Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Review Article

The Screening of Renoprotective Agents by 99mTc-DMSA: A Review of Preclinical Studies

Author(s): Masoud Rezaei , Maryam Papie, Mohsen Cheki*, Luigi Mansi, Sean Kitson and Amirhossein Ahmadi

Volume 12, Issue 3, 2019

Page: [211 - 219] Pages: 9

DOI: 10.2174/1874471012666190717142316

Abstract

Background: Nephrotoxicity is a prevalent consequence of cancer treatment using radiotherapy and chemotherapy or their combination. There are two methods; histological and biochemical, to assess the kidney damage caused by toxic agents in animal studies. Although these methods are used for the try-out of renoprotective factors, these methods are invasive and time-consuming, and also, lack the necessary sensitivity for primary diagnosis. Quantitative renal 99mTc-DMSA scintigraphy is a noninvasive, precise and sensitive radionuclide technique which is used to assess the extent of kidney damage, so that the extent of injury to the kidney will be indicated by the renal uptake rate of 99mTc-DMSA in the kidney. In addition, this scintigraphy evaluates the effect of the toxic agents by quantifying the alterations in the biodistribution of the radiopharmaceutical.

Conclusion: In this review, the recent findings about the renoprotective agents were evaluated and screened with respect to the use of 99mTc-DMSA , which is preclinically and clinically used for animal cases and cancer patients under the treatment by radiotherapy and chemotherapy.

Keywords: Renoprotective agents, 99mTc-DMSA, ionizing radiation, cisplatin, gentamicin, nephrotoxicity.

Graphical Abstract
[1]
Lopez-Gaitan, J.; Ebert, M.A.; Robins, P.; Boucek, J.; Leong, T.; Willis, D.; Bydder, S.; Podias, P.; Waters, G.; O’Mara, B.; Chu, J.; Faggian, J.; Williams, L.; Hofman, M.S.; Spry, N.A. Radiotherapy of Abdomen With Precise Renal Assessment with SPECT/CT Imaging (RAPRASI): design and methodology of a prospective trial to improve the understanding of kidney radiation dose response. BMC Cancer, 2013, 13(1), 381.
[http://dx.doi.org/10.1186/1471-2407-13-381] [PMID: 23937668]
[2]
Lenarczyk, M.; Cohen, E.P.; Fish, B.L.; Irving, A.A.; Sharma, M.; Driscoll, C.D.; Moulder, J.E. Chronic oxidative stress as a mechanism for radiation nephropathy. Radiat. Res., 2009, 171(2), 164-172.
[http://dx.doi.org/10.1667/RR1454.1] [PMID: 19267541]
[3]
Hye Khan, M.A.; Fish, B.; Wahl, G.; Sharma, A.; Falck, J.R.; Paudyal, M.P.; Moulder, J.E.; Imig, J.D.; Cohen, E.P. Epoxyeicosatrienoic acid analogue mitigates kidney injury in a rat model of radiation nephropathy. Clin. Sci. (Lond.), 2016, 130(8), 587-599.
[http://dx.doi.org/10.1042/CS20150778] [PMID: 26772189]
[4]
Ansari, M.A. Sinapic acid modulates Nrf2/HO-1 signaling pathway in cisplatin-induced nephrotoxicity in rats. Biomed. Pharmacother., 2017, 93, 646-653.
[http://dx.doi.org/10.1016/j.biopha.2017.06.085] [PMID: 28686978]
[5]
Quiros, Y.; Vicente-Vicente, L.; Morales, A.I.; López-Novoa, J.M.; López-Hernández, F.J. An integrative overview on the mechanisms underlying the renal tubular cytotoxicity of gentamicin. Toxicol. Sci., 2011, 119(2), 245-256.
[http://dx.doi.org/10.1093/toxsci/kfq267] [PMID: 20829429]
[6]
Pabla, N.; Dong, Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int., 2008, 73(9), 994-1007.
[http://dx.doi.org/10.1038/sj.ki.5002786] [PMID: 18272962]
[7]
Sardana, A.; Kalra, S.; Khanna, D.; Balakumar, P. Nephroprotective effect of catechin on gentamicin-induced experimental nephrotoxicity. Clin. Exp. Nephrol., 2015, 19(2), 178-184.
[http://dx.doi.org/10.1007/s10157-014-0980-3] [PMID: 24825545]
[8]
Kandemir, F.M.; Ozkaraca, M.; Yildirim, B.A.; Hanedan, B.; Kirbas, A.; Kilic, K.; Aktas, E.; Benzer, F. Rutin attenuates gentamicin-induced renal damage by reducing oxidative stress, inflammation, apoptosis, and autophagy in rats. Ren. Fail., 2015, 37(3), 518-525.
[http://dx.doi.org/10.3109/0886022X.2015.1006100] [PMID: 25613739]
[9]
Karahan, I.; Ateşşahin, A.; Yilmaz, S.; Ceribaşi, A.O.; Sakin, F. Protective effect of lycopene on gentamicin-induced oxidative stress and nephrotoxicity in rats. Toxicology, 2005, 215(3), 198-204.
[http://dx.doi.org/10.1016/j.tox.2005.07.007] [PMID: 16125832]
[10]
Mansour, H.H.; El Azeem, M.G.A.; Ismael, N.E. Protective effect of Moringa oleifera on γ-radiation-induced hepatotoxicity and nephrotoxicity in rats. Am. J. Phytomed. Clin. Ther., 2014, 2(4), 495-508.
[11]
Salihoglu, Y.S.; Elri, T.; Gulle, K.; Can, M.; Aras, M.; Ozacmak, H.S.; Cabuk, M. Evaluation of the protective effect of agmatine against cisplatin nephrotoxicity with 99mTc-DMSA renal scintigraphy and cystatin-C. Ren. Fail., 2016, 38(9), 1496-1502.
[http://dx.doi.org/10.1080/0886022X.2016.1227919] [PMID: 27604130]
[12]
Nickolas, T.L.; Schmidt-Ott, K.M.; Canetta, P.; Forster, C.; Singer, E.; Sise, M.; Elger, A.; Maarouf, O.; Sola-Del Valle, D.A.; O’Rourke, M.; Sherman, E.; Lee, P.; Geara, A.; Imus, P.; Guddati, A.; Polland, A.; Rahman, W.; Elitok, S.; Malik, N.; Giglio, J.; El-Sayegh, S.; Devarajan, P.; Hebbar, S.; Saggi, S.J.; Hahn, B.; Kettritz, R.; Luft, F.C.; Barasch, J. Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage: a multicenter prospective cohort study. J. Am. Coll. Cardiol., 2012, 59(3), 246-255.
[http://dx.doi.org/10.1016/j.jacc.2011.10.854] [PMID: 22240130]
[13]
Kellum, J.A.; Prowle, J.R. Paradigms of acute kidney injury in the intensive care setting. Nat. Rev. Nephrol., 2018, 14(4), 217-230.
[http://dx.doi.org/10.1038/nrneph.2017.184] [PMID: 29355173]
[14]
Kwak, W.; Jang, H-S.; Belay, T.; Kim, J.; Ha, Y.S.; Lee, S.W.; Ahn, B-C.; Lee, J.; Park, K.M.; Yoo, J. Evaluation of kidney repair capacity using 99mTc-DMSA in ischemia/reperfusion injury models. Biochem. Biophys. Res. Commun., 2011, 406(1), 7-12.
[http://dx.doi.org/10.1016/j.bbrc.2011.01.085] [PMID: 21277288]
[15]
Cabuk, M.; Gurel, A.; Sen, F.; Demircan, N. Renoprotective effect of erdosteine in rats against gentamicin nephrotoxicity: a comparison of 99mTc-DMSA uptake with biochemical studies. Mol. Cell. Biochem., 2008, 308(1-2), 35-42.
[http://dx.doi.org/10.1007/s11010-007-9609-0] [PMID: 17899318]
[16]
Fatemikia, H.; Seyedabadi, M.; Karimi, Z.; Tanha, K.; Assadi, M.; Tanha, K. Comparison of 99mTc-DMSA renal scintigraphy with biochemical and histopathological findings in animal models of acute kidney injury. Mol. Cell. Biochem., 2017, 434(1-2), 163-169.
[http://dx.doi.org/10.1007/s11010-017-3046-5] [PMID: 28466457]
[17]
Lora-Michiels, M.; Anzola, K.; Amaya, G.; Solano, M. Quantitative and qualitative scintigraphic measurement of renal function in dogs exposed to toxic doses of Gentamicin. Vet. Radiol. Ultrasound, 2001, 42(6), 553-561.
[http://dx.doi.org/10.1111/j.1740-8261.2001.tb00986.x] [PMID: 11768525]
[18]
Cheki, M.; Gali, H. Primary radiation dosimetry of a novel PET radiopharmaceutical 68Ga-NODAGA-glycine in comparison with 99mTc-DTPA in renal studies. Hell. J. Nucl. Med., 2017, 20(3), 241-246.
[PMID: 29177263]
[19]
Cheki, M.; Papie, M.; Mansi, L.; Kitson, S.; Gali, H. Preliminary human radiation dose estimates of PET renal agents, para-18F-fluorohippuric acid and ortho-124I-iodohippuric acid from rat biodistribution data. Curr. Radiopharm., 2018, 11(1), 58-63.
[http://dx.doi.org/10.2174/1874471011666180212123534] [PMID: 29437030]
[20]
Hephzibah, J.; Shanthly, N.; Oommen, R. Comparison of glomerular filtration rate measured by plasma sample technique, Cockroft Gault method and Gates’ method in voluntary kidney donors and renal transplant recipients. Indian J. Nucl. Med., 2013, 28(3), 144-151.
[http://dx.doi.org/10.4103/0972-3919.119544] [PMID: 24250022]
[21]
Taylor, A.T. Radionuclides in nephrourology, part 1: Radiopharmaceuticals, quality control, and quantitative indices. J. Nucl. Med., 2014, 55(4), 608-615.
[http://dx.doi.org/10.2967/jnumed.113.133447] [PMID: 24549283]
[22]
Weyer, K.; Nielsen, R.; Petersen, S.V.; Christensen, E.I.; Rehling, M.; Birn, H. Renal uptake of 99mTc-dimercaptosuccinic acid is dependent on normal proximal tubule receptor-mediated endocytosis. J. Nucl. Med., 2013, 54(1), 159-165.
[http://dx.doi.org/10.2967/jnumed.112.110528] [PMID: 23232279]
[23]
Domingues, F.C.; Fujikawa, G.Y.; Decker, H.; Alonso, G.; Pereira, J.C.; Duarte, P.S. Comparison of relative renal function measured with either 99mTc-DTPA or 99mTc-EC dynamic scintigraphies with that measured with 99mTc-DMSA static scintigraphy. Int. Braz J Urol, 2006, 32(4), 405-409.
[http://dx.doi.org/10.1590/S1677-55382006000400004] [PMID: 16953906]
[24]
Schüler, E.; Larsson, M.; Parris, T.Z.; Johansson, M.E.; Helou, K.; Forssell-Aronsson, E. Potential Biomarkers for Radiation-Induced Renal Toxicity following 177Lu-Octreotate Administration in Mice. PLoS One, 2015, 10(8)e0136204
[http://dx.doi.org/10.1371/journal.pone.0136204] [PMID: 26287527]
[25]
Yürekli, Y.; Ünak, P.; Yenisey, C.; Ertay, T.; Biber Müftüler, F.Z.; Medine, E.İ. l-carnitine protection against cisplatin nephrotoxicity in rats: comparison with amifostin using quantitative renal Tc 99m DMSA uptake. Mol. Imaging Radionucl. Ther., 2011, 20(1), 1-6.
[http://dx.doi.org/10.4274/MIRT.20.01] [PMID: 23486728]
[26]
Lopes de Lima. Mda.C.; Ramos, C.D.; Brunetto, S.Q.; Lopes de Lima, M.; Ferreira, U.; Sá Camargo Etchebehere, E.C.; Santos, Ade.O.; Rodrigues Netto Júnior, N.; Camargo, E.E. Estimation of absolute renal uptake with technetium-99m dimercaptosuccinic acid: direct comparison with the radioactivity of nephrectomy specimens. Sao Paulo Med. J., 2008, 126(3), 150-155.
[http://dx.doi.org/10.1590/S1516-31802008000300003] [PMID: 18711653]
[27]
Reisz, J.A.; Bansal, N.; Qian, J.; Zhao, W.; Furdui, C.M. Effects of ionizing radiation on biological molecules--mechanisms of damage and emerging methods of detection. Antioxid. Redox Signal., 2014, 21(2), 260-292.
[http://dx.doi.org/10.1089/ars.2013.5489] [PMID: 24382094]
[28]
Köst, S.; Dörr, W.; Keinert, K.; Glaser, F-H.; Endert, G.; Herrmann, T. Effect of dose and dose-distribution in damage to the kidney following abdominal radiotherapy. Int. J. Radiat. Biol., 2002, 78(8), 695-702.
[http://dx.doi.org/10.1080/09553000210134791] [PMID: 12194753]
[29]
Bergsma, H.; Konijnenberg, M.W.; van der Zwan, W.A.; Kam, B.L.; Teunissen, J.J.; Kooij, P.P.; Mauff, K.A.; Krenning, E.P.; Kwekkeboom, D.J. Nephrotoxicity after PRRT with (177)Lu-DOTA-octreotate. Eur. J. Nucl. Med. Mol. Imaging, 2016, 43(10), 1802-1811.
[http://dx.doi.org/10.1007/s00259-016-3382-9] [PMID: 27160225]
[30]
Dawson, L.A.; Kavanagh, B.D.; Paulino, A.C.; Das, S.K.; Miften, M.; Li, X.A.; Pan, C.; Ten Haken, R.K.; Schultheiss, T.E. Radiation-associated kidney injury. Int. J. Radiat. Oncol. Biol. Phys., 2010, 76(3)(Suppl.), S108-S115.
[http://dx.doi.org/10.1016/j.ijrobp.2009.02.089] [PMID: 20171504]
[31]
Jouret, F.; Walrand, S.; Parreira, K.S.; Courtoy, P.J.; Pauwels, S.; Devuyst, O.; Jamar, F. Single photon emission-computed tomography (SPECT) for functional investigation of the proximal tubule in conscious mice. Am. J. Physiol. Renal Physiol., 2010, 298(2), F454-F460.
[http://dx.doi.org/10.1152/ajprenal.00413.2009] [PMID: 19955188]
[32]
Dewit, L.; Anninga, J.K.; Hoefnagel, C.A.; Nooijen, W.J. Radiation injury in the human kidney: a prospective analysis using specific scintigraphic and biochemical endpoints. Int. J. Radiat. Oncol. Biol. Phys., 1990, 19(4), 977-983.
[http://dx.doi.org/10.1016/0360-3016(90)90022-C] [PMID: 1976615]
[33]
Daly, M.J.; Jones, W.; Rudd, T.G.; Tremann, J. Differential renal function using technetium-99m Dimercaptosuccinic Acid (DMSA): in vitro correlation. J. Nucl. Med., 1979, 20(1), 63-66.
[PMID: 219166]
[34]
Peters, A.M. Scintigraphic imaging of renal function. Exp. Nephrol., 1998, 6(5), 391-397.
[http://dx.doi.org/10.1159/000020547] [PMID: 9730654]
[35]
Djokić, D.; Janković, D.; Nikolić, N. Preparation and in vivo evaluation of 90Y-meso-dimercaptosuccinic acid (90Y-DMSA) for possible therapeutic use: comparison with 99mTc-DMSA. Cancer Biother. Radiopharm., 2009, 24(1), 129-136.
[http://dx.doi.org/10.1089/cbr.2008.0499] [PMID: 19243255]
[36]
Jackson, P.; Foroudi, F.; Pham, D.; Hofman, M.S.; Hardcastle, N.; Callahan, J.; Kron, T.; Siva, S. Short communication: timeline of radiation-induced kidney function loss after stereotactic ablative body radiotherapy of renal cell carcinoma as evaluated by serial (99m)Tc-DMSA SPECT/CT. Radiat. Oncol., 2014, 9(1), 253.
[http://dx.doi.org/10.1186/s13014-014-0253-z] [PMID: 25424613]
[37]
Lin, T.H.; Khentigan, A.; Winchell, H.S.A. 99mTc-chelate substitute for organoradiomercurial renal agents. J. Nucl. Med., 1974, 15(1), 34-35.
[PMID: 4808675]
[38]
Vanlić-Razumenić, N.M.; Gorkić, D.A. Studies of chemical and biological properties of 99mTc-DMS (dimercaptosuccinic acid)--renal imaging agent. Eur. J. Nucl. Med., 1976, 1(4), 235-242.
[http://dx.doi.org/10.1007/BF00252169] [PMID: 1031368]
[39]
Petrović, J.; Vanlić-Razumenić, N. Biochemical studies of the renal radiopharmaceutical compound dimercaptosuccinate. III. Subcellular distribution and interaction of 99Tc-DMS complex with macromolecules in rat kidney homogenates in vitro. Eur. J. Nucl. Med., 1982, 7(7), 308-310.
[PMID: 6288383]
[40]
Andratschke, N.; Schnaiter, A.; Weber, W.A.; Cai, L.; Schill, S.; Wiedenmann, N.; Schwaiger, M.; Molls, M.; Nieder, C. Preclinical evaluation of erythropoietin administration in a model of radiation-induced kidney dysfunction. Int. J. Radiat. Oncol. Biol. Phys., 2006, 64(5), 1513-1518.
[http://dx.doi.org/10.1016/j.ijrobp.2005.11.042] [PMID: 16580501]
[41]
Luxton, R. Radiation nephritis: a long-term study of 54 patients; Lancet: England, 1961, p. 2.
[42]
Kaldir, M.; Cosar-Alas, R.; Cermik, T.F.; Yurut-Caloglu, V.; Saynak, M.; Altaner, S.; Caloglu, M.; Kocak, Z.; Tokatli, F.; Türe, M.; Parlar, S.; Uzal, C. Amifostine use in radiation-induced kidney damage. Preclinical evaluation with scintigraphic and histopathologic parameters. Strahlenther. Onkol., 2008, 184(7), 370-375.
[http://dx.doi.org/10.1007/s00066-008-1777-7] [PMID: 19016036]
[43]
Lambert, B.; Cybulla, M.; Weiner, S.M.; Van De Wiele, C.; Ham, H.; Dierckx, R.A.; Otte, A. Renal toxicity after radionuclide therapy. Radiat. Res., 2004, 161(5), 607-611.
[http://dx.doi.org/10.1667/RR3105] [PMID: 15161361]
[44]
Landuyt, W.; Van der Kogel, A.J.; De Roo, M.; Hoogmartens, M.; Ang, K.K.; van der Schueren, E. Unilateral kidney irradiation and late retreatment with cis-dichlorodiammineplatinum (II): functional measurements with 99mtechnetium-dimercaptosuccinic acid. Int. J. Radiat. Oncol. Biol. Phys., 1988, 14(1), 95-101.
[http://dx.doi.org/10.1016/0360-3016(88)90056-9] [PMID: 2826371]
[45]
Forrer, F.; Rolleman, E.; Bijster, M.; Melis, M.; Bernard, B.; Krenning, E.P.; de Jong, M. From outside to inside? Dose-dependent renal tubular damage after high-dose peptide receptor radionuclide therapy in rats measured with in vivo (99m)Tc-DMSA-SPECT and molecular imaging. Cancer Biother. Radiopharm., 2007, 22(1), 40-49.
[http://dx.doi.org/10.1089/cbr.2006.353] [PMID: 17627412]
[46]
Melis, M.; de Swart, J.; de Visser, M.; Berndsen, S.C.; Koelewijn, S.; Valkema, R.; Boerman, O.C.; Krenning, E.P.; de Jong, M. Dynamic and static small-animal SPECT in rats for monitoring renal function after 177Lu-labeled Tyr3-octreotate radionuclide therapy. J. Nucl. Med., 2010, 51(12), 1962-1968.
[http://dx.doi.org/10.2967/jnumed.110.080143] [PMID: 21078795]
[47]
Bodei, L.; Cremonesi, M.; Ferrari, M.; Pacifici, M.; Grana, C.M.; Bartolomei, M.; Baio, S.M.; Sansovini, M.; Paganelli, G. Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90Y-DOTATOC and 177Lu-DOTATATE: the role of associated risk factors. Eur. J. Nucl. Med. Mol. Imaging, 2008, 35(10), 1847-1856.
[http://dx.doi.org/10.1007/s00259-008-0778-1] [PMID: 18427807]
[48]
Rolleman, E.J.; Melis, M.; Valkema, R.; Boerman, O.C.; Krenning, E.P.; de Jong, M. Kidney protection during peptide receptor radionuclide therapy with somatostatin analogues. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37(5), 1018-1031.
[http://dx.doi.org/10.1007/s00259-009-1282-y] [PMID: 19915842]
[49]
Sabet, A.; Ezziddin, K.; Pape, U-F.; Reichman, K.; Haslerud, T.; Ahmadzadehfar, H.; Biersack, H-J.; Nagarajah, J.; Ezziddin, S. Accurate assessment of long-term nephrotoxicity after peptide receptor radionuclide therapy with (177)Lu-octreotate. Eur. J. Nucl. Med. Mol. Imaging, 2014, 41(3), 505-510.
[http://dx.doi.org/10.1007/s00259-013-2601-x] [PMID: 24196919]
[50]
Haller, S.; Reber, J.; Brandt, S.; Bernhardt, P.; Groehn, V.; Schibli, R.; Müller, C. Folate receptor-targeted radionuclide therapy: preclinical investigation of anti-tumor effects and potential radionephropathy. Nucl. Med. Biol., 2015, 42(10), 770-779.
[http://dx.doi.org/10.1016/j.nucmedbio.2015.06.006] [PMID: 26162583]
[51]
Yao, X.; Panichpisal, K.; Kurtzman, N.; Nugent, K. Cisplatin nephrotoxicity: a review. Am. J. Med. Sci., 2007, 334(2), 115-124.
[http://dx.doi.org/10.1097/MAJ.0b013e31812dfe1e] [PMID: 17700201]
[52]
Hosseinimehr, S.J.; Asadian, R.; Naghshvar, F.; Azizi, S.; Jafarinejad, M.; Noaparast, Z.; Abedi, S.M.; Hosseini, S.A.H. Protective effects of thymol against nephrotoxicity induced by cisplatin with using 99mTc-DMSA in mice. Ren. Fail., 2015, 37(2), 280-284.
[http://dx.doi.org/10.3109/0886022X.2014.991998] [PMID: 25540869]
[53]
Cornelison, T.L.; Reed, E. Nephrotoxicity and hydration management for cisplatin, carboplatin, and ormaplatin. Gynecol. Oncol., 1993, 50(2), 147-158.
[http://dx.doi.org/10.1006/gyno.1993.1184] [PMID: 8375728]
[54]
Meyer, K.B.; Madias, N.E. Cisplatin nephrotoxicity. Miner. Electrolyte Metab., 1994, 20(4), 201-213.
[PMID: 7845323]
[55]
Vickers, A.E.; Rose, K.; Fisher, R.; Saulnier, M.; Sahota, P.; Bentley, P. Kidney slices of human and rat to characterize cisplatin-induced injury on cellular pathways and morphology. Toxicol. Pathol., 2004, 32(5), 577-590.
[http://dx.doi.org/10.1080/01926230490508821] [PMID: 15603542]
[56]
Yürekli, Y.; Ünak, P.; Ertay, T.; Müftüler, F.Z.B. Medİne, E. İ.; Acar, Ç. Radiopharmaceutical model using 99mtc-DMSA to evaluate amifostine protection against cisplatin nephrotoxicity in rats. Turk. J. Nucl. Med., 2010, 19(3), 105-109.
[57]
Saleh, S.; El-Demerdash, E. Protective effects of L-arginine against cisplatin-induced renal oxidative stress and toxicity: role of nitric oxide. Basic Clin. Pharmacol. Toxicol., 2005, 97(2), 91-97.
[http://dx.doi.org/10.1111/j.1742-7843.2005.pto_114.x] [PMID: 15998355]
[58]
Chirino, Y.I.; Pedraza-Chaverri, J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp. Toxicol. Pathol., 2009, 61(3), 223-242.
[http://dx.doi.org/10.1016/j.etp.2008.09.003] [PMID: 18986801]
[59]
Mansour, M.A.; Mostafa, A.M.; Nagi, M.N.; Khattab, M.M.; Al-Shabanah, O.A. Protective effect of aminoguanidine against nephrotoxicity induced by cisplatin in normal rats. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2002, 132(2), 123-128.
[http://dx.doi.org/10.1016/S1532-0456(02)00062-5] [PMID: 12106889]
[60]
Kuhlmann, M.K.; Burkhardt, G.; Köhler, H. Insights into potential cellular mechanisms of cisplatin nephrotoxicity and their clinical application. Nephrol. Dial. Transplant., 1997, 12(12), 2478-2480.
[http://dx.doi.org/10.1093/ndt/12.12.2478] [PMID: 9430835]
[61]
Cohen, S.M.; Lippard, S.J. Cisplatin: from DNA damage to cancer chemotherapy. Prog. Nucleic Acid Res. Mol. Biol., 2001, 67(3), 93-130.
[http://dx.doi.org/10.1016/S0079-6603(01)67026-0] [PMID: 11525387]
[62]
Kawai, Y.; Nakao, T.; Kunimura, N.; Kohda, Y.; Gemba, M. Relationship of intracellular calcium and oxygen radicals to Cisplatin-related renal cell injury. J. Pharmacol. Sci., 2006, 100(1), 65-72.
[http://dx.doi.org/10.1254/jphs.FP0050661] [PMID: 16410676]
[63]
McAfee, J. G.; Subramanian, G.; Thomas, F. D.; Hellwig, B.; Roskopf, M. Comparison of different radioactive renal agents in cisplatin-induced tubular toxicity in rats. J. Nucl. Med, 1989, 2(14.3), 1.82.
[64]
Mingeot-Leclercq, M-P.; Tulkens, P.M. Aminoglycosides: nephrotoxicity. Antimicrob. Agents Chemother., 1999, 43(5), 1003-1012.
[http://dx.doi.org/10.1128/AAC.43.5.1003] [PMID: 10223907]
[65]
Mathew, T.H. Drug-induced renal disease. Med. J. Aust., 1992, 156(10), 724-728.
[PMID: 1620020]
[66]
Bennett, W.M.; Mela-Riker, L.M.; Houghton, D.C.; Gilbert, D.N.; Buss, W.C. Microsomal protein synthesis inhibition: an early manifestation of gentamicin nephrotoxicity. Am. J. Physiol., 1988, 255(2 Pt 2), F265-F269.
[PMID: 2457327]
[67]
Ali, B.H. Gentamicin nephrotoxicity in humans and animals: some recent research. Gen. Pharmacol., 1995, 26(7), 1477-1487.
[http://dx.doi.org/10.1016/0306-3623(95)00049-6] [PMID: 8690234]
[68]
Houghton, D.C.; Hartnett, M.; Campbell-Boswell, M.; Porter, G.; Bennett, W. A light and electron microscopic analysis of gentamicin nephrotoxicity in rats. Am. J. Pathol., 1976, 82(3), 589-612.
[PMID: 1258978]
[69]
Marshall, K.L.; Craig, L.E.; Jones, M.P.; Daniel, G.B. Quantitative renal scintigraphy in domestic pigeons (Columba livia domestica) exposed to toxic doses of gentamicin. Am. J. Vet. Res., 2003, 64(4), 453-462.
[http://dx.doi.org/10.2460/ajvr.2003.64.453] [PMID: 12693536]
[70]
Shimeda, Y.; Hirotani, Y.; Akimoto, Y.; Shindou, K.; Ijiri, Y.; Nishihori, T.; Tanaka, K. Protective effects of capsaicin against cisplatin-induced nephrotoxicity in rats. Biol. Pharm. Bull., 2005, 28(9), 1635-1638.
[http://dx.doi.org/10.1248/bpb.28.1635] [PMID: 16141530]
[71]
Martins, N.M.; Santos, N.A.; Curti, C.; Bianchi, M.L.P.; Santos, A.C. Cisplatin induces mitochondrial oxidative stress with resultant energetic metabolism impairment, membrane rigidification and apoptosis in rat liver. J. Appl. Toxicol., 2008, 28(3), 337-344.
[http://dx.doi.org/10.1002/jat.1284] [PMID: 17604343]
[72]
Pratibha, R.; Sameer, R.; Rataboli, P.V.; Bhiwgade, D.A.; Dhume, C.Y. Enzymatic studies of cisplatin induced oxidative stress in hepatic tissue of rats. Eur. J. Pharmacol., 2006, 532(3), 290-293.
[http://dx.doi.org/10.1016/j.ejphar.2006.01.007] [PMID: 16458885]
[73]
Bohuslavizki, K.H.; Brenner, W.; Klutmann, S.; Hübner, R-H.; Lassmann, S.; Feyerabend, B.; Lüttges, J.; Tinnemeyer, S.; Clausen, M.; Henze, E. Radioprotection of salivary glands by amifostine in high-dose radioiodine therapy. J. Nucl. Med., 1998, 39(7), 1237-1242.
[PMID: 9669401]
[74]
Brenner, W.; Kampen, W.U.; Brümmer, C.; Von Forstner, C.; Zuhayra, M.; Muhle, C.; Czech, N.; Henze, E. Myeloprotective effects of different amifostine regimens in rabbits undergoing high-dose treatment with 186rhenium-(tin)1,1- hydroxyethylidene diphosphonate (186Re-HEDP). Cancer Biother. Radiopharm., 2003, 18(6), 887-893.
[http://dx.doi.org/10.1089/108497803322702851] [PMID: 14969601]
[75]
Takahashi, I.; Nagai, T.; Miyaishi, K.; Maehara, Y.; Niibe, H. Clinical study of the radioprotective effects of Amifostine (YM-08310, WR-2721) on chronic radiation injury. Int. J. Radiat. Oncol. Biol. Phys., 1986, 12(6), 935-938.
[http://dx.doi.org/10.1016/0360-3016(86)90388-3] [PMID: 3013816]
[76]
Uzal, C.; Durmus-Altun, G.; Caloglu, M.; Ergülen, A.; Altaner, S.; Yigitbasi, N.O. The protective effect of amifostine on radiation-induced acute pulmonary toxicity: detection by (99m)Tc-DTPA transalveolar clearances. Int. J. Radiat. Oncol. Biol. Phys., 2004, 60(2), 564-569.
[http://dx.doi.org/10.1016/j.ijrobp.2004.05.045] [PMID: 15380593]

© 2024 Bentham Science Publishers | Privacy Policy