Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

1,4-Diazepines: A Review on Synthesis, Reactions and Biological Significance

Author(s): Muhammad A. Rashid, Aisha Ashraf*, Sahibzada S. Rehman, Shaukat A. Shahid, Adeel Mahmood and Muhammad Faruq

Volume 16, Issue 5, 2019

Page: [709 - 729] Pages: 21

DOI: 10.2174/1570179416666190703113807

Price: $65

Abstract

Background: 1,4-Diazepines are two nitrogen containing seven membered heterocyclic compounds and associated with a wide range of biological activities. Due to its medicinal importance, scientists are actively involved in the synthesis, reactions and biological evaluation of 1,4-diazepines since number of decades.

Objective: The primary purpose of this review is to discuss the synthetic schemes and reactivity of 1,4- diazepines. This article also describes biological aspects of 1,4-diazepine derivatives, that can be usefully exploited for the pharmaceutical sector.

Conclusion: This review summarizes the abundant literature on synthetic routes, chemical reactions and biological attributes of 1,4-diazepine derivatives. We concluded that 1,4-diazepines have significant importance due to their biological activities like antipsychotic, anxiolytic, anthelmintic, anticonvulsant, antibacterial, antifungal and anticancer. 1,4-diazepine derivatives with significant biological activities could be explored for potential use in the pharmaceutical industries.

Keywords: 1, 4-Diazepines, synthesis, reactions, biological activities, heterocyclic compounds, biological activities.

Graphical Abstract
[1]
Ramajayam, R.; Giridhar, R.; Yadav, M.R. Current scenario of 1,4-diazepines as potent biomolecules--a mini review. Mini Rev. Med. Chem., 2007, 7(8), 793-812.
[2]
Pathak, V.N.; Joshi, R.; Gupta, N. Synthesis, spectral studies and antimicrobial activityof 7-chloro-2-alkyl/aryl-4-alkyl/aryl-3-arylidene-3H-1,5-benzodiazepine. Indian J. Chem., 2007, 46B, 1191-1997.
[3]
Pant, U.C.; Chandra, H.; Goyal, S.; Pant, S. Synthesis and antimicrobial studies of 10-substituted-6a,7-dihydro-6h-7-(4-fluorophenyl)-6-phenyl[1] benzopyrano[3,4c][1,5] benzothi-zepines. Indian J. Chem., 2006, 45B, 752-757.
[4]
Toth, G.; Halsaz, J.; Levai, A. Conformational analysis of 2,3-dihydro-2,2-dimethyl-1,4-benzoxazepines and their 1,5-isomers. Monatsh. Chem., 1997, 128, 625-632.
[5]
Thomas, L.L.; Arthur, R.H. The Synthesis of Oxazolo- and Oxazino[3,2-d] [1,4]benzodiazepinones. J. Heterocycl. Chem., 1971, 8, 125-128.
[6]
Walser, A.; Zenchoff, G. Quinazolines and 1,4-benzodiazepines LXXXII. reaction of 2-hydrazino-benzodiazepines with 1,3-diearbonyl compounds. J. Heterocycl. Chem., 1978, 15, 161-163.
[7]
Martinez, R.; Angeles, E.; Maya, B.; Cogordon, J.A.; Martinez, L.; Posada, M.E.; Toscano, A.; Del, M.; Arellano, R.; Espinosa, R.C. Synthesis of purinobenzodiazepine and purinobenzotriazocine derivatives, two new heterocyclic ring systems. J. Heterocycl. Chem., 1999, 36, 639-642.
[8]
Melani, F.; Cecchi, L.; Colotta, V.; Filacchioni, G. Tricyclic heteroaromatic systems. 5H-1,2,3-triazolo[5,1-c][1,4]benzodiazepine. J. Heterocycl. Chem., 1989, 26, 1605-1609.
[9]
Bertelli, L.; Biagi, G.; Giorgi, I.; Livi, O.; Manera, C.; Scartoni, V.; Martini, C.; Giannaccini, G.; Trincavelli, L.; Barili, P.L. 1,2,3-Triazolo[1,5-a][1,4]- and 1,2,3-triazolo[1,5-a]-[1,5]benzodiazepine derivatives: synthesis and benzodiazepine receptor binding. Farmaco, 1998, 53(4), 305-311.
[10]
Pardo, L.M.; Tellitu, I.; Domínguez, E. A versatile PIFA-mediated approach to structurally diverse pyrrolo(benzo)diazepines from linear alkynylamides. Tetrahedron, 2010, 60, 5811-5818.
[11]
Remers, W.A. Pyrrolo(1,4)benzodiazepines.In: The Chemistry of Anti-tumor Antibiotics; John Wiley: New York, 1988.
[12]
Thurston, D.E.; Bose, D.S. Synthesis of DNA-interactive pyrrolo[2,1-c][1,4]benzodiazepines. Chem. Rev., 1994, 94, 433-465.
[13]
Hadjivassileva, T.; Thurston, D.E.; Taylor, P.W. Pyrrolobenzodiazepine dimers: novel sequence-selective, DNA-interactive, cross-linking agents with activity against Gram-positive bacteria. J. Antimicrob. Chemother., 2005, 56(3), 513-518.
[14]
Venkatesan, A.M.; Grosu, G.T.; Failli, A.A.; Chan, P.S.; Coupet, J.; Saunders, T.; Mazandarani, H.; Ru, X. (4-Substituted-phenyl)-(5H-10,11-dihydro-pyrrolo [2,1-c][1,4] benzodiazepin-10-yl)-methanone derivatives as vasopressin receptor modulators. Bioorg. Med. Chem. Lett., 2005, 15(22), 5003-5006.
[15]
Kumar, R.; Lown, J.W. Design, synthesis and in vitro cytotoxic studies of novel bis-pyrrolo[2,1][1,4] benzodiazepine-pyrrole and imidazole polyamide conjugates. Eur. J. Med. Chem., 2005, 40(7), 641-654.
[16]
Masterson, L.A.; Spanswick, V.J.; Hartley, J.A.; Begent, R.H.; Howard, P.W.; Thurston, D.E. Synthesis and biological evaluation of novel pyrrolo[2,1-c][1,4]benzodiazepine prodrugs for use in antibody-directed enzyme prodrug therapy. Bioorg. Med. Chem. Lett., 2006, 16(2), 252-256.
[17]
Wang, J.J.; Shen, Y.K.; Hu, W.P.; Hsieh, M.C.; Lin, F.L.; Hsu, M.K.; Hsu, M.H. Design, synthesis, and biological evaluation of pyrrolo[2,1-c][1,4]benzodiazepine and indole conjugates as anticancer agents. J. Med. Chem., 2006, 49(4), 1442-1449.
[18]
Antonow, D.; Jenkins, T.C.; Howard, P.W.; Thurston, D.E. Synthesis of a novel C2-aryl pyrrolo[2,1-c][1,4]benzodiazepine-5,11-dione library: Effect of C2-aryl substitution on cytotoxicity and non-covalent DNA binding. Bioorg. Med. Chem., 2007, 15(8), 3041-3053.
[19]
Kamal, A.; Khan, M.N.A.; Reddy, K.S.; Ahmed, S.K.; Kumar, M.S.; Juvekar, A.; Sen, S.; Zingde, S. 1,2,4-benzothiadiazine linked pyrrolo[2,1-c][1,4]benzodiazepine conjugates: Synthesis, DNA-binding affinity and cytotoxicity. Bioorg. Med. Chem. Lett., 2007, 17(19), 5345-5348.
[20]
Kamal, A.; Kumar, P.P.; Seshadri, B.N.; Srinivas, O.; Kumar, M.S.; Sen, S.; Kurian, N.; Juvekar, A.S.; Zingde, S.M. Phosphonate-linked pyrrolo[2,1-c][1,4]benzodiazepine conjugates: Synthesis, DNA-binding affinity and cytotoxicity. Bioorg. Med. Chem., 2008, 16(7), 3895-3906.
[21]
Leimgruber, W.; Stefanović, V.; Schenker, F.; Karr, A.; Berger, J. Isolation and characterization of anthramycin, a new antitumor antibiotic. J. Am. Chem. Soc., 1965, 87(24), 5791-5793.
[22]
Meerpoel, L.; Van Gestel, J.; Van Gerven, F.; Woestenborghs, F.; Marichal, P.; Sipido, V.; Terence, G.; Nash, R.; Corens, D.; Richards, R.D. Pyrrolo[1,2-a][1,4]benzodiazepine: A novel class of non-azole anti-dermatophyte anti-fungal agents. Bioorg. Med. Chem. Lett., 2005, 15(14), 3453-3458.
[23]
Krezel, I.; Mikiciuk, O.E.; Zurek, E.; Glowka, M.L. New mitoguazone analogues with anticancer activity. Pharm. Pharmacol. Commun., 1999, 5, 485-490.
[24]
Narayana, B.; Vijaya Raj, K.K.; Ashalatha, B.V.; Kumari, N.S. Synthesis of some new substituted triazolo [4,3-a][1,4] benzodiazepine derivatives as potent anticonvulsants. Eur. J. Med. Chem., 2006, 41(3), 417-422.
[25]
Massa, S.; Corelli, F.; Artico, M.; Mai, A.; Silvestri, R.; Pantaleoni, G.C.; Palumbo, G.; Fanini, D.; Giorgi, R. 5-Aroyl-5,6-dihydro-4H-pyrrolo[1,2-a][1,4]benzodiazepin-4-carboxylic acids: synthesis and analgesic and neurobehavioral activity. Farmaco, 1989, 44(2), 109-123.
[26]
Hara, T.; Kayama, Y.; Mori, T.; Itoh, K.; Fujimori, H.; Sunami, T.; Hashimoto, Y.; Ishimoto, S. Diazepines. 5. Synthesis and biological action of 6-phenyl-4H-pyrrolo[1,2-a][1,4]benzodiazepines. J. Med. Chem., 1978, 21(3), 263-268.
[27]
Massa, S.; Artico, M.; Mai, A.; Corelli, F.; Botta, M.; Tafi, A.; Pantaleoni, G.C.; Giorgi, R.; Coppolino, M.F.; Cagnotto, A. Pyrrolobenzodiazepines and related systems. 2. Synthesis and biological properties of isonoraptazepine derivatives. J. Med. Chem., 1992, 35(24), 4533-4541.
[28]
Glamkowski, E.J.; Chiang, Y. Tetracyclic benzodiazepines. 4. Synthesis of the novel benzo[c]pyrrolo[1,2,3-ef][1,5]benzodiazepine ring system, and derivatives with potential antipsychotic activity. J. Heterocycl. Chem., 1987, 24, 1599-1604.
[29]
Massa, S.; Artico, M.; Mai, A.; Corelli, F.; Pantaleoni, G.C.; Giorgi, R.; Ottaviani, D.; Cagnotto, A. Pyrrolobenzodiazepine and related systems. I. Synthesis and pharmacological evaluation of new 5,6-dihydro-4H-pyrrolo[1,2-a][1,4]benzodiazepine derivatives. Farmaco, 1990, 45(12), 1265-1281.
[30]
Corelli, F.; Massa, S.; Stefancich, G.; Ortenzi, G.; Artico, M.; Pantaleoni, G.C.; Palumbo, G.; Fanini, D.; Giorgi, R. Benzodiazepines with both sedative and analgesic activities. Eur. J. Med. Chem., 1986, 21, 445-449.
[31]
Usdin, E.; Tallman, J.F.; Skolnick, P.; Greenblatt, D.; Paul, S.M. Pharmacology of Benzodiazepines; John Wiley: New York, 1983.
[32]
Hindmarch, I.; Beaumont, G.; Brandon, S.; Leonard, B.L. Benzodiazepines: Current Concepts Biological, Clinical and Social Perspectives; John Wiley: New York, 1990.
[33]
Salamons, S.J. Benzodiazepines and GHB: Detection and Pharmacology; Humana Press, 2001.
[34]
Curtis, M.P.; Dwight, W.; Pratt, J.; Cowart, M.; Esbenshade, T.A.; Krueger, K.M.; Fox, G.B.; Pan, J.B.; Pagano, T.G.; Hancock, A.A.; Faghih, R.; Bennani, Y.L. D-amino acid homopiperazine amides: Discovery of A-320436, a potent and selective non-imidazole histamine H(3)-receptor antagonist. Arch. Pharm. (Weinheim), 2004, 337(4), 219-229.
[35]
Kawakami, Y.; Kitani, H.; Yuasa, S.; Abe, M.; Moriwaki, M.; Kagoshima, M.; Terasawa, M.; Tahara, T. Structural optimization of 4-(2-chlorophenyl)-9-methyl-6H-thieno[3,2-f]-[1,2,4]triazolo[4,3-a][1,4]diazepines as antago-nists for platelet activating factor: pharmacological contribution of substituents at the 2- and 6-positions of a condensed ring system. Eur. J. Med. Chem., 1996, 31, 683-692.
[36]
Spencer, K.; Santosh, N.; Resnick, L. Synthesis of the liposidomycin diazepanone. Tetrahedron Lett., 1992, 33, 5485-5486.
[37]
Kato, S.; Harada, H.; Morie, T. Efficient synthesis of (6R)-6-amino-1-methyl-4-(3-methylbenzyl)hexahydro-1H-1,4-diazepine from methyl (2R)- and (2S)-1-benzyloxycarbonylaziridine-2-carboxylates. J. Chem. Soc., Perkin Trans. 1, 1997, 1997, 3219-3226.
[38]
Ramajayam, R.; Giridhar, R.; Yadav, M.R. Synthesis of novel substituted diaryl-1, 4-diazepines. Chem. Heterocycl. Compd., 2006, 42(7), 901-906.
[39]
Hirokawa, Y.; Fujiwara, I.; Suzuki, K.; Harada, H.; Yoshikawa, T.; Yoshida, N.; Kato, S. Synthesis and structure-affinity relationships of novel N-(1-ethyl-4-methylhexahydro-1,4-diazepin-6-yl)pyridine-3-carboxamides with potent serotonin 5-HT3 and dopamine D2 receptor antagonistic activity. J. Med. Chem., 2003, 46(5), 702-715.
[40]
Taillefumier, C.; Thielges, S.; Chapleur, Y. Anomeric spiroannelated 1,4-diazepine 2,5-diones from furano exo-glycals: Towards a new class of spironucleosides. Tetrahedron, 2004, 60, 2213-2224.
[41]
Lakatosh, S.A.; Luzikov, Y.N.; Preobrazhenskaya, M.N. Synthesis of 6H-pyrrolo[3′,4′:2,3][1,4]diazepino[6,7,1-hi]indole-8,10(7H,9H)-diones using 3-bromo-4-(indol-1-yl)maleimide scaffold. Org. Biomol. Chem., 2003, 1(5), 826-833.
[42]
Levin, J.I.; DiJoseph, J.F.; Killar, L.M.; Sung, A.; Walter, T.; Sharr, M.A.; Roth, C.E.; Skotnicki, J.S.; Albright, J.D. The synthesis and biological activity of a novel series of diazepine MMP inhibitors. Bioorg. Med. Chem. Lett., 1998, 8(19), 2657-2662.
[43]
Janin, Y.L.; Aubertin, A.M.; Chiaroni, A.; Riche, C.; Monneret, C.; Bisagani, E.; Grierson, D.S. Imidazo[1,5-g][1,4]diazepines, TIBO analogues lacking the phenyl ring: Synthesis and evaluation as Anti-HIV agents. Tetrahedron, 1996, 52, 15157-15170.
[44]
Cobo, J.; Nogueras, M.; Low, J.N.; Rodriguez, R. Bischler-Napieralski cyclocondensation in the synthesis of new 11H-pyrimido[4,5-b][1,4]benzodiazepines. Tetrahedron Lett., 2008, 49, 7271-7273.
[45]
Jeon, M-K.; Kwon, J-J.; Kim, M-S.; Gong, Y-D. A novel solid-phase synthetic method for 1,4-benzodiazepine-2,5-dione derivatives. Synlett, 2008, 2008, 1651-1656.
[46]
Ghomi, S.J.; Hatami, A. Facile and efficient one-pot protocol for synthesis of 5-phenyl 1,4-benzodiazepine-2-one derivatives. Synth. Commun., 2008, 38, 297-302.
[47]
Cabedo, N.; Pannecoucke, X.; Quirion, J.C. An efficient asymmetric synthesis of 2-substituted 1,4-benzodiazepin-3-one as a potential molecular scaffold. Eur. J. Org. Chem., 2005, 1590-1596.
[48]
Marcaccini, S.; Miliciani, M.; Pepino, R. A facile synthesis of 1,4-benzodiazepine derivatives via Ugi four-component condensation. Tetrahedron Lett., 2005, 46, 711-711.
[49]
Wiklund, P.; Rogers-Evans, M.; Bergman, J. Synthesis of 1,4-benzodiazepine-3,5-diones. J. Org. Chem., 2004, 69(19), 6371-6376.
[50]
Shachi, S.; Man, M.; Ashutosh, S. Synthesis and spectral characterization of 1,4-diazepines from 7-aminocephalosporanic acid and their biological activity. Int. J. Rec. Res. Rev., 2012, 2, 10-15.
[51]
Rajesh, K.; Yogesh, C. Synthesis, antimicrobial and antifungal activities of novel 1H-1,4-diazepines containing pyrazolopyrimidinone moiety. J. Chem. Sci., 2009, 121, 497-502.
[52]
A, Hamed. O.; Mehdawi, N.; Abu Taha, A.; M Hamed, E.; A Al-Nuri, M.; S. Hussein, A. Synthesis and antibacterial activity of novel curcumin derivatives containing heterocyclic moiety. Iran. J. Pharm. Res., 2013, 12(1), 47-56.
[53]
Saini, R.; Joshi, Y.; Joshi, P. Synthesis and spectral studies of novel diazepine derivatives and study in specific reference to tautomerization. Chem. Sci. Trans., 2013, 2, 1250-1255.
[54]
Joshi, Y.; Shalini, S. Kavita.; Joshi, P.; Rajesh, K. Silica sulfuric acid as a mild and efficient reagent for the synthesis of 1,4-diazepine and 1,5-benzodiazepine derivatives. J. Korean. Chem. Soc., 2011, 55, 638-643.
[55]
Rajesh, K.; Yogesh, J. Synthesis, spectral studies and biological activity of novel 1H-1,4-diazepine derivatives. Indian J. Chem. Sect. B, 2010, 49, 84-88.
[56]
Pavel, S.; Pavel, T.; Svetlana, S.; Anna, Z.; Oscar, K.; Elisa, V.; Maria, D.; Claudio, E. Porphyrazines with annulated diazepine rings. 4. Synthesis and properties of MgII tetradiazepinoporphyrazine carrying exocyclic styryl fragments. J. Porphyr. Phthalocyanines, 2012, 16, 968-976.
[57]
Stroganova, T.A.; Butin, A.V.; Vasilin, V.K.; Nevolina, T.A.; Gennady, D. A new strategy for pyrrolo[1,2-a][1,4]diazepine structure formation. Synlett, 2007, 2007, 1106-1108.
[58]
Butin, A.V.; Nevolina, T.A.; Shcherbinin, V.A.; Trushkov, I.V.; Cheshkov, D.A.; Krapivin, G.D. Furan ring opening-pyrrole ring closure: A new synthetic route to aryl(heteroaryl)-annulated pyrrolo[1,2-a][1,4]diazepines. Org. Biomol. Chem., 2010, 8(14), 3316-3327.
[59]
Mohammad, M.; Mehdi, A.; Mina, S.; Zahra, R.; Hooman, M.; Alireza, F.; Abbas, S. Synthesis of novel 1,4-benzodiazepine-3,5-dione derivatives: Reaction of 2-aminobenzamides under Bargellini reaction conditions. Synlett, 2012, 23, 2521-2525.
[60]
Eyad, A.; Ahmad, H.; Mitchell, M.; Frank, F. Synthesis of 2-amino-1,4-benzodiazepin-5-ones from 2-nitrobenzoic acid and α-aminonitriles. ARKIVOC, 2011, 2, 322-330.
[61]
Zia-Ul-Haq, M.; Hameed, S. Duddeck, H.; Ahmed, R. Synthesis of 1, 4-diazepine nucleosides. Turk. J. Chem., 2002, 26(6), 807-815.
[62]
Abuel-Magd, A.; Shorbgi, A.; Hussein, M.; Hamdy, M.; Alim, A. New 1,4-disustituted-6-hydroxyperhydro-1,4-diazepine-2,3-dione derivatives. Bull. Pharm. Sci., 2004, 27, 193-202.
[63]
Lloyd, D.; Scheibelein, W.; Hideg, K. Further studies of the mixture obtained from reactions between conjugated enones and ethylenediamine, and from conjugated enones and 1-aminopropane. J. Chem. Res. Synop., 1981, 3, 62-63.
[64]
Sarda, S.; Jadhav, W.; Kolhe, N.; Landge, M.; Pawar, R. Solvent free one pot synthesis of benzo-[b]-1,4-diazepines using reusable sulfamic acid catalyst. J. Iran. Chem. Soc., 2009, 6, 477-482.
[65]
Mohmoud, A.A.; Mohamed, M.Y.; Shams, H.A. Microwave assisted synthesis of benzodiazepine derivatives: As non-nucleoside anti HIV analogue. J. Chem. Acta., 2012, 1, 35-39.
[66]
Aastha, P.; Priyanka, R.; Anshu, A.; Shashi, S.; Kishore, D. Synthesis of benzoazepino incorporated analogues of 1, 5-benzodiazepine of medicinal interest. Int. J. Chem. Pharm. Sci., 2013, 4, 44-47.
[67]
Briel, D.; Rudolph, I.; Unverferth, K.; Mann, S. Synthesis of disubstituted 1,4-diazepines with affinity to GABAA-receptor subtypes. Pharmazie, 2010, 65(9), 641-644.
[68]
Kamal, M. Condensation of 1-(dicyanomethylene)acenaphthene-2-one with aromatic diamines. J. Chin. Chem. Soc. (Taipei), 2008, 55, 1050-1055.
[69]
Wu, Z.; Ercole, F.; FitzGerald, M.; Perera, S.; Riley, P.; Campbell, R.; Pham, Y.; Rea, P.; Sandanayake, S.; Mathieu, M.N.; Bray, A.M.; Ede, N.J. Synthesis of tetrahydro-1,4-benzodiazepine-2-ones on hydrophilic polyamide SynPhase lanterns. J. Comb. Chem., 2003, 5(2), 166-171.
[70]
Deng, X.; Yang, Q.; Kwiatkowski, N.; Sim, T.; McDermott, U.; Settleman, J.E.; Lee, J.D.; Gray, N.S. Discovery of a benzo[e]pyrimido-[5,4-b][1,4]diazepin-6(11H)-one as a Potent and Selective Inhibitor of Big MAP Kinase 1. ACS Med. Chem. Lett., 2011, 2(3), 195-200.
[71]
Fader, L.D.; Landry, S.; Morin, S.; Kawai, S.H.; Bousquet, Y.; Hucke, O.; Goudreau, N.; Lemke, C.T.; Bonneau, P.; Titolo, S.; Mason, S.; Simoneau, B. Optimization of a 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione series of HIV capsid assembly inhibitors 1: addressing configurational instability through scaffold modification. Bioorg. Med. Chem. Lett., 2013, 23(11), 3396-3400.
[72]
Pasha, M.A.; Jayashankara, V.P. An expeditious synthesis of 1,5-benzodiazepines derivatives catalyzed by p-toluenesulfonic acid. J. Pharm. Toxicol., 2006, 6, 573-578.
[73]
Shaabani, A.; Maleki, A. Fast and efficient method for the synthesis of 1,5-benzodiazepine derivatives under solvent-free conditions. Iran. J. Chem. Chem. Eng., 2007, 26, 93-97.
[74]
Varala, R.; Enugala, R.; Adapa, S.R. p-nitrobenzoic acid promoted synthesis of 1,5-benzodiazepine derivatives. J. Braz. Chem. Soc., 2007, 18, 291-296.
[75]
Shi, R.X.; Liu, Y.K.; Xu, Z.Y. Sodium tetrachloroaurate(III) dihydrate-catalyzed efficient synthesis of 1,5-benzodiazepine and quinoxaline derivatives. J. Zhejiang Univ. Sci. B, 2010, 11(2), 102-108.
[76]
More, U.B.; Kharat, R.S.; Mahulikar, P.P. An efficient synthesis of 1,5-benzodiazepines using AlCl3 under solvent free condition. Asian J. Chem., 2011, 23, 4311.
[77]
Konda, S.G.; Shaikh, B.M.; Chavan, S.A.; Dawane, B.S. Polyethylene glycol (PEG-400): An efficient and recyclable reaction medium for the synthesis of novel 1,5-benzodiazepines and their antimicrobial activity. Chin. Chem. Lett., 2011, 22, 65-68.
[78]
Herbert, J.A.L.; Suschitzky, H. Synthesis of heterocyclic compounds. part XXIX. substituted 2,3-dihydro-1h-1,5-benzodiazepines. J. Chem. Soc., Perkin Trans. 1, 1974, 2657-2661.
[79]
Morales, H.R.; Ulbarela, B.A.; Contreras, R. New synthesis of dihydro- and tetrahydro-1,5-benzodiazepines by reductive condensation of o-phenylenediamine and ketones in the presence of sodium borohydride. Heterocycles, 1986, 24, 135-139.
[80]
Jung, D.I.; Choi, T.W.; Kim, Y.Y.; Kim, I.S.; Park, Y.M.; Lee, Y.G.; Jung, D.H. Synthesis of 1,5-benzodiazepine derivatives. Synth. Commun., 1999, 29, 1941-1951.
[81]
Balakrishna, M.S.; Kaboudin, B. A simple and new method for the synthesis of 1,5-benzodiazepine derivatives on a solid surface. Tetrahedron Lett., 2001, 42, 1127-1129.
[82]
Curini, M.; Epifano, F.; Marcotullio, M.C.; Rosati, O. Ytterbium triflate promoted synthesis of 1, 5-benzodiazepine derivatives. Tetrahedron Lett., 2001, 42, 3193-3195.
[83]
Kaboudin, B.; Navaee, K. Alumina/phosphorus pentoxide (APP) as an efficient reagent for the synthesis of 1,5-benzodiazepines under microwave irradiation. Heterocycles, 2001, 55, 1443-1446.
[84]
Pozarentzi, M.; Stephanatou, J.S.; Tsoleridis, C.A. An efficient method for the synthesis of 1,5-benzodiazepine derivatives under microwave irradiation wihout solvent. Tetrahedron Lett., 2002, 43, 1755-1758.
[85]
Yadav, J.S.; Reddy, B.V.S.; Eshwaraiah, B.; Anuradha, K. Amberlyst-15: A novel and recyclable reagent for the synthesis of 1,5-benzodiazepines in ionic liquids. Green Chem., 2002, 4, 592-594.
[86]
Jarikote, D.V.; Siddiqui, S.A.; Rajagopal, R.; Daniel, T.; Lahoti, R.J.; Srinivasan, K.V. Room temperature ionic liquid promoted synthesis of 1,5-benzodiazepine derivatives under ambient conditions. Tetrahedron Lett., 2003, 44, 1835-1838.
[87]
Sabitha, G.; Reddy, G.S.K.; Reddy, K.B.; Reddy, N.M.; Yadav, J.S.A. New, efficient and environmentally benign protocol for the synthesis of 1,5-benzodiazepines using cerium (III) chloride/sodium iodide supported on silica gel. Adv. Synth. Catal., 2004, 346, 921-923.
[88]
Yadav, J.S.; Reddy, B.V.S.; Kumar, S.P.; Nagaiah, K. Indium(III) bromide: a novel and efficient reagent for the rapid synthesis of 1,5-benzodiazepines under solvent-free conditions. Synthesis, 2005, 480-484.
[89]
De, S.K.; Gibbs, R.A. Scandium(III) triflate as an efficient and reusable catalyst for synthesis of 1,5-benzodiazepine derivatives. Tetrahedron Lett., 2005, 46, 1811-1813.
[90]
Reddy, B.M.; Sreekanth, M.; Lakshmanan, P. Sulfated zirconia as an efficient catalyst for organic synthesis and transformation reactions. J. Mol. Catal. Chem., 2005, 237, 93-100.
[91]
Yadav, J.S.; Reddy, B.V.S.; Satheesh, G.; Srinivasulu, G.; Kunwar, A.C. InCI3-catalyzed stereoselective synthesis of optically pure 1,5-benzodiazepines. ARKIVOC, 2005, 3, 221-227.
[92]
Varala, R.; Ramu, E.; Sreelatha, N.; Adapa, S.R. Ceric ammonium nitrate (CAN) promoted efficient synthesis of 1,5-benzodiazepine derivatives. Synlett, 2006, 1009-1014.
[93]
Pasha, M.A.; Jayashankara, V.P. Synthesis of 1,5-benzodiazepine derivatives catalyzed by zinc chloride. Heterocycles, 2006, 68, 1017-1023.
[94]
Khodaei, M.M.; Bahrami, K.; Nazarian, Z. TCT as a rapid and efficient catalyst for the synthesis of 1,5-benzodiazepines. Bull. Korean Chem. Soc., 2008, 29, 1280-1282.
[95]
Ashok, S.; Radhakrishnan, T.; Kishan, H.; Yuvraj, S.; Sunil, K. Mild and efficient phosphonitrilic chloride mediated synthesis for 1,5-denzodizepines. Int. J. Sci. Res. Pub., 2013, 3, 1-7.
[96]
Heshmatollah, A.; Mahmood, T.; Mohammad, N.; Saeed, B. An efficient and green protocol for the synthesis of 1,5-benzodiazepine and quinoxaline derivatives using protic pyridinium ionic liquid as a catalyst. World Appl. Sci. J., 2013, 22, 1711-1717.
[97]
Akshdeep, S.; Rajesh, S. Rapid and efficient synthesis of 2,3-dihydro-1H-1,5-benzodiazepines catalyzed by chloroacetic acid screened among various aliphatic acids under solvent free conditions. Chem. Sci. Trans., 2013, 2, 176-180.
[98]
Kuo, C.W.; Wang, C.C.; Kavala, V.; Yao, C.F. Efficient TCT-catalyzed synthesis of 1,5-benzodiazepine derivatives under mild conditions. Molecules, 2008, 13(9), 2313-2325.
[99]
Zimmer, H.; Librera, C.; Hausner, S.; Baure, J.; Amer, A. Novel 4-aroyl-3-alkoxy-2(5H)-furanones as precursors for the preparation of furo[3, 4-b][1, 4]-diazepine ring system. Molecules, 2008, 8, 735-743.
[100]
Bapat, B.; Shah, V.; Ghadage, R.; Shirote, P. Synthesis of fused [1, 4]-diazepines by base catalysed condensation of 1, 2-diamines with carbonyl compounds. Int. J. Pharm. Sci. Res., 2011, 2, 2328-2331.
[101]
Kaoua, R.; Bennamane, N.; Bakhta, S.; Benadji, S.; Rabia, C.; Nedjar-Kolli, B. Synthesis of substituted 1,4-diazepines and 1,5-benzodiazepines using an efficient heteropolyacid-catalyzed procedure. Molecules, 2010, 16(1), 92-99.
[102]
Haddadi, Z.; Meghezzi, H.; Kaoua, R.; Nedjar-Kolli, B. Theoretical study of 1, 4-diazepines synthesis: The reaction mechanism and tautomerism in gas phase and in solution. Int. J. Pharm. Chem. Biol. Sci., 2013, 3, 470-479.
[103]
Vatsala, S.; Meenakshi, S.; Anshu, A.; Dharma, K. Exploration of newer possibilities to the synthesis of diazepine and quinoline carboxylic acid derivatives. J. Chem., 2013, 2013, 1-8.
[104]
Pardo, L.M.; Tellitu, I.; Domínguez, E. A versatile PIFA-mediated approach to structurally diverse pyrrolo(benzo) diazepines from linear alkynylamides. Tetrahydron., 2010, 66, 5811-5818.
[105]
Moure, A.; Orzáez, M.; Sancho, M.; Messeguer, A. Synthesis of enantiomerically pure perhydro-1,4-diazepine-2,5-dione and 1,4-piperazine-2,5-dione derivatives exhibiting potent activity as apoptosis inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(23), 7097-7099.
[106]
Sati, B.; Sati, H.; Saklani, S.; Bhatt, P.C.; Mishra, R. Synthesis of the impurities during the manufacture of bulk drug midazolam and separation of these impurities by HPLC. Acta Pharm., 2013, 63(3), 385-396.
[107]
Basavaraja, K.; Vaidya, V.; Chandrashekher, C. Synthesis of benzofuro[3,2-e]-1,4-diazepines of pharmacological interest. E-J. Chem., 2008, 5, 567-571.
[108]
Bonacorso, G.; Lourega, V.; Deon, D.; Zanatta, N.; Martins, P. The first synthesis of dihydro-3H-pyrido[2,3-b][1,4]diazepinols and a new alternative approach for diazepinone analogues. Tetrahedron Lett., 2007, 48, 4835.
[109]
Chuang, C.; Bo, J.; Shu-Jiang, T.; Guigen, L. [4+2+1] Domino cyclization in water for chemo- and regioselective synthesis of spiro-substituted benzo[b]furo[3,4-e][1,4]diazepine derivatives. Green Chem., 2011, 13, 2107-2115.
[110]
Meenakshi, A. Expedient protocol for the synthesis of isoxazole, pyrazole, pyrimidine derivatives and their medicinal importance. Int. J. Pharm. Res. Biomed. Sci., 2013, 2, 258-269.
[111]
Loudni, L.; Roche, J.; Potiron, V.; Clarhaut, J.; Bachmann, C.; Gesson, J-P.; Tranoy-Opalinski, I. Design, synthesis and biological evaluation of 1,4-benzodiazepine-2,5-dione-based HDAC inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(17), 4819-4823.
[112]
Gates, M. New synthesis of diazepam. J. Org. Chem., 1980, 45, 1675.
[113]
Naim, A.; Khaled, S.; Mohammad, I.; Sami, T. A facile synthesis of quinazolino[1,4]benzodiazepine alkaloids via reductive n-heterocyclization of N-(2-nitrobenzoyl)amides: Total synthesis of asperlicin C, circumdatin H, and analogues. ARKIVOC, 2008, 9, 282-292.
[114]
Süli-Vargha, H.; Schlosser, G.; Ilas, J. 1,4-diazepine-2,5-dione ring formation during solid phase synthesis of peptides containing aspartic acid β-benzyl ester. J. Pept. Sci., 2007, 13(11), 742-748.
[115]
Ramanathan, S.K.; Keeler, J.; Lee, H.L.; Reddy, D.S.; Lushington, G.; Aubé, J. Modular synthesis of cyclic peptidomimetics inspired by γ-turns. Org. Lett., 2005, 7(6), 1059-1062.
[116]
Fenster, E.; Rayabarapu, D.K.; Zhang, M.; Mukherjee, S.; Hill, D.; Neuenswander, B.; Schoenen, F.; Hanson, P.R.; Aubé, J. Three-component synthesis of 1,4-diazepin-5-ones and the construction of γ-turn-like peptidomimetic libraries. J. Comb. Chem., 2008, 10(2), 230-234.
[117]
Kaur, N.; Kishore, D. Application of chalcones in heterocycles synthesis: synthesis of 2-(isoxazolo, pyrazolo and pyrimido) substituted analogues of 1,4-benzodiazepin-5-carboxamides linked through an oxyphenyl bridge. J. Chem. Sci., 2013, 125, 555-560.
[118]
Mibu, N.; Yukawa, M.; Kashige, N.; Iwase, Y.; Goto, Y.; Miake, F.; Yamaguchi, T.; Ito, S.; Sumoto, K. Synthesis and DNA strand breakage activity of some 1,4-diazepines. Chem. Pharm. Bull. (Tokyo), 2003, 51(1), 27-31.
[119]
Ramajayam, R.; Rajani, G.; Yadav, M. Synthesis of novel substituted diaryl-1,4-diazepines. Chem. Het. Comp., 2006, 42, 901-906.
[120]
Jerry, J.; Ray, B.; Yathirajan, H.; Narayana, B.; Prakash, K. 5,7-Dimethyl-2,3-dihydro-1H-1,4-diazepin-4-ium picrate. Acta Crystallogr., 2010, E66, 01187-01188.
[121]
Nagaraju, G.; Madhava, R.; Jithan, V. Synthesis and evaluation of clozapine and its related compounds. Int. J. Pharm. Sci. Nanotech., 2010, 2, 762-767.
[122]
Liszkiewicz, H.; Nawrocka, W.P.; Sztuba, B.; Wietrzyk, J.; Jaroszewicz, J.; Nasulewicz, A.; Pełczyńska, M. Synthesis and antiproliferative activity in vitro of new pyrido[1,4-b]diazepine derivatives and imidazo[4,5-b]pyridine. Acta Pol. Pharm., 2011, 68(3), 349-355.
[123]
Gholamhassan, I.; Zahra, A.; Yaser, S. Synthesis and conformational analysis of new derivatives of 7-chloro-1,3-dihydro-5-phenyl-2h-1,4-benzodiazepine-2-one. Org. Chem. Ind. J., 2012, 8, 293-298.
[124]
Weber, K.H.; Kuhn, F.J.; Böke-Kuhn, K.; Lehr, E.; Danneberg, P.B.; Hommer, D.; Paul, S.M.; Skolnick, P. Pharmacological and neurochemical properties of 1,4-diazepines with two annelated heterocycles (‘hetrazepines’). Eur. J. Pharmacol., 1985, 109(1), 19-31.
[125]
Gaggini, F.; Laleu, B.; Orchard, M.; Fioraso-Cartier, L.; Cagnon, L.; Houngninou-Molango, S.; Gradia, A.; Duboux, G.; Merlot, C.; Heitz, F.; Szyndralewiez, C.; Page, P. Design, synthesis and biological activity of original pyrazolo-pyrido-diazepine, -pyrazine and -oxazine dione derivatives as novel dual Nox4/Nox1 inhibitors. Bioorg. Med. Chem., 2011, 19(23), 6989-6999.
[126]
Leonard, K.; Marugan, J.J.; Raboisson, P.; Calvo, R.; Gushue, J.M.; Koblish, H.K.; Lattanze, J.; Zhao, S.; Cummings, M.D.; Player, M.R.; Maroney, A.C.; Lu, T. Novel 1,4-benzodiazepine-2,5-diones as Hdm2 antagonists with improved cellular activity. Bioorg. Med. Chem. Lett., 2006, 16(13), 3463-3468.
[127]
Parks, D.J.; Lafrance, L.V.; Calvo, R.R.; Milkiewicz, K.L.; Gupta, V.; Lattanze, J.; Ramachandren, K.; Carver, T.E.; Petrella, E.C.; Cummings, M.D.; Maguire, D.; Grasberger, B.L.; Lu, T. 1,4-Benzodiazepine-2,5-diones as small molecule antagonists of the HDM2-p53 interaction: Discovery and SAR. Bioorg. Med. Chem. Lett., 2005, 15(3), 765-770.
[128]
Parks, D.J.; LaFrance, L.V.; Calvo, R.R.; Milkiewicz, K.L.; Marugán, J.J.; Raboisson, P.; Schubert, C.; Koblish, H.K.; Zhao, S.; Franks, C.F.; Lattanze, J.; Carver, T.E.; Cummings, M.D.; Maguire, D.; Grasberger, B.L.; Maroney, A.C.; Lu, T. Enhanced pharmacokinetic properties of 1,4-benzodiazepine-2,5-dione antagonists of the HDM2-p53 protein-protein interaction through structure-based drug design. Bioorg. Med. Chem. Lett., 2006, 16(12), 3310-3314.
[129]
Marugan, J.J.; Leonard, K.; Raboisson, P.; Gushue, J.M.; Calvo, R.; Koblish, H.K.; Lattanze, J.; Zhao, S.; Cummings, M.D.; Player, M.R.; Schubert, C.; Maroney, A.C.; Lu, T. Enantiomerically pure 1,4-benzodiazepine-2,5-diones as Hdm2 antagonists. Bioorg. Med. Chem. Lett., 2006, 16(12), 3115-3120.
[130]
Dai, Y.; Chen, N.; Wang, Q.; Zheng, H.; Zhang, X.; Jia, S.; Dong, L.; Feng, D. Docking analysis and multidimensional Hybrid QSAR model of 1,4-benzodiazepine-2,5-diones as HDM2 antagonists. Iran. J. Pharm. Res., 2012, 11(3), 807-830.
[131]
Gill, R.K.; Kaushik, S.O.; Chugh, J.; Bansal, S.; Shah, A.; Bariwal, J. Recent development in [1,4]benzodiazepines as potent anticancer agents: A review. Mini Rev. Med. Chem., 2014, 14(3), 229-256.
[132]
Moure, A.; Orzáez, M.; Sancho, M.; Messeguer, A. Synthesis of enantiomerically pure perhydro-1,4-diazepine-2,5-dione and 1,4-piperazine-2,5-dione derivatives exhibiting potent activity as apoptosis inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(23), 7097-7099.
[133]
Sabatié, A.; Végh, D.; Loupy, A.; Floch, L. Synthesis of aromatic and heteroaromatic annelated [1, 4] diazepines. ARKIVOC, 2001, 6, 122-128.
[134]
Kaoua, R.; Bennamane, N.; Bakhta, S.; Benadji, S.; Rabia, C.; Nedjar-Kolli, B. Synthesis of substituted 1,4-diazepines and 1,5-benzodiazepines using an efficient heteropolyacid-catalyzed procedure. Molecules, 2010, 16(1), 92-99.
[135]
Kamal, A.; Srikanth, Y.V.V.; Ramaiah, M.J.; Khan, M.N.A.; Kashi Reddy, M.; Ashraf, M.; Lavanya, A.; Pushpavalli, S.N.; Pal-Bhadra, M. Synthesis, anticancer activity and apoptosis inducing ability of bisindole linked pyrrolo[2,1-c][1,4]benzodiazepine conjugates. Bioorg. Med. Chem. Lett., 2012, 22(1), 571-578.
[136]
Varvounis, G. An update on the synthesis of pyrrolo [1, 4] benzodiazepines. Molecules, 2016, 21(2), 154.
[137]
Meanwell, N.A.; Walker, M.A. 1,4-Diazepines. Compr. Heterocycli Chem. III, 2008, 13, 183-235.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy