28771834]
[16]
Chonat S, Quinn CT. Current standards of care and long term outcomes for thalassemia and sickle cell disease. Adv Exp Med Biol 2017; 1013: 59-87.
[http://dx.doi.org/10.1007/978-1-4939-7299-9_3] [PMID: 29127677]
[17]
Al-Amodi AM, Ghanem NZ, Aldakeel SA, et al. Hemoglobin A2 (HbA2) has a measure of unreliability in diagnosing β-thalassemia trait (β-TT). Curr Med Res Opin 2018; 34(5): 945-51.
[http://dx.doi.org/10.1080/03007995.2018.1435520] [PMID: 29383950]
[18]
Cappellini MD, Porter JB, Viprakasit V, Taher AT. A paradigm shift on beta-thalassaemia treatment: How will we manage this old disease with new therapies? Blood Rev 2018; 32(4): 300-11.
[http://dx.doi.org/10.1016/j.blre.2018.02.001] [PMID: 29455932]
[19]
Chirico V, Rigoli L, Lacquaniti A, et al. Endocrinopathies, metabolic disorders, and iron overload in major and intermedia thalassemia: serum ferritin as diagnostic and predictive marker associated with liver and cardiac T2* MRI assessment. Eur J Haematol 2015; 94(5): 404-12.
[http://dx.doi.org/10.1111/ejh.12444] [PMID: 25200112]
[20]
Ansari S, Azarkeivan A, Miri-Aliabad G, Yousefian S, Rostami T. Comparison of iron chelation effects of deferoxamine, deferasirox, and combination of deferoxamine and deferiprone on liver and cardiac T2* MRI in thalassemia maior. Caspian J Intern Med 2017; 8(3): 159-64.
[PMID: 28932366]
[21]
Khera R, Singh T, Khuana N, Gupta N, Dubey AP. HPLC in characterization of hemoglobin profile in thalassemia syndromes and hemoglobinopathies: a clinicohematological correlation. Indian J Hematol Blood Transfus 2015; 31(1): 110-5.
[http://dx.doi.org/10.1007/s12288-014-0409-x] [PMID: 25548455]
[22]
Hudecova I, Chiu RW. Non-invasive prenatal diagnosis of thalassemias using maternal plasma cell free DNA. Best Pract Res Clin Obstet Gynaecol 2017; 39: 63-73.
[http://dx.doi.org/10.1016/j.bpobgyn.2016.10.016] [PMID: 27887921]
[23]
Sleiman J, Tarhini A, Bou-Fakhredin R, Saliba AN, Cappellini MD, Taher AT. Non-Transfusion-Dependent Thalassemia: An Update on Complications and Management. Int J Mol Sci 2018; 19(1): 182.
[http://dx.doi.org/10.3390/ijms19010182] [PMID: 29316681]
[24]
Abdul-Hamid A, Bazarbachi HMM. 2 Rayan I. Bou Fakhredin,2 and B.F.C. Joseph E. Roumi, 1 Ali T. Taher2. How I treat and monitor non-transfusion-dependent thalassaemia. Haematologica 2017; 102(1): 20-7.
[25]
Karimi M, Cohan N, Pishdad P. Hydroxyurea as a first-line treatment of extramedullary hematopoiesis in patients with beta thalassemia: Four case reports. Hematology 2015; 20(1): 53-7.
[http://dx.doi.org/10.1179/1607845414Y.0000000168] [PMID: 24717020]
[26]
Teawtrakul N, Jetsrisuparb A, Pongudom S, et al. Epidemiologic study of major complications in adolescent and adult patients with thalassemia in Northeastern Thailand: the E-SAAN study phase I. Hematology 2018; 23(1): 55-60.
[http://dx.doi.org/10.1080/10245332.2017.1358845] [PMID: 28759343]
[27]
Mancuso L, Vitrano A, Mancuso A, Sacco M, Ledda A, Maggio A. Left Ventricular Diastolic Dysfunction in β-Thalassemia Major with Heart Failure. Hemoglobin 2018; 42(1): 68-71.
[http://dx.doi.org/10.1080/03630269.2018.1451341] [PMID: 29633668]
[28]
Ansari AM, Bhat KG, Dsa SS, Mahalingam S, Joseph N. Study of insulin resistance in patients with β thalassemia major and validity of triglyceride. J Pediatr Hematol Oncol 2018; 40(2): 128-31.
[29]
Arif M, Ansari M, Kamalakshi G, et al. study of insulin resistance in patients with β thalassemia major and validity of triglyceride glucose (TYG). J Pediatr Hematol Oncol 2018; 40(2): 128-31.
[30]
De Sanctis V, Soliman AT, Yassin MA, et al. Hypogonadism in male thalassemia major patients: pathophysiology, diagnosis and treatment. Acta Biomed 2018; 89(2-S): 6-15.
[PMID: 29451224]
[31]
Upadya SH, Rukmini MS, Sundararajan S, Baliga BS, Kamath N. Thyroid function in chronically transfused children with beta thalassemia major: a cross-sectional hospital based study. Int J Pediatr 2018; 2018: 5.
[http://dx.doi.org/10.1155/2018/9071213]
[32]
Al Moussawi H, Polavarapu AD, Asti D, Awada Z, Mulrooney S. Successful Treatment of Hepatitis C Virus by Ledipasvir/Sofosbuvir in a Cirrhotic Patient with Sickle Cell Disease and Thalassemia Minor. Case Rep Gastroenterol 2018; 12(3): 629-32.
[http://dx.doi.org/10.1159/000493421] [PMID: 30483041]
[33]
Oikonomidou PR, Rivella S. What can we learn from ineffective erythropoiesis in thalassemia? Blood Rev 2018; 32(2): 130-43.
[http://dx.doi.org/10.1016/j.blre.2017.10.001] [PMID: 29054350]
[34]
Aldudak B, Karabay Bayazit A, Noyan A, et al. Renal function in pediatric patients with β-thalassemia major. Pediatr Nephrol 2000; 15(1-2): 109-12.
[http://dx.doi.org/10.1007/s004670000434] [PMID: 11095025]
[35]
Sleiman J, Tarhini A, Taher AT. Renal complications in thalassemiaThalassemia Reports 2018; 8(1)
[http://dx.doi.org/10.4081/thal.2018.7481]
[36]
Lertsuwan K, Wongdee K, Teerapornpuntakit J, Charoenphandhu N. Intestinal calcium transport and its regulation in thalassemia: interaction between calcium and iron metabolism. J Physiol Sci 2018; 68(3): 221-32.
[http://dx.doi.org/10.1007/s12576-018-0600-1] [PMID: 29484538]
[37]
Tsartsalis AN, Lambrou GI, Tsartsalis D, et al. The role of biphosphonates in the management of thalassemia-induced osteoporosis: a systematic review and meta-analysis. Hormones (Athens) 2018; 17(2): 153-66.
[http://dx.doi.org/10.1007/s42000-018-0019-3] [PMID: 29858849]
[38]
Sreenivasan P, et al. Impact of diet counseling in thalassemic children and its response on nutritional status. Int J Health Allied Sci 2017; 6(1): 26.
[39]
Cunningham E. Is there a special diet for thalassemia? J Acad Nutr Diet 2016; 116(8): 1360.
[http://dx.doi.org/10.1016/j.jand.2016.06.001] [PMID: 27469523]
[40]
Fung EB, Xu Y, Trachtenberg F, et al. Thalassemia Clinical Research Network. Inadequate dietary intake in patients with thalassemia. J Acad Nutr Diet 2012; 112(7): 980-90.
[http://dx.doi.org/10.1016/j.jand.2012.01.017] [PMID: 22551675]
[41]
de Alarcon PA, Donovan ME, Forbes GB, Landaw SA, Stockman JA III. Iron absorption in the thalassemia syndromes and its inhibition by tea. N Engl J Med 1979; 300(1): 5-8.
[http://dx.doi.org/10.1056/NEJM197901043000102] [PMID: 758174]
[42]
Lunova M, Goehring C, Kuscuoglu D, et al. Hepcidin knockout mice fed with iron-rich diet develop chronic liver injury and liver fibrosis due to lysosomal iron overload. J Hepatol 2014; 61(3): 633-41.
[http://dx.doi.org/10.1016/j.jhep.2014.04.034] [PMID: 24816174]
[43]
Balasubramanian P, Abraham A, George B, Srivastava A. Allogeneic stem cell transplantation for thalassemia major in India. Pediatric Hematology Oncology J 2017; 2(4): 114-20.
[http://dx.doi.org/10.1016/j.phoj.2018.02.001]
[44]
John MJ, Jyani G, Jindal A, et al. Cost Effectiveness of Hematopoietic Stem Cell Transplantation Compared with Transfusion Chelation for Treatment of Thalassemia Major. Biol Blood Marrow Transplant 2018; 24(10): 2119-26.
[http://dx.doi.org/10.1016/j.bbmt.2018.04.005] [PMID: 29673692]
[45]
Strocchio L, Locatelli F. Hematopoietic Stem Cell Transplantation in Thalassemia. Hematol Oncol Clin North Am 2018; 32(2): 317-28.
[http://dx.doi.org/10.1016/j.hoc.2017.11.011] [PMID: 29458734]
[46]
Angelucci E, Abutalib SA. Advances in transplantation and gene therapy in transfusion‐dependent β‐thalassemia. Advances in Cell and Gene Therapy 2019; 2(1)e25
[http://dx.doi.org/10.1002/acg2.25]
[47]
Li Q. Unrelated donor peripheral blood stem cell transplantation for thalassaemia: a single institution experience of 53 patients. In: Am Soc Hematology. 2017.
[48]
Marktel S, Cicalese MP, Giglio F, et al. Gene therapy for Beta thalassemia: preliminary results from the PHASE I/II Tiget-Bthal trial of autologous hematopoietic stem cells genetically modified with GLOBE lentiviral vector. In: Am Soc Hematology 2017; 130-355.
[49]
Rasko J, Walters M, Kwiatkowski J, et al. Efficacy and safety of LentiGlobin gene therapy in patients with transfusion-dependent β-thalassemia and non-β0/β0 genotypes: Updated results from the completed phase 1/2 Northstar and ongoing phase 3 Northstar-2 studies. Cytotherapy 2019; 21(5): S14.
[http://dx.doi.org/10.1016/j.jcyt.2019.03.578]
[50]
Methichit Wattanapanitch1, Nattaya Damkham1, Ponthip Potirat1, Kongtana Trakarnsanga3, Montira Janan1, Yaowalak U-pratya1,4, Pakpoom Kheolamai5, Nuttha Klincumhom6 and Surapol Issaragrisil1,4 One-step genetic correction of hemoglobin E/betathalassemia patient-derived iPSCs by the CRISPR/Cas9 system stem cell therapy and research 2018.
[51]
Alateeq S, Ovchinnikov D, Tracey T, et al. Identification of on-target mutagenesis during correction of a beta-thalassemia splice mutation in iPS cells with optimised CRISPR/Cas9-double nickase reveals potential safety concerns. APL Bioeng 2018; 2(4)046103
[http://dx.doi.org/10.1063/1.5048625] [PMID: 31069325]
[52]
Marsella M, Borgna-Pignatti C. Transfusional iron overload and iron chelation therapy in thalassemia major and sickle cell disease. Hematol Oncol Clin North Am 2014; 28(4): 703-27.vi.
[http://dx.doi.org/10.1016/j.hoc.2014.04.004] [PMID: 25064709]
[53]
Vene’e N. Guidelines for the standard monitoring of patients with thalassemia: report of the thalassemia longitudinal cohort. Pediatr Hematol Oncol 2015; 37: 162-9.
[http://dx.doi.org/10.1097/MPH.0000000000000307]
[54]
Vichinsky E, Neumayr L, Trimble S, et al. CDC thalassemia investigators. transfusion complications in thalassemia patients: a report from the centers for disease control and prevention (CME). Transfusion 2014; 54(4): 972-81.
[http://dx.doi.org/10.1111/trf.12348] [PMID: 23889533]
[55]
Chonat S, Quinn CT. Current standards of care and long term outcomes for thalassemia and sickle cell disease, in gene and cell therapies for beta-globinopathies. Springer 2017; pp. 59-87.
[56]
Pepe A, Meloni A, Capra M, et al. Deferasirox, deferiprone and desferrioxamine treatment in thalassemia major patients: cardiac iron and function comparison determined by quantitative magnetic resonance imaging. Haematologica 2011; 96(1): 41-7.
[http://dx.doi.org/10.3324/haematol.2009.019042] [PMID: 20884710]
[57]
Rindarwati AY, Diantini A, Lestari K. Efficacy and side effects of deferasirox and deferiprone for thalasemia major in children. Pharmacol Clin Pharmacy Res 2018; 1(3): 76-9.
[58]
Voskaridou E, Christoulas D, Terpos E. Successful chelation therapy with the combination of deferasirox and deferiprone in a patient with thalassaemia major and persisting severe iron overload after single-agent chelation therapies. Br J Haematol 2011; 154(5): 654-6.
[http://dx.doi.org/10.1111/j.1365-2141.2011.08626.x] [PMID: 21615376]
[59]
Allegra S, Cusato J, De Francia S, et al. Effect of pharmacogenetic markers of vitamin D pathway on deferasirox pharmacokinetics in children. Pharmacogenet Genomics 2018; 28(1): 17-22.
[http://dx.doi.org/10.1097/FPC.0000000000000315] [PMID: 29099735]
[60]
Kontoghiorghe CN, Kontoghiorghes GJ. Efficacy and safety of iron-chelation therapy with deferoxamine, deferiprone, and deferasirox for the treatment of iron-loaded patients with non-transfusion-dependent thalassemia syndromes. Drug Des Devel Ther 2016; 10: 465-81.
[http://dx.doi.org/10.2147/DDDT.S79458] [PMID: 26893541]
[61]
Guo S, Liu G, Frazer DM, et al. Polymeric nanoparticles enhance the ability of deferoxamine to deplete hepatic and systemic iron. Nano Lett 2018; 18(9): 5782-90.
[http://dx.doi.org/10.1021/acs.nanolett.8b02428] [PMID: 30085676]
[62]
Totadri S, Bansal D, Trehan A, et al. Hepatic and cardiac iron-load in children on long-term chelation with deferiprone for thalassemia major. Indian Pediatr 2018; 55(7): 573-5.
[http://dx.doi.org/10.1007/s13312-018-1299-z] [PMID: 30129538]
[63]
Yii E, Doery JC, Kaplan Z, Kerr PG. Use of deferasirox (Exjade) for iron overload in peritoneal dialysis patients. Nephrology (Carlton) 2018; 23(9): 887-9.
[http://dx.doi.org/10.1111/nep.13389] [PMID: 29663590]
[64]
Kannan S, Singh A. Compliance score as a monitoring tool to promote treatment adherence in children with thalassemia major for improved physical growth. Asian J Transfus Sci 2017; 11(2): 108-14.
[http://dx.doi.org/10.4103/ajts.AJTS_61_16] [PMID: 28970676]
[65]
Belmont A, Kwiatkowski JL. Deferiprone for the treatment of transfusional iron overload in thalassemia. Expert Rev Hematol 2017; 10(6): 493-503.
[http://dx.doi.org/10.1080/17474086.2017.1318052] [PMID: 28448199]
[66]
Bollig C, Schell LK, Rücker G, et al. Deferasirox for managing iron overload in people with thalassaemia. Cochrane Database Syst Rev 2017.8CD007476.
[http://dx.doi.org/10.1002/14651858.CD007476.pub3] [PMID: 28809446]
[67]
Guo S, Liu G, Frazer DM, et al. Polymeric nanoparticles enhance the ability of deferoxamine to deplete hepatic and systemic iron. Nano Lett 2018; 18(9): 5782-90.
[http://dx.doi.org/10.1021/acs.nanolett.8b02428] [PMID: 30085676]
[68]
Spino M, Connelly J, Tsang YC, et al. Deferiprone pharmacokinetics with and without iron overload and in special patient populations. Am Soc Hematology 2015.
[69]
Borgna-Pignatti C, Marsella M. Iron chelation in thalassemia major. Clin Ther 2015; 37(12): 2866-77.
[http://dx.doi.org/10.1016/j.clinthera.2015.10.001] [PMID: 26519233]
[70]
Meiler SE, Wade M, Kutlar F, et al. Pomalidomide augments fetal hemoglobin production without the myelosuppressive effects of hydroxyurea in transgenic sickle cell mice. In: Blood. 2011.blood-2010-11-319137.
[71]
Salamin O, Kuuranne T, Saugy M, Leuenberger N. Erythropoietin as a performance-enhancing drug: Its mechanistic basis, detection, and potential adverse effects. Mol Cell Endocrinol 2018; 464: 75-87.
[http://dx.doi.org/10.1016/j.mce.2017.01.033] [PMID: 28119134]
[72]
Chen J, Zhu W, Cai N, Bu S, Li J, Huang L. Thalidomide induces haematologic responses in patients with β-thalassaemia. Eur J Haematol 2017; 99(5): 437-41.
[http://dx.doi.org/10.1111/ejh.12955] [PMID: 28850716]
[73]
Zander T, Aebi S, Pabst T, Renner C, Driessen C. Spotlight on pomalidomide: could less be more? Leukemia 2017; 31(9): 1987-9.
[http://dx.doi.org/10.1038/leu.2017.156] [PMID: 28529311]
[74]
Pecoraro A, Troia A, Calzolari R, et al. Efficacy of rapamycin as inducer of Hb F in primary erythroid cultures from sickle cell disease and β-thalassemia patients. Hemoglobin 2015; 39(4): 225-9.
[http://dx.doi.org/10.3109/03630269.2015.1036882] [PMID: 26016899]
[75]
Stallone G, Infante B, Grandaliano G, Gesualdo L. Management of side effects of sirolimus therapy. Transplantation 2009; 87(8)(Suppl.): S23-6.
[http://dx.doi.org/10.1097/TP.0b013e3181a05b7a] [PMID: 19384183]
[76]
Gamberini MR, Borgatti M, Finotti A, Zuccato C. Treatment of beta-thalassemia patients with rapamycin (Sirolimus): from preclinical research to a clinical trials-THALA RAP. 2018.
[77]
Kaminskas E, Farrell AT, Wang YC, Sridhara R, Pazdur R. FDA drug approval summary: azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist 2005; 10(3): 176-82.
[http://dx.doi.org/10.1634/theoncologist.10-3-176] [PMID: 15793220]
[78]
Kalantri SA, Ray R, Chattopadhyay A, Bhattacharjee S, Biswas A, Bhattacharyya M. Efficacy of decitabine as hemoglobin F inducer in HbE/β-thalassemia. Ann Hematol 2018; 97(9): 1689-94.
[http://dx.doi.org/10.1007/s00277-018-3357-y] [PMID: 29740685]
[79]
Ghasemi A, Keikhaei B, Ghodsi R. Side effects of hydroxyurea in patients with Thalassemia major and thalassemia intermedia and sickle cell anemia. Iran J Ped Hematol Oncol 2014; 4(3): 114-7.
[PMID: 25254090]
[80]
Vo KT, Karski EE, Nasholm NM, et al. Phase 1 study of sirolimus in combination with oral cyclophosphamide and topotecan in children and young adults with relapsed and refractory solid tumors. Oncotarget 2017; 8(14): 23851-61.
[http://dx.doi.org/10.18632/oncotarget.12904] [PMID: 27793021]
[81]
Vinchi F, Gastaldi S, Silengo L, Altruda F, Tolosano E. Hemopexin prevents endothelial damage and liver congestion in a mouse model of heme overload. Am J Pathol 2008; 173(1): 289-99.
[http://dx.doi.org/10.2353/ajpath.2008.071130] [PMID: 18556779]
[82]
Fibach E, Kollia P, Schechter AN, Noguchi CT, Rodgers GP. Hemin-induced acceleration of hemoglobin production in immature cultured erythroid cells: preferential enhancement of fetal hemoglobin. Blood 1995; 85(10): 2967-74.
[PMID: 7537986]
[83]
Vittorio Montefusco MC. diarrhea incidence in multiple myeloma patients treated with lenalidomide and pomalidomide clinicallymphoma myeloma 2017; 17(1): e46.
[84]
Casu C, Presti VL, Oikonomidou PR, et al. Short-term administration of JAK2 inhibitors reduces splenomegaly in mouse models of β-thalassemia intermedia and major haematologica 2018; 103(2): e46-9.
[85]
Dussiot M, Maciel TT, Fricot A, et al. An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia. Nat Med 2014; 20(4): 398-407.
[http://dx.doi.org/10.1038/nm.3468] [PMID: 24658077]
[86]
Porter J. A phase 2a, open-label, dose-finding study to determine the safety and tolerability of sotatercept (ACE-011) in adults with beta (β)-thalassemia: interim results. Am Soc Hematology 2013.
[87]
Piga A, Tartaglione I, Gamberini R, et al. Luspatercept decreases transfusion burden and liver iron concentration in regularly transfused adults with beta-thalassemia. Haematologica 2016; 101(Suppl. 1): S836.
[88]
Verstovsek S, Passamonti F, Rambaldi A, et al. A phase 2 study of ruxolitinib, an oral JAK1 and JAK2 Inhibitor, in patients with advanced polycythemia vera who are refractory or intolerant to hydroxyurea. Cancer 2014; 120(4): 513-20.
[http://dx.doi.org/10.1002/cncr.28441] [PMID: 24258498]
[89]
Smith WT. Long-term effects of sotatercept compared with placebo for correction of anemia in hemodialysis subjects: interim analysis of ACE-011-REN-001 [poster FP661 In: Annual Congress of the European Renal Association-European Dialysis and Transplant Association. 2015.
[90]
Reichel C, Farmer L, Gmeiner G, Walpurgis K, Thevis M. Detection of Sotatercept (ACE-011) in human serum by SAR-PAGE and western single blotting. Drug Test Anal 2018; 10(6): 927-37.
[http://dx.doi.org/10.1002/dta.2346] [PMID: 29193906]
[91]
Ruchala P, Nemeth E. The pathophysiology and pharmacology of hepcidin. Trends Pharmacol Sci 2014; 35(3): 155-61.
[http://dx.doi.org/10.1016/j.tips.2014.01.004] [PMID: 24552640]
[92]
Bansal D. Hepcidin and Thalassemia. Indian J Pediatr 2017; 84(10): 731-2.
[http://dx.doi.org/10.1007/s12098-017-2439-5] [PMID: 28840480]
[93]
Jaratsittisin J, Sornjai W, Svasti S, Fucharoen S, Roytrakul S, Smith DR. Modulation of hepcidin expression by normal control and beta0-thalassemia/Hb E erythroblasts. Hematology 2018; 23(7): 423-8.
[http://dx.doi.org/10.1080/10245332.2017.1405571] [PMID: 29157161]
[94]
Prentice AM. Clinical implications of new insights into hepcidin-mediated regulation of iron absorption and metabolism. clinical implications of new insights into hepcidin-mediated regulation of iron absorption and metabolism. Ann Nutr Metab 2017; 71(Suppl. 3): 40-8.
[http://dx.doi.org/10.1159/000480743] [PMID: 29268258]
[95]
Ramos E, Ruchala P, Goodnough JB, et al. Minihepcidins prevent iron overload in a hepcidin-deficient mouse model of severe hemochromatosis. Blood 2012; 120(18): 3829-36.
[http://dx.doi.org/10.1182/blood-2012-07-440743]
[96]
Vyoral D. Jiri Petrak. Therapeutic potential of hepcidin - the master regulator of iron metabolism. Pharmacol Res 2017; 115: 242-54.
[http://dx.doi.org/10.1016/j.phrs.2016.11.010] [PMID: 27867027]
[97]
Sebastiani G, Wilkinson N, Pantopoulos K. Pharmacological Targeting of the Hepcidin/Ferroportin Axis. Front Pharmacol 2016; 7: 160.
[http://dx.doi.org/10.3389/fphar.2016.00160] [PMID: 27445804]
[98]
Chen H, Choesang T, Huihui Li, et al. Increased hepcidin expression in β-thalassemic mice treated with apo-transferrin is associated with increased smad1/5/8 and decreased erk1/2 pathway activation. Am Soc Hematology 2014; 101(3): 297-308.
[99]
Kawabata H. Transferrin and transferrin receptors update. Free Radic Biol Med 2019; 133: 46-54.
[PMID: 29969719]
[100]
Ginzburg YZ. Use of transferrin in treatment of beta-thalassemias EP2509621A1 2010.
[101]
Casu C, Nemeth E, Rivella S. Hepcidin agonists as therapeutic tools Blood . 2018. p. blood-2017-11-737411.
[http://dx.doi.org/10.1182/blood-2017-11-737411]
[102]
Hare DJ. Hepcidin: A real-time biomarker of iron need royal society of chemistry 2017; 9: 606-18.
[103]
Gelderman MP, Baek JH, Yalamanoglu A, et al. Reversal of hemochromatosis by apo-transferrin in non-transfused and transfused Hbbth3/+(heterozygous B1/B2 globin gene deletion) mice. In: Haematologica,haematol. Haematologica 2015; 100(5): 611-22.
[104]
Ginzburg YZ. Use of transferrin in treatment of beta-thalassemias Google Patents 2013.
[105]
Fibach E, Rachmilewitz EA. The role of antioxidants and iron chelators in the treatment of oxidative stress in thalassemia. Ann N Y Acad Sci 2010; 1202(1): 10-6.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05577.x] [PMID: 20712766]
[106]
Elsedfy H, De Sanctis V, Ahmed AY, Mohamed NR, Arafa M, Elalfy MS. A pilot study on sperm DNA damage in β-thalassemia major: is there a role for antioxidants? Acta Biomed 2018; 89(1): 47-54.
[PMID: 29633742]
[107]
Theodorou A, Phylactides M, Forti L, et al. The investigation of resveratrol and analogs as potential inducers of fetal hemoglobin. Blood Cells Mol Dis 2016; 58: 6-12.
[http://dx.doi.org/10.1016/j.bcmd.2015.11.007] [PMID: 27067481]
[108]
Haghpanah S, Zarei T, Eshghi P, et al. Efficacy and safety of resveratrol, an oral hemoglobin F-augmenting agent, in patients with beta-thalassemia intermedia. Ann Hematol 2018; 97(10): 1919-24.
[http://dx.doi.org/10.1007/s00277-018-3392-8] [PMID: 29926158]
[109]
Mohammadi E, Tamaddoni A, Qujeq D, et al. An investigation of the effects of curcumin on iron overload, hepcidin level, and liver function in β-thalassemia major patients: A double-blind randomized controlled clinical trial. Phytother Res 2018; 32(9): 1828-35.
[http://dx.doi.org/10.1002/ptr.6118] [PMID: 29806132]
[110]
Elalfy MS, Saber MM, Adly AA, et al. Role of vitamin C as an adjuvant therapy to different iron chelators in young β-thalassemia major patients: efficacy and safety in relation to tissue iron overload. Eur J Haematol 2016; 96(3): 318-26.
[http://dx.doi.org/10.1111/ejh.12594] [PMID: 26018112]
[111]
Toptas B, Baykal A, Yesilipek A, et al. L-carnitine deficiency and red blood cell mechanical impairment in β-thalassemia major. Clin Hemorheol Microcirc 2006; 35(3): 349-57.
[PMID: 16899956]
[112]
El-Beshlawy A, El Accaoui R, Abd El-Sattar M, et al. Effect of L-carnitine on the physical fitness of thalassemic patients. Ann Hematol 2007; 86(1): 31-4.
[http://dx.doi.org/10.1007/s00277-006-0181-6] [PMID: 17031691]
[113]
Tsagris V, Liapi-Adamidou G. Serum carnitine levels in patients with homozygous beta thalassemia: a possible new role for carnitine? Eur J Pediatr 2005; 164(3): 131-4.
[http://dx.doi.org/10.1007/s00431-004-1590-y] [PMID: 15717177]
[114]
El-Beshlawy A, Ragab L, Fattah AA, et al. Improvement of cardiac function in thalassemia major treated with L-carnitine. Acta Haematol 2004; 111(3): 143-8.
[http://dx.doi.org/10.1159/000076522] [PMID: 15034235]
[115]
Fung EB. The importance of nutrition for health in patients with transfusion-dependent thalassemia. Ann N Y Acad Sci 2016; 1368(1): 40-8.
[http://dx.doi.org/10.1111/nyas.13003] [PMID: 26824448]
[116]
Karimi M, Mohammadi F, Behmanesh F, et al. Effect of combination therapy of hydroxyurea with l-carnitine and magnesium chloride on hematologic parameters and cardiac function of patients with β-thalassemia intermedia. Eur J Haematol 2010; 84(1): 52-8.
[http://dx.doi.org/10.1111/j.1600-0609.2009.01356.x] [PMID: 19799627]
[117]
Aydinok Y, Kattamis A, Cappellini MD, et al. HYPERION Investigators. Effects of deferasirox-deferoxamine on myocardial and liver iron in patients with severe transfusional iron overload. Blood 2015; 125(25): 3868-77.
[http://dx.doi.org/10.1182/blood-2014-07-586677] [PMID: 25934475]
[118]
Lal A, Porter J, Sweeters N, et al. Combined chelation therapy with deferasirox and deferoxamine in thalassemia. Blood Cells Mol Dis 2013; 50(2): 99-104.
[http://dx.doi.org/10.1016/j.bcmd.2012.10.006] [PMID: 23151373]
[119]
Arandi N, Haghpanah S, Safaei S, et al. Combination therapy - deferasirox and deferoxamine - in thalassemia major patients in emerging countries with limited resources. Transfus Med 2015; 25(1): 8-12.
[http://dx.doi.org/10.1111/tme.12188] [PMID: 25801075]
[120]
Totadri S, Bansal D, Bhatia P, Attri SV, Trehan A, Marwaha RK. The deferiprone and deferasirox combination is efficacious in iron overloaded patients with β-thalassemia major: A prospective, single center, open-label study. Pediatr Blood Cancer 2015; 62(9): 1592-6.
[http://dx.doi.org/10.1002/pbc.25533] [PMID: 25820920]
[121]
Casu C, Aghajan M, Oikonomidou PR, Guo S, Monia BP, Rivella S. Combination of Tmprss6- ASO and the iron chelator deferiprone improves erythropoiesis and reduces iron overload in a mouse model of beta-thalassemia intermedia. Haematologica 2016; 101(1): e8-e11.
[http://dx.doi.org/10.3324/haematol.2015.133348] [PMID: 26405152]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy