Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Review Article

Effective Antiviral Medicinal Plants and Biological Compounds Against Central Nervous System Infections: A Mechanistic Review

Author(s): Khojasteh Malekmohammad, Mahmoud Rafieian-Kopaei*, Samira Sardari and Robert D.E. Sewell

Volume 17, Issue 4, 2020

Page: [469 - 483] Pages: 15

DOI: 10.2174/1570163816666190715114741

Price: $65

Open Access Journals Promotions 2
Abstract

Background and Objective: Infectious diseases are amongst the leading causes of death in the world and central nervous system infections produced by viruses may either be fatal or generate a wide range of symptoms that affect global human health. Most antiviral plants contain active phytoconstituents such as alkaloids, flavonoids, and polyphenols, some of which play an important antiviral role. Herein, we present a background to viral central nervous system (CNS) infections, followed by a review of medicinal plants and bioactive compounds that are effective against viral pathogens in CNS infections.

Methods: A comprehensive literature search was conducted on scientific databases including: PubMed, Scopus, Google Scholar, and Web of Science. The relevant keywords used as search terms were: “myelitis”, “encephalitis”, “meningitis”, “meningoencephalitis”, “encephalomyelitis”, “central nervous system”, “brain”, “spinal cord”, “infection”, “virus”, “medicinal plants”, and “biological compounds”.

Results: The most significant viruses involved in central nervous system infections are: Herpes Simplex Virus (HSV), Varicella Zoster Virus (VZV), West Nile Virus (WNV), Enterovirus 71 (EV71), Japanese Encephalitis Virus (JEV), and Dengue Virus (DENV). The inhibitory activity of medicinal plants against CNS viruses is mostly active through prevention of viral binding to cell membranes, blocking viral genome replication, prevention of viral protein expression, scavenging reactive Oxygen Species (ROS), and reduction of plaque formation.

Conclusion: Due to the increased resistance of microorganisms (bacteria, viruses, and parasites) to antimicrobial therapies, alternative treatments, especially using plant sources and their bioactive constituents, appear to be more fruitful.

Keywords: CNS infection, encephalitis, meningitis, myelitis, virus, medicinal plant, bioactive compounds.

Graphical Abstract
[1]
Ganjhu RK, Mudgal PP, Maity H, et al. Herbal plants and plant preparations as remedial approach for viral diseases. Virusdisease 2015; 26(4): 225-36.
[http://dx.doi.org/10.1007/s13337-015-0276-6] [PMID: 26645032]
[2]
Muzumdar D. Central nervous system infections and the neurosurgeon: a perspective. Int J Surg 2011; 9(2): 113-6.
[http://dx.doi.org/10.1016/j.ijsu.2010.11.001] [PMID: 21059416]
[3]
Alvis Miranda H, Castellar-Leones SM, Elzain MA, Moscote-Salazar LR. Brain abscess: Current management. J Neurosci Rural Pract 2013; 4(Suppl. 1): S67-81.
[http://dx.doi.org/10.4103/0976-3147.116472] [PMID: 24174804]
[4]
Sahoo S. A review of some medicinal plants used for nervous disorders. J Med Plant 2018; 6: 220-4.
[5]
Whitley RJ, Gnann JW. Viral encephalitis: familiar infections and emerging pathogens. Lancet 2002; 359(9305): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(02)07681-X] [PMID: 11853816]
[6]
Hsu CC. Epidemiological Features of Central Nervous System (CNS) Infections in Taiwan and Molecular Investigation of CNS Infections of Unknown Cause. PhD dissertation Columbia University 2012
[7]
Whitley RJ, Kimberlin DW. Viral encephalitis. Pediatr Rev 1999; 20(6): 192-8.
[http://dx.doi.org/10.1542/pir.20-6-192] [PMID: 10352040]
[8]
Bookstaver PB, Mohorn PL, Shah A, et al. Management of viral central nervous system infections: a primer for clinicians. J Cent Nerv Syst Dis 2017.91179573517703342
[http://dx.doi.org/10.1177/1179573517703342] [PMID: 28579869]
[9]
Steiner I, Budka H, Chaudhuri A, et al. Viral meningoencephalitis: a review of diagnostic methods and guidelines for management. Eur J Neurol 2010; 17(8): 999-e57.
[http://dx.doi.org/10.1111/j.1468-1331.2010.02970.x] [PMID: 20236175]
[10]
Ramamurthy M, Sankara S, Arumugam I, Nandagopal B, Srikanth P, Gopalan S. Viral infections of the CNS: the unraveling of the mystery. Sri Ramachandra J Med 2016; 9: 15-23.
[11]
Swanson PA II, McGavern DB. Viral diseases of the central nervous system. Curr Opin Virol 2015; 11: 44-54.
[http://dx.doi.org/10.1016/j.coviro.2014.12.009] [PMID: 25681709]
[12]
McGavern DB, Kang SS. Illuminating viral infections in the nervous system. Nat Rev Immunol 2011; 11(5): 318-29.
[http://dx.doi.org/10.1038/nri2971] [PMID: 21508982]
[13]
Shubhada VM. Dharammali, Dinesh RC. Herbal remedies for CNS disorders. IJCAP 2017; 2: 42-4.
[14]
Roy RN. Commentary: “Physicochemical Characterization and Antibacterial Activity of the Leaf oil of Crotalaria pallida Aiton. Journal of Meningitis 2016; 1: 110.
[15]
Naithani R, Huma LC, Holland LE, et al. Antiviral activity of phytochemicals: a comprehensive review. Mini Rev Med Chem 2008; 8(11): 1106-33.
[http://dx.doi.org/10.2174/138955708785909943] [PMID: 18855727]
[16]
Chattopadhyay D, Sarkar MC, Chatterjee T, et al. Recent advancements for the evaluation of anti-viral activities of natural products. N Biotechnol 2009; 25(5): 347-68.
[http://dx.doi.org/10.1016/j.nbt.2009.03.007] [PMID: 19464980]
[17]
Sarrazin JL, Bonneville F, Martin-Blondel G. Brain infections. Diagn Interv Imaging 2012; 93(6): 473-90.
[http://dx.doi.org/10.1016/j.diii.2012.04.020] [PMID: 22677301]
[18]
Mendelson E, Aboudy Y, Smetana Z, Tepperberg M, Grossman Z. Laboratory assessment and diagnosis of congenital viral infections: Rubella, cytomegalovirus (CMV), varicella-zoster virus (VZV), herpes simplex virus (HSV), parvovirus B19 and human immunodeficiency virus (HIV). Reprod Toxicol 2006; 21(4): 350-82.
[http://dx.doi.org/10.1016/j.reprotox.2006.02.001] [PMID: 16564672]
[19]
Smith G. Herpesvirus transport to the nervous system and back again. Annu Rev Microbiol 2012; 66: 153-76.
[http://dx.doi.org/10.1146/annurev-micro-092611-150051] [PMID: 22726218]
[20]
Gessain A, Mahieux R. Tropical spastic paraparesis and HTLV-1 associated myelopathy: clinical, epidemiological, virological and therapeutic aspects. Rev Neurol (Paris) 2012; 168(3): 257-69.
[http://dx.doi.org/10.1016/j.neurol.2011.12.006] [PMID: 22405461]
[21]
Akkoc G, Kadayifci EK, Karaaslan A, Atici S, Yakut N, Ocal Demir S, et al. Epstein-Barr virus encephalitis in an immunocompetent child: a case report and management of Epstein-Barr virus encephalitis Case Rep Infect Dis 2012 2016.
[http://dx.doi.org/10.1155/2016/7549252]
[22]
Berger JR. Progressive multifocal leukoencephalopathy. Handb Clin Neurol 2007; 85: 169-83.
[http://dx.doi.org/10.1016/S0072-9752(07)85013-5] [PMID: 18808984]
[23]
Cinque P, Koralnik IJ, Gerevini S, Miro JM, Price RW. Progressive multifocal leukoencephalopathy in HIV-1 infection. Lancet Infect Dis 2009; 9(10): 625-36.
[http://dx.doi.org/10.1016/S1473-3099(09)70226-9] [PMID: 19778765]
[24]
Focosi D, Marco T, Kast RE, Maggi F, Ceccherini-Nelli L, Petrini M. Progressive multifocal leukoencephalopathy: what’s new? Neuroscientist 2010; 16(3): 308-23.
[http://dx.doi.org/10.1177/1073858409356594] [PMID: 20479473]
[25]
Major EO. Progressive multifocal leukoencephalopathy in patients on immunomodulatory therapies. Annu Rev Med 2010; 61: 35-47.
[http://dx.doi.org/10.1146/annurev.med.080708.082655] [PMID: 19719397]
[26]
Tan CS, Ellis LC, Wüthrich C, et al. JC virus latency in the brain and extraneural organs of patients with and without progressive multifocal leukoencephalopathy. J Virol 2010; 84(18): 9200-9.
[http://dx.doi.org/10.1128/JVI.00609-10] [PMID: 20610709]
[27]
Sunyaev SR, Lugovskoy A, Simon K, Gorelik L. Adaptive mutations in the JC virus protein capsid are associated with progressive multifocal leukoencephalopathy (PML). PLoS Genet 2009; 5(2)e1000368
[http://dx.doi.org/10.1371/journal.pgen.1000368] [PMID: 19197354]
[28]
Gonzalez H, Olsson T, Borg K. Management of postpolio syndrome. Lancet Neurol 2010; 9(6): 634-42.
[http://dx.doi.org/10.1016/S1474-4422(10)70095-8] [PMID: 20494327]
[29]
Tyler KL. Emerging viral infections of the central nervous system: part 1. Arch Neurol 2009; 66(8): 939-48.
[http://dx.doi.org/10.1001/archneurol.2009.153] [PMID: 19667214]
[30]
Wasay M, Khatri IA, Abd-Allah F. Arbovirus infections of the nervous system: current trends and future threats. Neurology 2015; 84(4): 421-3.
[http://dx.doi.org/10.1212/WNL.0000000000001177] [PMID: 25628429]
[31]
Domingues RB. Treatment of viral encephalitis. Cent Nerv Syst Agents Med Chem 2009; 9(1): 56-62.
[http://dx.doi.org/10.2174/187152409787601905] [PMID: 20021338]
[32]
Romero JR, Newland JG. Viral meningitis and encephalitis: traditional and emerging viral agents. Semin Pediatr Infect Dis 2003; 14(2): 72-82.
[http://dx.doi.org/10.1053/spid.2003.127223] [PMID: 12881794]
[33]
Somand D, Meurer W. Central nervous system infections. Emerg Med Clin North Am 2009; 27(1): 89-100. ix
[http://dx.doi.org/10.1016/j.emc.2008.07.004] [PMID: 19218021]
[34]
McJunkin JE, de los Reyes EC, Irazuzta JE, et al. La Crosse encephalitis in children. N Engl J Med 2001; 344(11): 801-7.
[http://dx.doi.org/10.1056/NEJM200103153441103] [PMID: 11248155]
[35]
Häusler M, Schaade L, Kemény S, Schweizer K, Schoenmackers C, Ramaekers VT. Encephalitis related to primary varicella-zoster virus infection in immunocompetent children. J Neurol Sci 2002; 195(2): 111-6.
[http://dx.doi.org/10.1016/S0022-510X(02)00017-5] [PMID: 11897240]
[36]
Chambers TJ, Diamond MS. Pathogenesis of flavivirus encephalitis. Adv Virus Res 2003; 60: 273-342.
[http://dx.doi.org/10.1016/S0065-3527(03)60008-4] [PMID: 14689697]
[37]
Olival KJ, Daszak P. The ecology of emerging neurotropic viruses. J Neurovirol 2005; 11(5): 441-6.
[http://dx.doi.org/10.1080/13550280591002450] [PMID: 16287685]
[38]
Solomon T. Control of Japanese encephalitis--within our grasp? N Engl J Med 2006; 355(9): 869-71.
[http://dx.doi.org/10.1056/NEJMp058263] [PMID: 16943399]
[39]
Price RW, Spudich S. Antiretroviral therapy and central nervous system HIV type 1 infection. J Infect Dis 2008; 197(Suppl. 3): S294-306.
[http://dx.doi.org/10.1086/533419] [PMID: 18447615]
[40]
Wong KT, Munisamy B, Ong KC, et al. The distribution of inflammation and virus in human enterovirus 71 encephalomyelitis suggests possible viral spread by neural pathways. J Neuropathol Exp Neurol 2008; 67(2): 162-9.
[http://dx.doi.org/10.1097/nen.0b013e318163a990] [PMID: 18219253]
[41]
Aylward B, Yamada T. The polio endgame. N Engl J Med 2011; 364(24): 2273-5.
[http://dx.doi.org/10.1056/NEJMp1104329] [PMID: 21675884]
[42]
Campbell H, Andrews N, Brown KE, Miller E. Review of the effect of measles vaccination on the epidemiology of SSPE. Int J Epidemiol 2007; 36(6): 1334-48.
[http://dx.doi.org/10.1093/ije/dym207] [PMID: 18037676]
[43]
McCullers JA, Lakeman FD, Whitley RJ. Human herpesvirus 6 is associated with focal encephalitis. Clin Infect Dis 1995; 21(3): 571-6.
[http://dx.doi.org/10.1093/clinids/21.3.571] [PMID: 8527546]
[44]
Kleinschmidt-DeMasters BK, Gilden DH. The expanding spectrum of herpesvirus infections of the nervous system. Brain Pathol 2001; 11(4): 440-51.
[http://dx.doi.org/10.1111/j.1750-3639.2001.tb00413.x] [PMID: 11556690]
[45]
Isaacson E, Glaser CA, Forghani B, et al. Evidence of human herpesvirus 6 infection in 4 immunocompetent patients with encephalitis. Clin Infect Dis 2005; 40(6): 890-3.
[http://dx.doi.org/10.1086/427944] [PMID: 15736026]
[46]
Yao K, Honarmand S, Espinosa A, Akhyani N, Glaser C, Jacobson S. Detection of human herpesvirus-6 in cerebrospinal fluid of patients with encephalitis. Ann Neurol 2009; 65(3): 257-67.
[http://dx.doi.org/10.1002/ana.21611] [PMID: 19334059]
[47]
Carod-Artal FJ, Wichmann O, Farrar J, Gascón J. Neurological complications of dengue virus infection. Lancet Neurol 2013; 12(9): 906-19.
[http://dx.doi.org/10.1016/S1474-4422(13)70150-9] [PMID: 23948177]
[48]
Kankirawatana P, Chokephaibulkit K, Puthavathana P, Yoksan S, Apintanapong S, Pongthapisit V. Dengue infection presenting with central nervous system manifestation. J Child Neurol 2000; 15(8): 544-7.
[http://dx.doi.org/10.1177/088307380001500809] [PMID: 10961794]
[49]
Chokephaibulkit K, Kankirawatana P, Apintanapong S, et al. Viral etiologies of encephalitis in Thai children. Pediatr Infect Dis J 2001; 20(2): 216-8.
[http://dx.doi.org/10.1097/00006454-200102000-00020] [PMID: 11224846]
[50]
García-Rivera EJ, Vorndam V, Rigau-Pérez JG. Use of an enhanced surveillance system for encephalitis and aseptic meningitis for the detection of neurologic manifestations of dengue in Puerto Rico, 2003. P R Health Sci J 2009; 28(2): 114-20.
[PMID: 19530552]
[51]
Le VT, Phan TQ, Do QH, et al. Viral etiology of encephalitis in children in southern Vietnam: results of a one-year prospective descriptive study. PLoS Negl Trop Dis 2010; 4(10)e854
[http://dx.doi.org/10.1371/journal.pntd.0000854] [PMID: 21049060]
[52]
Soares CN, Cabral-Castro MJ, Peralta JM, de Freitas MR, Zalis M, Puccioni-Sohler M. Review of the etiologies of viral meningitis and encephalitis in a dengue endemic region. J Neurol Sci 2011; 303(1-2): 75-9.
[http://dx.doi.org/10.1016/j.jns.2011.01.012] [PMID: 21292281]
[53]
Economopoulou A, Dominguez M, Helynck B, et al. Atypical Chikungunya virus infections: clinical manifestations, mortality and risk factors for severe disease during the 2005-2006 outbreak on Réunion. Epidemiol Infect 2009; 137(4): 534-41.
[http://dx.doi.org/10.1017/S0950268808001167] [PMID: 18694529]
[54]
Robin S, Ramful D, Le Seach’ F, Jaffar-Bandjee MC, Rigou G, Alessandri JL. Neurologic manifestations of pediatric chikungunya infection. J Child Neurol 2008; 23(9): 1028-35.
[http://dx.doi.org/10.1177/0883073808314151] [PMID: 18287573]
[55]
Debiasi RL, Tyler KL. Molecular methods for diagnosis of viral encephalitis. Clin Microbiol Rev 2004; 17(4): 903-25.
[http://dx.doi.org/10.1128/CMR.17.4.903-925.2004] [PMID: 15489354]
[56]
Griffin DE. Neuronal cell death in alphavirus encephalomyelitis. In: Role of Apoptosis in Infection. 2005; 289: pp. 57-77.
[http://dx.doi.org/10.1007/3-540-27320-4_3]
[57]
Griffin DE, Metcalf T. Clearance of virus infection from the CNS. Curr Opin Virol 2011; 1(3): 216-21.
[http://dx.doi.org/10.1016/j.coviro.2011.05.021] [PMID: 21927638]
[58]
Zueter AM, Zaiter A. Infectious meningitis. Clin Microbiol Newsl 2015; 37: 43-51.
[http://dx.doi.org/10.1016/j.clinmicnews.2015.02.004]
[59]
Liu SC, Lee PI, Lee CY, Wang JD, Chiang BL, Chou MC. Different cytokine levels in enterovirus meningitis and encephalitis. Infect Dis Clin Pract 2005; 13: 241-6.
[http://dx.doi.org/10.1097/01.idc.0000175819.56238.7e]
[60]
Mackenzie JS, Gubler DJ, Petersen LR. Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 2004; 10(12)(Suppl.): S98-S109.
[http://dx.doi.org/10.1038/nm1144] [PMID: 15577938]
[61]
Nash D, Mostashari F, Fine A, et al. 1999 West Nile Outbreak Response Working Group. The outbreak of West Nile virus infection in the New York City area in 1999. N Engl J Med 2001; 344(24): 1807-14.
[http://dx.doi.org/10.1056/NEJM200106143442401] [PMID: 11407341]
[62]
Tsai TF, Canfield MA, Reed CM, et al. Epidemiological aspects of a St. Louis encephalitis outbreak in Harris County, Texas, 1986. J Infect Dis 1988; 157(2): 351-6.
[http://dx.doi.org/10.1093/infdis/157.2.351] [PMID: 2891777]
[63]
Balfour HH Jr, Siem RA, Bauer H, Quie PG. California arbovirus (La Crosse) infections. I. Clinical and laboratory findings in 66 children with meningoencephalitis. Pediatrics 1973; 52(5): 680-91.
[PMID: 4355363]
[64]
Shu M, Zhang YQ, Li Z, Liu GJ, Evertsen JM, Wan C. Chinese medicinal herbs for mumps Cochrane Database Syst Rev 2010; 7CD008578.
[http://dx.doi.org/10.1002/14651858.CD008578]
[65]
Tyler KL. Herpes simplex virus infections of the central nervous system: encephalitis and meningitis, including Mollaret’s. Herpes 2004; 11(Suppl. 2): 57A-64A.
[PMID: 15319091]
[66]
Hollander H, Stringari S. Human immunodeficiency virus-associated meningitis. Clinical course and correlations. Am J Med 1987; 83(5): 813-6.
[http://dx.doi.org/10.1016/0002-9343(87)90635-8] [PMID: 3674088]
[67]
Koskiniemi M, Rantalaiho T, Piiparinen H, et al. Study Group. Infections of the central nervous system of suspected viral origin: a collaborative study from Finland. J Neurovirol 2001; 7(5): 400-8.
[http://dx.doi.org/10.1080/135502801753170255] [PMID: 11582512]
[68]
Rotbart HA. Viral meningitis. Semin Neurol 2000; 20(3): 277-92.
[http://dx.doi.org/10.1055/s-2000-9427] [PMID: 11051293]
[69]
Huang HI, Shih SR. Neurotropic enterovirus infections in the central nervous system. Viruses 2015; 7(11): 6051-66.
[http://dx.doi.org/10.3390/v7112920] [PMID: 26610549]
[70]
McKinney RE Jr, Katz SL, Wilfert CM. Chronic enteroviral meningoencephalitis in agammaglobulinemic patients. Rev Infect Dis 1987; 9(2): 334-56.
[http://dx.doi.org/10.1093/clinids/9.2.334] [PMID: 3296100]
[71]
Chadwick DR. Viral meningitis. Br Med Bull 2006; 75-76: 1-14.
[http://dx.doi.org/10.1093/bmb/ldh057] [PMID: 16474042]
[72]
Ludlow M, Kortekaas J, Herden C, et al. Neurotropic virus infections as the cause of immediate and delayed neuropathology. Acta Neuropathol 2016; 131(2): 159-84.
[http://dx.doi.org/10.1007/s00401-015-1511-3] [PMID: 26659576]
[73]
Yokota H, Yamada K. Viral infection of the spinal cord and roots. Neuroimaging Clin N Am 2015; 25(2): 247-58.
[http://dx.doi.org/10.1016/j.nic.2015.01.005] [PMID: 25952176]
[74]
Arpino C, Curatolo P, Rezza G. Chikungunya and the nervous system: what we do and do not know. Rev Med Virol 2009; 19(3): 121-9.
[http://dx.doi.org/10.1002/rmv.606] [PMID: 19274635]
[75]
Erasmus M. Viral infections of the central nervous system. CME 2011; 29: 190-3.
[76]
Messacar K, Schreiner TL, Van Haren K, et al. Acute flaccid myelitis: A clinical review of US cases 2012-2015. Ann Neurol 2016; 80(3): 326-38.
[http://dx.doi.org/10.1002/ana.24730] [PMID: 27422805]
[77]
Rhoades RE, Tabor-Godwin JM, Tsueng G, Feuer R. Enterovirus infections of the central nervous system. Virology 2011; 411(2): 288-305.
[http://dx.doi.org/10.1016/j.virol.2010.12.014] [PMID: 21251690]
[78]
Singh SS, Manimunda SP, Sugunan AP. Sahina, Vijayachari P. Four cases of acute flaccid paralysis associated with chikungunya virus infection. Epidemiol Infect 2008; 136(9): 1277-80.
[http://dx.doi.org/10.1017/S0950268807009739] [PMID: 18634716]
[79]
A Anderson R. Role of dietary polyphenols in attenuating brain edema and cell swelling in cerebral ischemia. Recent Patents CNS Drug Discov 2010; 5: 99-108.
[http://dx.doi.org/10.2174/157488910791213149]
[80]
Galochkina AV, Anikin VB, Babkin VA, Ostrouhova LA, Zarubaev VV. Virus-inhibiting activity of dihydroquercetin, a flavonoid from Larix sibirica, against coxsackievirus B4 in a model of viral pancreatitis. Arch Virol 2016; 161(4): 929-38.
[http://dx.doi.org/10.1007/s00705-016-2749-3] [PMID: 26780775]
[81]
Andres A, Donovan SM, Kuhlenschmidt MS. Soy isoflavones and virus infections. J Nutr Biochem 2009; 20(8): 563-9.
[http://dx.doi.org/10.1016/j.jnutbio.2009.04.004] [PMID: 19596314]
[82]
Zhang T, Wu Z, Du J, et al. Anti-Japanese-encephalitis-viral effects of kaempferol and daidzin and their RNA-binding characteristics. PLoS One 2012; 7(1)e30259
[http://dx.doi.org/10.1371/journal.pone.0030259] [PMID: 22276167]
[83]
Hendrich AB. Flavonoid-membrane interactions: possible consequences for biological effects of some polyphenolic compounds. Acta Pharmacol Sin 2006; 27(1): 27-40.
[http://dx.doi.org/10.1111/j.1745-7254.2006.00238.x] [PMID: 16364208]
[84]
Han X, Shen T, Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci 2007; 8: 950-88.
[http://dx.doi.org/10.3390/i8090950]
[85]
Hämäläinen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-κB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm. Int J Mol Sci 2007.
[86]
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Sci World J 2013; 2013
[http://dx.doi.org/10.1155/2013/162750]
[87]
Bedrood Z, Rameshrad M, Hosseinzadeh H. Toxicological effects of Camellia sinensis (green tea): A review. Phytother Res 2018; 32(7): 1163-80.
[http://dx.doi.org/10.1002/ptr.6063] [PMID: 29575316]
[88]
Khoo HE, Azlan A, Tang ST, Lim SM. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res 2017; 61(1)1361779
[http://dx.doi.org/10.1080/16546628.2017.1361779] [PMID: 28970777]
[89]
Franklin SJ, Myrdal PB. Solid-state and solution characterization of myricetin. AAPS PharmSciTech 2015; 16(6): 1400-8.
[http://dx.doi.org/10.1208/s12249-015-0329-6] [PMID: 25986594]
[90]
Minami M, Kita M, Nakaya T, Yamamoto T, Kuriyama H, Imanishi J. The inhibitory effect of essential oils on herpes simplex virus type-1 replication in vitro. Microbiol Immunol 2003; 47(9): 681-4.
[http://dx.doi.org/10.1111/j.1348-0421.2003.tb03431.x] [PMID: 14584615]
[91]
Gavanji S, Sayedipour SS, Larki B, Bakhtari A. Antiviral activity of some plant oils against herpes simplex virus type 1 in Vero cell culture. Acute Med 2015; 5: 62-8.
[http://dx.doi.org/10.1016/j.jacme.2015.07.001]
[92]
Nishimuro H, Ohnishi H, Sato M, et al. Estimated daily intake and seasonal food sources of quercetin in Japan. Nutrients 2015; 7(4): 2345-58.
[http://dx.doi.org/10.3390/nu7042345] [PMID: 25849945]
[93]
Suganthy N, Devi KP, Nabavi SF, Braidy N, Nabavi SM. Bioactive effects of quercetin in the central nervous system: Focusing on the mechanisms of actions. Biomed Pharmacother 2016; 84: 892-908.
[http://dx.doi.org/10.1016/j.biopha.2016.10.011] [PMID: 27756054]
[94]
Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 1993; 342(8878): 1007-11.
[http://dx.doi.org/10.1016/0140-6736(93)92876-U] [PMID: 8105262]
[95]
Coelho-Dos-Reis JGA, Gomes OA, Bortolini DE, et al. Evaluation of the effects of Quercetin and Kaempherol on the surface of MT-2 cells visualized by atomic force microscopy. J Virol Methods 2011; 174(1-2): 47-52.
[http://dx.doi.org/10.1016/j.jviromet.2011.03.019] [PMID: 21507333]
[96]
Johari J, Kianmehr A, Mustafa MR, Abubakar S, Zandi K. Antiviral activity of baicalein and quercetin against the Japanese encephalitis virus. Int J Mol Sci 2012; 13(12): 16785-95.
[http://dx.doi.org/10.3390/ijms131216785] [PMID: 23222683]
[97]
Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR, Abubakar S. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol J 2011; 8: 560.
[http://dx.doi.org/10.1186/1743-422X-8-560] [PMID: 22201648]
[98]
Bachmetov L, Gal-Tanamy M, Shapira A, et al. Suppression of hepatitis C virus by the flavonoid quercetin is mediated by inhibition of NS3 protease activity. J Viral Hepat 2012; 19(2): e81-8.
[http://dx.doi.org/10.1111/j.1365-2893.2011.01507.x] [PMID: 22239530]
[99]
Veckenstedt A, Pusztai R. Mechanism of antiviral action of quercetin against cardiovirus infection in mice. Antiviral Res 1981; 1(4): 249-61.
[http://dx.doi.org/10.1016/0166-3542(81)90015-2] [PMID: 6176184]
[100]
Lee S, Lee HH, Shin YS, Kang H, Cho H. The anti-HSV-1 effect of quercetin is dependent on the suppression of TLR-3 in Raw 264.7 cells. Arch Pharm Res 2017; 40(5): 623-30.
[http://dx.doi.org/10.1007/s12272-017-0898-x] [PMID: 28258480]
[101]
Fan D, Zhou X, Zhao C, Chen H, Zhao Y, Gong X. Antiviral and quantitative study of quercetin-3-O-b-D-glucuronide in Polygonum perfoliatum L. Fitoterapia 2011; 82: 805-10.
[http://dx.doi.org/10.1016/j.fitote.2011.04.007] [PMID: 21570451]
[102]
Song JH, Shim JK, Choi HJ. Quercetin 7-rhamnoside reduces porcine epidemic diarrhea virus replication via independent pathway of viral induced reactive oxygen species. Virol J 2011; 8: 460.
[http://dx.doi.org/10.1186/1743-422X-8-460] [PMID: 21967756]
[103]
Dao TT, Dang TT, Nguyen PH, Kim E, Thuong PT, Oh WK. Xanthones from Polygala karensium inhibit neuraminidases from influenza A viruses. Bioorg Med Chem Lett 2012; 22(11): 3688-92.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.028] [PMID: 22552195]
[104]
Dao TT, Nguyen PH, Lee HS, et al. Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata. Bioorg Med Chem Lett 2011; 21(1): 294-8.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.016] [PMID: 21123068]
[105]
Krawitz C, Mraheil MA, Stein M, et al. Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses. BMC Complement Altern Med 2011; 11: 16.
[http://dx.doi.org/10.1186/1472-6882-11-16] [PMID: 21352539]
[106]
He W, Han H, Wang W, Gao B. Anti-influenza virus effect of aqueous extracts from dandelion. Virol J 2011; 8: 538.
[http://dx.doi.org/10.1186/1743-422X-8-538] [PMID: 22168277]
[107]
Jeong HJ, Kim YM, Kim JH, et al. Homoisoflavonoids from Caesalpinia sappan displaying viral neuraminidases inhibition. Biol Pharm Bull 2012; 35(5): 786-90.
[http://dx.doi.org/10.1248/bpb.35.786] [PMID: 22687418]
[108]
Theisen LL, Muller CP. EPs® 7630 (Umckaloabo®), an extract from Pelargonium sidoides roots, exerts anti-influenza virus activity in vitro and in vivo. Antiviral Res 2012; 94(2): 147-56.
[http://dx.doi.org/10.1016/j.antiviral.2012.03.006] [PMID: 22475498]
[109]
Ma SG, Gao RM, Li YH, et al. Antiviral spirooliganones A and B with unprecedented skeletons from the roots of Illicium oligandrum. Org Lett 2013; 15(17): 4450-3.
[http://dx.doi.org/10.1021/ol401992s] [PMID: 23937631]
[110]
Admasu P, Deressa A, Mengistu A, Gebrewold G, Feyera T. In vivo antirabies activity evaluation of hydroethanolic extract of roots and leaves of Phytolacca dodecandra. Glob Vet 2014; 12: 12-8.
[111]
Vigerelli H, Sciani JM, Jared C, et al. Bufotenine is able to block rabies virus infection in BHK-21 cells. J Venom Anim Toxins Incl Trop Dis 2014; 20(1): 45.
[http://dx.doi.org/10.1186/1678-9199-20-45] [PMID: 25337122]
[112]
Koh SH, Kwon H, Kim KS, et al. Epigallocatechin gallate prevents oxidative-stress-induced death of mutant Cu/Zn-superoxide dismutase (G93A) motoneuron cells by alteration of cell survival and death signals. Toxicology 2004; 202(3): 213-25.
[http://dx.doi.org/10.1016/j.tox.2004.05.008] [PMID: 15337584]
[113]
Ho HY, Cheng ML, Weng SF, Leu YL, Chiu DTY. Antiviral effect of epigallocatechin gallate on enterovirus 71. J Agric Food Chem 2009; 57(14): 6140-7.
[http://dx.doi.org/10.1021/jf901128u] [PMID: 19537794]
[114]
Choi HJ, Song JH, Park KS, Baek SH. In vitro anti-enterovirus 71 activity of gallic acid from Woodfordia fruticosa flowers. Lett Appl Microbiol 2010; 50(4): 438-40.
[http://dx.doi.org/10.1111/j.1472-765X.2010.02805.x] [PMID: 20149083]
[115]
Chen SG, Leu YL, Cheng ML, et al. Anti-enterovirus 71 activities of Melissa officinalis extract and its biologically active constituent rosmarinic acid. Sci Rep 2017; 7(1): 12264.
[http://dx.doi.org/10.1038/s41598-017-12388-2] [PMID: 28947773]
[116]
Chiang LC, Ng LT, Cheng PW, Chiang W, Lin CC. Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clin Exp Pharmacol Physiol 2005; 32(10): 811-6.
[http://dx.doi.org/10.1111/j.1440-1681.2005.04270.x] [PMID: 16173941]
[117]
Wu BW, Pan TL, Leu YL, et al. Antiviral effects of Salvia miltiorrhiza (Danshen) against enterovirus 71. Am J Chin Med 2007; 35(1): 153-68.
[http://dx.doi.org/10.1142/S0192415X07004709] [PMID: 17265559]
[118]
Chung YC, Hsieh FC, Lin YJ, et al. Magnesium lithospermate B and rosmarinic acid, two compounds present in Salvia miltiorrhiza, have potent antiviral activity against enterovirus 71 infections. Eur J Pharmacol 2015; 755: 127-33.
[http://dx.doi.org/10.1016/j.ejphar.2015.02.046] [PMID: 25773498]
[119]
Chen SG, Cheng ML, Chen KH, et al. Antiviral activities of Schizonepeta tenuifolia Briq. against enterovirus 71 in vitro and in vivo. Sci Rep 2017; 7(1): 935.
[http://dx.doi.org/10.1038/s41598-017-01110-x] [PMID: 28428548]
[120]
Wang J, Chen X, Wang W, et al. Glycyrrhizic acid as the antiviral component of Glycyrrhiza uralensis Fisch. against coxsackievirus A16 and enterovirus 71 of hand foot and mouth disease. J Ethnopharmacol 2013; 147(1): 114-21.
[http://dx.doi.org/10.1016/j.jep.2013.02.017] [PMID: 23454684]
[121]
Zhang W, Tao J, Yang X, et al. Antiviral effects of two Ganoderma lucidum triterpenoids against enterovirus 71 infection. Biochem Biophys Res Commun 2014; 449(3): 307-12.
[http://dx.doi.org/10.1016/j.bbrc.2014.05.019] [PMID: 24845570]
[122]
Cheng PW, Chiang LC, Yen MH, Lin CC. Bupleurum kaoi inhibits Coxsackie B virus type 1 infection of CCFS-1 cells by induction of type I interferons expression. Food Chem Toxicol 2007; 45(1): 24-31.
[http://dx.doi.org/10.1016/j.fct.2006.06.007] [PMID: 17052829]
[123]
Choi HJ, Lim CH, Song JH, Baek SH, Kwon DH. Antiviral activity of raoulic acid from Raoulia australis against Picornaviruses. Phytomedicine 2009; 16(1): 35-9.
[http://dx.doi.org/10.1016/j.phymed.2008.10.012] [PMID: 19097770]
[124]
Fang J, Sun L, Peng G, et al. Identification of three antiviral inhibitors against Japanese encephalitis virus from library of pharmacologically active compounds 1280. PLoS One 2013; 8(11)e78425
[http://dx.doi.org/10.1371/journal.pone.0078425] [PMID: 24348901]
[125]
Rupareliya RH, Joshi HS. Stability Indicating Simultaneous Validation of Telmisartan and Cilnidipine with Forced Degradation Behavior Study by RP-HPLC in Tablet Dosage Form. ISRN Chromatography 2013.
[http://dx.doi.org/10.1155/2013/461461]
[126]
Chang YW, Yeh TK, Lin KT, Chen WC, Yao HT. Pharmacokinetics of anti-SARS-CoV agent niclosamide and its analogs in rats. Yao Wu Shi Pin Fen Xi 2006; 14.
[127]
FGIN-1-27. Item No. 18461 (caymanchem) https://www.caymanchem.com/product/18461 [March 8, 2019]
[128]
Chang SJ, Chang YC, Lu KZ, Tsou YY, Lin CW. Antiviral activity of Isatis indigotica extract and its derived indirubin against Japanese encephalitis virus. Evid Based Complement Alternat Med 2012. 2012925830
[http://dx.doi.org/10.1155/2012/925830] [PMID: 22911608]
[129]
Li J, Huang H, Feng M, Zhou W, Shi X, Zhou P. In vitro and in vivo anti-hepatitis B virus activities of a plant extract from Geranium carolinianum L. Antiviral Res 2008; 79(2): 114-20.
[http://dx.doi.org/10.1016/j.antiviral.2008.03.001] [PMID: 18423640]
[130]
Jeong HJ, Ryu YB, Park SJ, et al. Neuraminidase inhibitory activities of flavonols isolated from Rhodiola rosea roots and their in vitro anti-influenza viral activities. Bioorg Med Chem 2009; 17(19): 6816-23.
[http://dx.doi.org/10.1016/j.bmc.2009.08.036] [PMID: 19729316]
[131]
Shin HS, Bae MJ, Choi DW, Shon DH. Skullcap (Scutellaria baicalensis) extract and its active compound, wogonin, inhibit ovalbumin-induced Th2-mediated response. Molecules 2014; 19(2): 2536-45.
[http://dx.doi.org/10.3390/molecules19022536] [PMID: 24566319]
[132]
Takegami T, Simamura E, Hirai K, Koyama J. Inhibitory effect of furanonaphthoquinone derivatives on the replication of Japanese encephalitis virus. Antiviral Res 1998; 37(1): 37-45.
[http://dx.doi.org/10.1016/S0166-3542(97)00058-2] [PMID: 9497071]
[133]
Fujimoto Y, Eguchi T, Murasaki C, et al. Studies on the structure and stereochemistry of cytotoxic furanonaphthoquinones from Tabebuia impetiginosa: 5-and 8-hydroxy-2-(1-hydroxyethyl) naphtho [2, 3-b] furan-4, 9-diones. J Chem Soc, Perkin Trans 1 1991; 10: 2323-7.
[http://dx.doi.org/10.1039/p19910002323]
[134]
Kajimura K, Takagi Y, Ueba N, et al. Protective effect of astragali radix by oral administration against Japanese encephalitis virus infection in mice. Biol Pharm Bull 1996; 19(9): 1166-9.
[http://dx.doi.org/10.1248/bpb.19.1166] [PMID: 8889035]
[135]
Zhang Y, Wang Z, Chen H, Chen Z, Tian Y. Antioxidants: potential antiviral agents for Japanese encephalitis virus infection. Int J Infect Dis 2014; 24: 30-6.
[http://dx.doi.org/10.1016/j.ijid.2014.02.011] [PMID: 24780919]
[136]
Mishra MK, Ghosh D, Duseja R, Basu A. Antioxidant potential of Minocycline in Japanese Encephalitis Virus infection in murine neuroblastoma cells: correlation with membrane fluidity and cell death. Neurochem Int 2009; 54(7): 464-70.
[http://dx.doi.org/10.1016/j.neuint.2009.01.022] [PMID: 19428790]
[137]
Calabrese V, Bates TE, Mancuso C, et al. Curcumin and the cellular stress response in free radical-related diseases. Mol Nutr Food Res 2008; 52(9): 1062-73.
[http://dx.doi.org/10.1002/mnfr.200700316] [PMID: 18792015]
[138]
Sahin Kavaklı H, Koca C, Alıcı O. Antioxidant effects of curcumin in spinal cord injury in rats. Ulus Travma Acil Cerrahi Derg 2011; 17(1): 14-8.
[http://dx.doi.org/10.5505/tjtes.2011.31391] [PMID: 21341128]
[139]
Ataie A, Shadifar M, Ataee R. Polyphenolic antioxidants and neuronal regeneration. Basic Clin Neurosci 2016; 7(2): 81-90.
[http://dx.doi.org/10.15412/J.BCN.03070201] [PMID: 27303602]
[140]
Joe B, Vijaykumar M, Lokesh BR. Biological properties of curcumin-cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr 2004; 44(2): 97-111.
[http://dx.doi.org/10.1080/10408690490424702] [PMID: 15116757]
[141]
Dutta K, Ghosh D, Basu A. Curcumin protects neuronal cells from Japanese encephalitis virus-mediated cell death and also inhibits infective viral particle formation by dysregulation of ubiquitin-proteasome system. J Neuroimmune Pharmacol 2009; 4(3): 328-37.
[http://dx.doi.org/10.1007/s11481-009-9158-2] [PMID: 19434500]
[142]
Kazłowski B, Chiu YH, Kazłowska K, Pan CL, Wu CJ. Prevention of Japanese encephalitis virus infections by low-degree-polymerisation sulfated saccharides from Gracilaria sp. and Monostroma nitidum. Food Chem 2012; 133: 866-74.
[http://dx.doi.org/10.1016/j.foodchem.2012.01.106]
[143]
Bertol JW, Rigotto C, de Pádua RM, et al. Antiherpes activity of glucoevatromonoside, a cardenolide isolated from a Brazilian cultivar of Digitalis lanata. Antiviral Res 2011; 92(1): 73-80.
[http://dx.doi.org/10.1016/j.antiviral.2011.06.015] [PMID: 21763352]
[144]
Danaher RJ, Wang C, Dai J, Mumper RJ, Miller CS. Antiviral effects of blackberry extract against herpes simplex virus type 1. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011; 112(3): e31-5.
[http://dx.doi.org/10.1016/j.tripleo.2011.04.007] [PMID: 21827957]
[145]
Gescher K, Kühn J, Hafezi W, et al. Inhibition of viral adsorption and penetration by an aqueous extract from Rhododendron ferrugineum L. as antiviral principle against herpes simplex virus type-1. Fitoterapia 2011; 82(3): 408-13.
[http://dx.doi.org/10.1016/j.fitote.2010.11.022] [PMID: 21129454]
[146]
Gescher K, Kühn J, Lorentzen E, et al. Proanthocyanidin-enriched extract from Myrothamnus flabellifolia Welw. exerts antiviral activity against herpes simplex virus type 1 by inhibition of viral adsorption and penetration. J Ethnopharmacol 2011; 134(2): 468-74.
[http://dx.doi.org/10.1016/j.jep.2010.12.038] [PMID: 21211557]
[147]
Chen SD, Gao H, Zhu QC, et al. Houttuynoids A-E, anti-herpes simplex virus active flavonoids with novel skeletons from Houttuynia cordata. Org Lett 2012; 14(7): 1772-5.
[http://dx.doi.org/10.1021/ol300017m] [PMID: 22414220]
[148]
Xiang YF, Pei Y, Wang YF. Current status of natural products from plants as anti-herpes simplex virus 1 agents. Virol Sin 2008; 23: 305.
[http://dx.doi.org/10.1007/s12250-008-2962-7]
[149]
Koch C, Reichling J, Schneele J, Schnitzler P. Inhibitory effect of essential oils against herpes simplex virus type 2. Phytomedicine 2008; 15(1-2): 71-8.
[http://dx.doi.org/10.1016/j.phymed.2007.09.003] [PMID: 17976968]
[150]
Hirabayashi K, Iwata S, Matsumoto H, et al. Antiviral activities of glycyrrhizin and its modified compounds against human immunodeficiency virus type 1 (HIV-1) and herpes simplex virus type 1 (HSV-1) in vitro. Chem Pharm Bull (Tokyo) 1991; 39(1): 112-5.
[http://dx.doi.org/10.1248/cpb.39.112] [PMID: 1646687]
[151]
Ren Z, Zhang CH, Wang LJ, et al. In vitro anti-viral activity of the total alkaloids from Tripterygium hypoglaucum against herpes simplex virus type 1. Virol Sin 2010; 25(2): 107-14.
[http://dx.doi.org/10.1007/s12250-010-3092-6] [PMID: 20960307]
[152]
Schnitzler P, Schuhmacher A, Astani A, Reichling J. Melissa officinalis oil affects infectivity of enveloped herpesviruses. Phytomedicine 2008; 15(9): 734-40.
[http://dx.doi.org/10.1016/j.phymed.2008.04.018] [PMID: 18693101]
[153]
Astani A, Reichling J, Schnitzler P. Melissa officinalis extract inhibits attachment of herpes simplex virus in vitro. Chemotherapy 2012; 58(1): 70-7.
[http://dx.doi.org/10.1159/000335590] [PMID: 22377592]
[154]
Cheng HY, Yang CM, Lin TC, Shieh DE, Lin CC. ent-Epiafzelechin-(4alpha-->8)-epiafzelechin extracted from Cassia javanica inhibits herpes simplex virus type 2 replication. J Med Microbiol 2006; 55(Pt 2): 201-6.
[http://dx.doi.org/10.1099/jmm.0.46110-0] [PMID: 16434713]
[155]
Petrera E, Coto CE. Therapeutic effect of meliacine, an antiviral derived from Melia azedarach L., in mice genital herpetic infection. Phytother Res 2009; 23(12): 1771-7.
[http://dx.doi.org/10.1002/ptr.2850] [PMID: 19441066]
[156]
Lin LT, Hsu WC, Lin CC. Antiviral natural products and herbal medicines. J Tradit Complement Med 2014; 4(1): 24-35.
[http://dx.doi.org/10.4103/2225-4110.124335] [PMID: 24872930]
[157]
Yang CM, Cheng HY, Lin TC, Chiang LC, Lin CC. The in vitro activity of geraniin and 1,3,4,6-tetra-O-galloyl-β-D-glucose isolated from Phyllanthus urinaria against herpes simplex virus type 1 and type 2 infection. J Ethnopharmacol 2007; 110(3): 555-8.
[http://dx.doi.org/10.1016/j.jep.2006.09.039] [PMID: 17113739]
[158]
Yang CM, Cheng HY, Lin TC, Chiang LC, Lin CC. Hippomanin A from acetone extract of Phyllanthus urinaria inhibited HSV-2 but not HSV-1 infection in vitro. Phytother Res 2007; 21(12): 1182-6.
[http://dx.doi.org/10.1002/ptr.2232] [PMID: 17661333]
[159]
Cheng HY, Yang CM, Lin TC, Lin LT, Chiang LC, Lin CC. Excoecarianin, isolated from Phyllanthus urinaria Linnea, inhibits herpes simplex virus type 2 infection through inactivation of viral particles. Evid Based Complement Alternat Med 2011; •••2011259103
[http://dx.doi.org/10.1093/ecam/nep157] [PMID: 19808846]
[160]
Mazumder S, Ghosal PK, Pujol CA, Carlucci MJ, Damonte EB, Ray B. Isolation, chemical investigation and antiviral activity of polysaccharides from Gracilaria corticata (Gracilariaceae, Rhodophyta). Int J Biol Macromol 2002; 31(1-3): 87-95.
[http://dx.doi.org/10.1016/S0141-8130(02)00070-3] [PMID: 12559431]
[161]
Matsuhiro B, Conte AF, Damonte EB, et al. Structural analysis and antiviral activity of a sulfated galactan from the red seaweed Schizymenia binderi (Gigartinales, Rhodophyta). Carbohydr Res 2005; 340(15): 2392-402.
[http://dx.doi.org/10.1016/j.carres.2005.08.004] [PMID: 16125685]
[162]
Low JSY, Wu KX, Chen KC, Ng MM, Chu JJH. Narasin, a novel antiviral compound that blocks dengue virus protein expression. Antivir Ther (Lond) 2011; 16(8): 1203-18.
[http://dx.doi.org/10.3851/IMP1884] [PMID: 22155902]
[163]
Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR, Abubakar S. Novel antiviral activity of baicalein against dengue virus. BMC Complement Altern Med 2012; 12: 214.
[http://dx.doi.org/10.1186/1472-6882-12-214] [PMID: 23140177]
[164]
Lin LT, Chen TY, Lin SC, et al. Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry. BMC Microbiol 2013; 13: 187.
[http://dx.doi.org/10.1186/1471-2180-13-187] [PMID: 23924316]
[165]
Rodríguez MC, Merino ER, Pujol CA, Damonte EB, Cerezo AS, Matulewicz MC. Galactans from cystocarpic plants of the red seaweed Callophyllis variegata (Kallymeniaceae, Gigartinales). Carbohydr Res 2005; 340(18): 2742-51.
[http://dx.doi.org/10.1016/j.carres.2005.10.001] [PMID: 16289051]
[166]
de SF-Tischer PC Talarico LB. Noseda MD, Guimarães SMPB, Damonte EB, Duarte MER. Chemical structure and antiviral activity of carrageenans from Meristiella gelidium against herpes simplex and dengue virus. CARBOHYD POLYM 2006; 63: 459-65.
[http://dx.doi.org/10.1016/j.carbpol.2005.09.020]
[167]
Huerta-Reyes M, Basualdo Mdel C, Abe F, Jimenez-Estrada M, Soler C, Reyes-Chilpa R. HIV-1 inhibitory compounds from Calophyllum brasiliense leaves. Biol Pharm Bull 2004; 27(9): 1471-5.
[http://dx.doi.org/10.1248/bpb.27.1471] [PMID: 15340243]
[168]
César GZJ, Alfonso MGG, Marius MM, et al. Inhibition of HIV-1 reverse transcriptase, toxicological and chemical profile of Calophyllum brasiliense extracts from Chiapas, Mexico. Fitoterapia 2011; 82(7): 1027-34.
[http://dx.doi.org/10.1016/j.fitote.2011.06.006] [PMID: 21723379]
[169]
Lubbe A, Seibert I, Klimkait T, van der Kooy F. Ethnopharmacology in overdrive: the remarkable anti-HIV activity of Artemisia annua. J Ethnopharmacol 2012; 141(3): 854-9.
[http://dx.doi.org/10.1016/j.jep.2012.03.024] [PMID: 22465592]
[170]
Lin YM, Flavin MT, Schure R, et al. Antiviral activities of biflavonoids. Planta Med 1999; 65(2): 120-5.
[http://dx.doi.org/10.1055/s-1999-13971] [PMID: 10193201]
[171]
Asl MN, Hosseinzadeh H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother Res 2008; 22(6): 709-24.
[http://dx.doi.org/10.1002/ptr.2362] [PMID: 18446848]
[172]
Goodell JR, Puig-Basagoiti F, Forshey BM, Shi PY, Ferguson DM. Identification of compounds with anti-West Nile Virus activity. J Med Chem 2006; 49(6): 2127-37.
[http://dx.doi.org/10.1021/jm051229y] [PMID: 16539402]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy