[14]
Kumar A, Parrillo JE. Clinical review: Myocardial depression in sepsis and septic shock 2002; 6: 500.
[15]
Parker MM, Shelhamer JH, Bacharach SL, et al. Profound but reversible myocardial depression in patients with septic shock 1984. 100: 483-90.
[16]
Parker MM, Shelhamer JH, Natanson C, Alling DW. Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: Heart rate as an early predictor of prognosis. Parrillo JEJCcm 1987; 15: 923-9.
[18]
Rudiger A. Mechanisms of sepsis-induced cardiac dysfunction 2007; 35: 1599-608.
[19]
Morelli A, De Castro S, Teboul J-L, et al. Effects of levosimendan on systemic and regional hemodynamics in septic myocardial depression 2005; 31: 638-44.
[20]
Poelaert J, Declerck C, Vogelaers D, Colardyn F. Left ventricular systolic and diastolic function in septic shock 1997; 23: 553-60.
[21]
Charpentier J, Luyt C-E, Fulla Y, et al. Chiche J-DJCcm. Brain natriuretic peptide: A marker of myocardial dysfunction and prognosis during severe sepsis 2004; 32: 660-5.
[22]
Well MH, MacLean LD, Visscher MB. Studies on the circulatory changes in the dog produced by endotoxin from gram-negative microorganisms 1956; 35: 1191-8.
[23]
Postel J. Cardiac depression in bacteremia. Ann Surg 1977; 186: 74-82.
[24]
Packman MI. Optimum left heart filling pressure during fluid resuscitation of patients with hypovolemic and septic shock 1983; 11: 165-9.
[25]
Wilson RF. THAL AP, KINDLING PH, GRIFKA T. Hemodynamic measurements in septic shock 1965; 91: 121-9.
[26]
Weisel RD, Vito L, Dennis RC, Valeri CR. Myocardial depression during sepsis 1977. 133: 512-21.
[27]
Winslow EJ, Loeb HS, Rahimtoola SH, Kamath S. Hemodynamic studies and results of therapy in 50 patients with bacteremic shock 1973. 54: 421-32.
[28]
Ahmed AJ, Kruse JA, Haupt MT, Chandrasekar PH. Hemodynamic responses to gram-positive versus gram-negative sepsis in critically ill patients with and without circulatory shock 1991. 19: 1520-5.
[29]
Carroll GC, Snyder JV. Hyperdynamic severe intravascular sepsis depends on fluid administration in cynomolgus monkey. Am J Physiol 1982; 243: R131-41.
[30]
Teule G, Bronsveld W, Koopman P, Bezemer P, Heidendal G. Effect of volume loading and dopamine on hemodynamics and red-cell redistribution in canine endotoxin shock 1983. 10: 41-50.
[31]
Natanson C, Fink MP, Ballantyne HK, MacVittie TJ, Conklin JJ. Gram-negative bacteremia produces both severe systolic and diastolic cardiac dysfunction in a canine model that simulates human septic shock 1986. 78: 259-70.
[32]
Natanson C, Danner RL, Fink MP, MacVittie TJ, Walker RI, Conklin J. Parrillo JJAJoP-H, Physiology C Cardiovascular performance with E coli challenges in a canine model of human sepsis 1988; 254: H558-69.
[33]
Abi-Gerges N, Tavernier B, Mebazaa A, et al. medicine cc Sequential changes in autonomic regulation of cardiac myocytes after in vivo endotoxin injection in rat 1999; 160: 1196-204.
[34]
Faivre V, Kaskos H, Callebert J, et al. Cardiac and renal effects of levosimendom, arginine vasopressin and norepinephrine in lipopolysaccharide-treated rabbits. Anesthesiology 2005; 103(3): 514-21.
[45]
Soriano FG, Nogueira AC, Caldini EG, et al. Potential role of poly (adenosine 5′-diphosphate-ribose) polymerase activation in the pathogenesis of myocardial contractile dysfunction associated with human septic shock 2006; 34: 1073-9.
[57]
Vanasco V. Saez TMdLM, Magnani ND, et al. Cardiac mitochondrial biogenesis in endotoxemia is not accompanied by mitochondrial function recovery. Free Radic Biol Med 2014; 77: 1-9.
[73]
Hao E, Lang F, Chen Y, Zhang H. Resveratrol Alleviates Endotoxin-Induced Myocardial Toxicity via the Nrf2 Transcription Factor. PLoS One 2013; 8(7): e69452.
[88]
Schlosser K, Wang J-P, dos Santos C, et al. Effects of Mesenchymal Stem Cell Treatment on Systemic Cytokine Levels in a Phase 1 Dose Escalation Safety Trial of Septic Shock Patients. Crit Care Med 2019; 47(7): 918-25.
[90]
Bouillaud F, Alves-Guerra M-C, Ricquier D. UCPs, at the interface between bioenergetics and metabolism. Biochimica et Biophysica Acta (BBA)-. Molecular Cell Research 2016; 1863: 2443-56.
[97]
Inestrosa Cantín N. Brain metabolite clearance: Impact on Alzheimer’s disease. Metab Brain Dis 2014; 29(3): 553-61.
[105]
Drosatos K, Khan RS, Trent CM, et al. PPARγ activation prevents sepsis-related cardiac dysfunction and mortality in mice. Circ Heart Fail 2013; 6(3): 550-62.
[112]
Kim M-J, Bae SH, Ryu J-C, et al. SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages 2016; 12: 1272-91.
[113]
Li S, Wu H, Han D, et al. A Novel Mechanism of Mesenchymal Stromal Cell-Mediated Protection against Sepsis: Restricting Inflammasome Activation in Macrophages by Increasing Mitophagy and Decreasing Mitochondrial ROS. Oxid Med Cell Longev 2018; 2018: 3537609.
[121]
Lang CH, Bagby GJ, Ferguson JL. Spitzer JJJAJoP-R, Integrative, Physiology C Cardiac output and redistribution of organ blood flow in hypermetabolic sepsis 1984; 246: R331-7.
[122]
Whitworth P, Cryer H, Garrison R, Baumgarten T. Hypoperfusion of the intestinal microcirculation without decreased cardiac output during live Escherichia coli sepsis in rats 1989. 27: 111-22.