Abstract

Background: Considering the need for the development of new antitumor drugs, associated with the great antitumor potential of thiophene and thiosemicarbazonic derivatives, in this work we promote molecular hybridization approach to synthesize new compounds with increased anticancer activity.

Objective: Investigate the antitumor activity and their likely mechanisms of action of a series of N-substituted 2-(5-nitro-thiophene)-thiosemicarbazone derivatives.

Methods: Methods were performed in vitro (cytotoxicity, cell cycle progression, morphological analysis, mitochondrial membrane potential evaluation and topoisomerase assay), spectroscopic (DNA interaction studies), and in silico studies (docking and molecular modelling).

Results: Most of the compounds presented significant inhibitory activity; the NCIH-292 cell line was the most resistant, and the HL-60 cell line was the most sensitive. The most promising compound was LNN-05 with IC50 values ranging from 0.5 to 1.9 µg.mL-1. The in vitro studies revealed that LNN-05 was able to depolarize (dose-dependently) the mitochondrial membrane, induceG1 phase cell cycle arrest noticeably, promote morphological cell changes associated with apoptosis in chronic human myelocytic leukaemia (K-562) cells, and presented no topoisomerase II inhibition. Spectroscopic UV-vis and molecular fluorescence studies showed that LNN compounds interact with ctDNA forming supramolecular complexes. Intercalation between nitrogenous bases was revealed through KI quenching and competitive ethidium bromide assays. Docking and Molecular Dynamics suggested that 5-nitro-thiophene-thiosemicarbazone compounds interact against the larger DNA groove, and corroborating the spectroscopic results, may assume an intercalating interaction mode.

Conclusion: Our findings highlight 5-nitro-thiophene-thiosemicarbazone derivatives, especially LNN-05, as a promising new class of compounds for further studies to provide new anticancer therapies.

Keywords: Antitumor activity, Thiophene, Thiosemicarbazone, Apoptosis, DNA Intercalation, Cancer.

Graphical Abstract
[1]
World Health Organization (WHO) Early cancer diagnosis saves lives, cuts treatment costs., 2017.(Accessed: 22 Mar 2018, Available at:.. http://www.who.int/mediacentre/news/releases/2017/early-cancer-costs/en/).
[2]
Sak, K. Chemotherapy and dietary phytochemical agents. Chemother. Res. Pract., 2012, 2012282570
[http://dx.doi.org/10.1155/2012/282570] [PMID: 23320169]
[3]
Rumjanek, V.M.; Vidal, R.S.; Maia, R.C. Multidrug resistance in chronic myeloid leukaemia: How much can we learn from MDR-CML cell lines? Biosci. Rep., 2013, 33(6)e00081
[http://dx.doi.org/10.1042/BSR20130067] [PMID: 24070327]
[4]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[5]
de Almeida, S.M.; Lafayette, E.A.; da Silva, L.P.; Amorim, C.A.; de Oliveira, T.B.; Ruiz, A.L.; de Carvalho, J.E.; de Moura, R.O.; Beltrão, E.I. de Lima, Mdo.C.; de Carvalho Júnior, L.B. Synthesis, DNA binding, and antiproliferative activity of novel acridine–thiosemicarbazone derivatives. Int. J. Mol. Sci., 2015, 16(6), 13023-13042.
[http://dx.doi.org/10.3390/ijms160613023] [PMID: 26068233]
[6]
Souza, B.C.C.; De Oliveira, T.B.; Aquino, T.M.; de Lima, M.C.; Pitta, I.R.; Galdino, S.L.; Lima, E.O.; Gonçalves-Silva, T.; Militão, G.C.G.; Scotti, L.; Scotti, M.T.; Mendonça, F.J.B., Jr Preliminary antifungal and cytotoxic evaluation of synthetic cycloalkyl[b]thiophene derivatives with PLS-DA analysis. Acta Pharm., 2012, 62(2), 221-236.
[http://dx.doi.org/10.2478/v10007-012-0017-y] [PMID: 22750820]
[7]
Britta, E.A.; Scariot, D.B.; Falzirolli, H.; Ueda-Nakamura, T.; Silva, C.C.; Filho, B.P.; Borsali, R.; Nakamura, C.V. Cell death and ultrastructural alterations in Leishmania amazonensis caused by new compound 4-Nitrobenzaldehyde thiosemicarbazone derived from S-limonene. BMC Microbiol., 2014, 14(236), 236.
[http://dx.doi.org/10.1186/s12866-014-0236-0] [PMID: 25253283]
[8]
Pelosi, G. Thiosemicarbazone metal complex: From structure to activity. Open Cryst. J., 2010, 3, 16-28.
[http://dx.doi.org/10.2174/1874846501003020016]
[9]
Ali, A.Q.; Teoh, S.G.; Eltayeb, N.E.; Ahamed, M.B.K.; Majid, A.M.S.A. Synthesis of copper(II) complexes of isatin thiosemicarbazone derivatives: In vitro anti-cancer, DNA binding, and cleavage activities. Polyhedron, 2014, 74, 6-15.
[http://dx.doi.org/10.1016/j.poly.2014.02.025]
[10]
de Oliveira, J.F.; da Silva, A.L.; Vendramini-Costa, D.B.; da Cruz Amorim, C.A.; Campos, J.F.; Ribeiro, A.G.; Olímpio de Moura, R.; Neves, J.L.; Ruiz, A.L.; Ernesto de Carvalho, J. Alves de Lima, Mdo.C. Synthesis of thiophene-thiosemicarbazone derivatives and evaluation of their in vitro and in vivo antitumor activities. Eur. J. Med. Chem., 2015, 104, 148-156.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.036] [PMID: 26454648]
[11]
Aye, Y.; Long, M.J.C.; Stubbe, J. Mechanistic studies of semicarbazone triapine targeting human ribonucleotide reductase in vitro and in mammalian cells: tyrosyl radical quenching not involving reactive oxygen species. J. Biol. Chem., 2012, 287(42), 35768-35778.
[http://dx.doi.org/10.1074/jbc.M112.396911] [PMID: 22915594]
[12]
Adams, M.; Barnard, L.; de Kock, C.; Smith, P.J.; Wiesner, L.; Chibale, K.; Smith, G.S. Cyclopalladated organosilane-tethered thiosemicarbazones: novel strategies for improving antiplasmodial activity. Dalton Trans., 2016, 45(13), 5514-5520.
[http://dx.doi.org/10.1039/C5DT04918K] [PMID: 26911403]
[13]
de Araújo Neto, L.N.; do Carmo Alves de Lima, M.; de Oliveira, J.F.; de Souza, E.R.; Buonafina, M.D.S.; Vitor Anjos, M.N.; Brayner, F.A.; Alves, L.C.; Neves, R.P.; Mendonça-Junior, F.J.B. Synthesis, cytotoxicity and antifungal activity of 5-nitro-thiophene-thiosemicarbazones derivatives. Chem. Biol. Interact., 2017, 272, 172-181.
[http://dx.doi.org/10.1016/j.cbi.2017.05.005] [PMID: 28479098]
[14]
Abdel-Rahman, S.A.; El-Gohary, N.S.; El-Bendary, E.R.; El-Ashry, S.M.; Shaaban, M.I. Synthesis, antimicrobial, antiquorum-sensing, antitumor and cytotoxic activities of new series of cyclopenta(hepta)[b]thiophene and fused cyclohepta[b]thiophene analogs. Eur. J. Med. Chem., 2017, 140, 200-211.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.066] [PMID: 28926764]
[15]
Rizk, O.H.; Shaaban, O.G.; Abdel Wahab, A.E. Synthesis of oxadiazolyl, pyrazolyl and thiazolyl derivatives of thiophene-2-carboxamide as antimicrobial and anti-HCV agents. Open Med. Chem. J., 2017, 11, 38-53.
[http://dx.doi.org/10.2174/1874104501711010038] [PMID: 28553409]
[16]
Félix, M.B.; de Souza, E.R.; de Lima, M.D.C.A.; Frade, D.K.G.; Serafim, V.L.; Rodrigues, K.A.D.F.; Néris, P.L.D.N.; Ribeiro, F.F.; Scotti, L.; Scotti, M.T.; de Aquino, T.M.; Mendonça, Junior, F.J.B.; de Oliveira, M.R. Antileishmanial activity of new thiophene-indole hybrids: Design, synthesis, biological and cytotoxic evaluation, and chemometric studies. Bioorg. Med. Chem., 2016, 24(18), 3972-3977.
[http://dx.doi.org/10.1016/j.bmc.2016.04.057] [PMID: 27515718]
[17]
Dos Santos, F.A.; Pereira, M.C.; de Oliveira, T.B.; Mendonça, Junior, F.J.B.; de Lima, M.D.C.A.; Pitta, M.G.D.R.; Pitta, I.D.R.; de Melo Rêgo, M.J.B.; da Rocha Pitta, M.G. Anticancer properties of thiophene derivatives in breast cancer MCF-7 cells. Anticancer Drugs, 2017, 29(2), 157-166.
[http://dx.doi.org/10.1097/CAD.0000000000000581]
[18]
El-Sharkawy, K.A.; Said, M.M.; Dardas, G. Synthesis and antitumor activity of some fused heterocyclic compounds based on cyclohepta[b]thiophene derivatives. Bulg. Chem. Commun., 2014, 46(4), 691-699.
[19]
Venkataramireddy, V.; Shankaraiah, M.; Tejeswara Rao, A.; Kalyani, Ch.; Lakshmi Narasu, M.; Varala, R.; Jayashree, A. Synthesis and anti-cancer activity of novel 3-aryl thiophene-2-carbaldehydes and their aryl/heteroaryl chalcone derivatives. Rasayan J. Chem., 2016, 9(1), 31-39.
[20]
Sivadas, A.; Subbraya, N. Synthesis, characterization and antimicrobial activity of novel thiophene acrylate derivatives. Int. J. Pharm. Sci. Res., 2011, 2(4), 1007-1014.
[http://dx.doi.org/[https://doi.org/10.1155/2018/9197821]
[21]
Arora, M.; Saravanan, S.; Mohan, S.; Bhattacharjee, S. Synthesis, characterization and antimicrobial activity of some schiff bases of 2-amino-N-(p-acetamidophenyl carboxamido)-4,5,6,7-tetramethy-lene thiophenes. Int. J. Pharm. Pharm. Sci., 2013, 5(1), 315-319.
[http://dx.doi.org/[DOI: 10.1155/2013/451629]
[22]
Gerpe, A.; Alvarez, G.; Benítez, D.; Boiani, L.; Quiroga, M.; Hernández, P.; Sortino, M.; Zacchino, S.; González, M.; Cerecetto, H. 5-Nitrofuranes and 5-nitrothiophenes with anti-Trypanosoma cruzi activity and ability to accumulate squalene. Bioorg. Med. Chem., 2009, 17(21), 7500-7509.
[http://dx.doi.org/10.1016/j.bmc.2009.09.013] [PMID: 19811923]
[23]
Karaküçük-İyidoğan, A.; Taşdemir, D.; Oruç-Emre, E.E.; Balzarini, J. Novel platinum(II) and palladium(II) complexes of thiosemicarbazones derived from 5-substitutedthiophene-2-carboxaldehydes and their antiviral and cytotoxic activities. Eur. J. Med. Chem., 2011, 46(11), 5616-5624.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.031] [PMID: 21993152]
[24]
Mamolo, M.G.; Vio, L.; Banfi, E. Synthesis and antimicrobial activity of some 2,5-disubstituted 1,3,4,-thiadiazole derivatives. Farmaco, 1996, 51(1), 71-74.
[http://dx.doi.org/8721765]
[25]
Bauer, N. Cytological collection techniques and sample preparation.In:Manual of Diagnostic Cytology of the Dog and Cat; John Wiley & Sons, Ltd., 2014, pp. 1-15.
[http://dx.doi.org/10.1002/9781118823040.ch1]
[26]
Shahabadi, N.; Hadidi, S. Spectroscopic studies on the interaction of calf thymus DNA with the drug levetiracetam. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 96, 278-283.
[http://dx.doi.org/10.1016/j.saa.2012.05.045]. ] [PMID: 22698844]
[27]
Lafayette, E.A.; Vitalino de Almeida, S.M.; Pitta, M.G.; Carneiro Beltrão, E.I.; da Silva, T.G.; Olímpio de Moura, R. Pitta, Ida.R.; de Carvalho, L.B., Jr; de Lima, Mdo.C. Synthesis, DNA binding and topoisomerase I inhibition activity of thiazacridine and imidazacridine derivatives. Molecules, 2013, 18(12), 15035-15050.
[http://dx.doi.org/10.3390/molecules181215035] [PMID: 24322489]
[28]
Andrade, W.M. Investigação antitumoral in vitro e in vivo da Eugenia dysenterica DC; MYRTACEAE, 2011.
[29]
Ozluer, C.; Kara, H.E. In vitro DNA binding studies of anticancer drug idarubicin using spectroscopic techniques. J. Photochem. Photobiol. B, 2014, 138, 36-42.
[http://dx.doi.org/10.1016/j.jphotobiol.2014.05.015] [PMID: 24911270]
[30]
Drew, H.R.; Wing, R.M.; Takano, T.; Broka, C.; Tanaka, S.; Itakura, K.; Dickerson, R.E. Structure of a B-DNA dodecamer: Conformation and dynamics. Proc. Natl. Acad. Sci. USA, 1981, 78(4), 2179-2183.
[http://dx.doi.org/10.1073/pnas.78.4.2179] [PMID: 6941276]
[31]
Marvin (version 18.04), 201n, ChemAxon, 2018.(Available at:. http://www.chemaxon.com
[32]
Malde, A.K.; Zuo, L.; Breeze, M.; Stroet, M.; Poger, D.; Nair, P.C.; Oostenbrink, C.; Mark, A.E. An automated force field topology builder (ATB) and repository: version 1.0. J. Chem. Theory Comput., 2011, 7(12), 4026-4037.
[http://dx.doi.org/10.1021/ct200196m] [PMID: 26598349]
[33]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[34]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[35]
Ivani, I. Dans, P.D.; Noy, A.; Pérez, A.; Faustino, I.; Hospital, A.; Walther, J.; Andrio, P.; Goñi, R.; Balaceanu, A.; Portella, G.; Battistini, F.; Gelpí, J.L.; González, C.; Vendruscolo, M.; Laughton, C.A.; Harris, S.A.; Case, D.A.; Orozco, M. Parmbsc1: A refined force field for DNA simulations. Nat. Methods, 2016, 13(1), 55-58.
[http://dx.doi.org/10.1038/nmeth.3658] [PMID: 26569599]
[36]
Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79(2), 926-935.
[http://dx.doi.org/10.1063/1.445869]
[37]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 33-38. 27-28
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570]
[38]
Turner, P.J. XMGRACE, Version 5.1.19, Center For coastal and land-margin research, oregon graduate institute of science and technology, Beaverton, Ore, USA, , 2005.
[39]
Costa, P.M.; Ferreira, P.M. Bolzani, Vda.S.; Furlan, M.; de Freitas Formenton Macedo Dos Santos, V.A.; Corsino, J.; de Moraes, M.O.; Costa-Lotufo, L.V.; Montenegro, R.C.; Pessoa, C. Antiproliferative activity of pristimerin isolated from Maytenus ilicifolia (Celastraceae) in human HL-60 cells. Toxicol. In Vitro, 2008, 22(4), 854-863.
[http://dx.doi.org/10.1016/j.tiv.2008.01.003] [PMID: 18296021]
[40]
Costa-Lotufo, L.V.; Cunha, G.M.; Farias, P.A.; Viana, G.S.; Cunha, K.M.A.; Pessoa, C.; Moraes, M.O.; Silveira, E.R.; Gramosa, N.V.; Rao, V.S.N. The cytotoxic and embryotoxic effects of kaurenoic acid, a diterpene isolated from Copaifera langsdorffii oleo-resin. Toxicon, 2002, 40(8), 1231-1234.
[http://dx.doi.org/10.1016/S0041-0101(02)00128-9] [PMID: 12165328]
[41]
Paulai, F.R.; Serrano, S.H.P.; Tavares, L.C. Aspectos mecanísticos da bioatividade e toxicidade de nitrocompostos. Quim. Nova, 2009, 32(4), 1013-1020.
[http://dx.doi.org/10.1590/S0100-40422009000400032]
[42]
Carvalho, N.C. Evaluation of antineoplastic activity of the ethanolic extract of propolis g6 baiana. 2013. Oswaldo Cruz Foundation, Gonçalo Moniz Research Center, Salvador 2013.(Availalble at:. https://www.arca.fiocruz.br/handle/icict/7631
[43]
Kerr, J.F.; Wyllie, A.H.; Currie, A.R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer, 1972, 26(4), 239-257.
[http://dx.doi.org/10.1038/bjc.1972.33] [PMID: 4561027]
[44]
Alves, R.F.S. Molecular evaluation of mechanisms involved in sensitivity and resistance to BCR-ABL-independent imatinib in chronic myeloid leukemia, 2011.(Available at:. http://hdl.handle.net/10316/25841
[45]
Bigolin, A. Investigation of the mechanism of cell death induced by compounds in cells of hematological neoplasia lines Master, Universidade Federal de Santa Catarina 2016.(Availale at:. https://repositorio.ufsc.br/xmlui/handle/123456789/167857
[46]
Santos, T.R.M. Evaluation of antitumoral activityof Phenylpiperazin compounds in tumor Line K562. 2016.(Available at:. https://www.escavador.com/sobre/4788180/thais-rosa-marques-dos-santos
[47]
Sankari, S.L.; Masthan, K.M.; Babu, N.A.; Bhattacharjee, T.; Elumalai, M. Apoptosis in cancer--An update. Asian Pac. J. Cancer Prev., 2012, 13(10), 4873-4878.
[http://dx.doi.org/10.7314/APJCP.2012.13.10.4873] [PMID: 23244073]
[48]
Wong, R.S. Apoptosis in cancer: from pathogenesis to treatment. J. Exp. Clin. Cancer Res., 2011, 30, 87.
[http://dx.doi.org/10.1186/1756-9966-30-87] [PMID: 21943236]
[49]
Altıntop, M.D.; Temel, H.E.; Sever, B.; Akalın Çiftçi, G.; Kaplancıklı, Z.A. Synthesis and evaluation of new benzodioxole-based thiosemicarbazone derivatives as potential antitumor agents. Molecules, 2016, 21(11), 1598.
[http://dx.doi.org/10.3390/molecules21111598] [PMID: 27879683]
[50]
Pessoto, F.S.; Yokomizo, C.H.; Prieto, T.; Fernandes, C.S.; Silva, A.P.; Kaiser, C.R.; Basso, E.A.; Nantes, I.L. Thiosemicarbazone p-substituted acetophenone derivates promote the loss of mitochondrial Δ, GSH depletion, and death in K562 cells. Oxid. Med. Cell. Longev., 2015.2015394367
[http://dx.doi.org/10.1155/2015/394367] [PMID: 26075034]
[51]
Liu, M.Y.; Xião, L.; Dong, Y.Q.; Liu, Y.; Cai, L.; Xiong, W.X.; Yao, Y.L.; Yin, M.; Liu, Q.H. Characterization of the anticancer effects of S115, a novel heteroaromatic thiosemicarbazone compound, in vitro and in vivo. Acta Pharmacol. Sin., 2014, 35(10), 1302-1310.
[http://dx.doi.org/10.1038/aps.2014.71] [PMID: 25220642]
[52]
Li, J.; Xu, Z.; Tan, M.; Su, W.; Gong, X.G. 3-(4-(Benzo[d]thiazol-2-yl)-1-phenyl-1H-pyrazol-3-yl) phenyl acetate induced Hep G2 cell apoptosis through a ROS-mediated pathway. Chem. Biol. Interact., 2010, 183(3), 341-348.
[http://dx.doi.org/10.1016/j.cbi.2009.12.008] [PMID: 20018182]
[53]
Kamal, A.; Reddy, K.S.; Khan, M.N.A.; Shetti, R.V.; Ramaiah, M.J.; Pushpavalli, S.N.; Srinivas, C.; Pal-Bhadra, M.; Chourasia, M.; Sastry, G.N.; Juvekar, A.; Zingde, S.; Barkume, M. Synthesis, DNA-binding ability and anticancer activity of benzothiazole/benzoxazole-pyrrolo[2,1-c][1,4]benzodiazepine conjugates. Bioorg. Med. Chem., 2010, 18(13), 4747-4761.
[http://dx.doi.org/10.1016/j.bmc.2010.05.007] [PMID: 20627593]
[54]
Silveira, A.L. Characterization of potential anticancer compound of the A398, a novel derivative of podophyllotoxin 2014.(Available at: . https://www.escavador.com/sobre/7740937/aletheia-lacerda-da-silveira).
[55]
Donehower, L.A. Phosphatases reverse p53-mediated cell cycle checkpoints. Proc. Natl. Acad. Sci. USA, 2014, 111(20), 7172-7173.
[http://dx.doi.org/10.1073/pnas.1405663111]. ] [PMID: 24808140]
[56]
Medina, E.M.; Turner, J.J.; Gordân, R.; Skotheim, J.M.; Buchler, N.E. Punctuated evolution and transitional hybrid network in an ancestral cell cycle of fungi. eLife, 2016, 5e, 09492.
[http://dx.doi.org/10.7554/eLife.09492] [PMID: 27162172]
[57]
Pasternak, J.J. Genética molecular humana, 1st ed; Manole: Brazil, 2002.
[58]
Geng, S.; Wu, Q.; Shi, L.; Cui, F. Spectroscopic study one thiosemicarbazone derivative with ctDNA using ethidium bromide as a fluorescence probe. Int. J. Biol. Macromol., 2013, 60, 288-294.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.06.002] [PMID: 23769721]
[59]
Hajian, R.; Huat, T.G. Spectrophotometric studies on the thermodynamics of the ds-DNA interaction with irinotecan for a better understanding of anticancer Drug-DNA interactions. J. Spectrosc., 2013, 2013, 1-8.
[http://dx.doi.org/10.1155/2013/380352]
[60]
Sirajuddin, M.; Ali, S.; Badshah, A. Drug-DNA interactions and their study by UV-Visible, fluorescence spectroscopies and cyclic voltametry. J. Photochem. Photobiol. B, 2013, 124, 1-19.
[http://dx.doi.org/10.1016/j.jphotobiol.2013.03.013] [PMID: 23648795]
[61]
Bathaie, S.Z.; Nikfarjam, L.; Rahmanpour, R.; Moosavi-Movahedi, A.A. Spectroscopic studies of the interaction of aspirin and its important metabolite, salicylate ion, with DNA, A·T and G·C rich sequences. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2010, 77(5), 1077-1083.
[http://dx.doi.org/10.1016/j.saa.2010.08.078] [PMID: 20869297]
[62]
Hajian, R.; Hossaini, P.; Mehrayin, Z.; Woi, P.M.; Shams, N. DNA-binding studies of valrubicin as a chemotherapy drug using spectroscopy and electrochemical techniques. J. Pharm. Anal., 2017, 7(3), 176-180.
[http://dx.doi.org/10.1016/j.jpha.2017.01.003] [PMID: 29404035]
[63]
Chi, Z.; Liu, R.; Sun, Y.; Wang, M.; Zhang, P.; Gao, C. Investigation on the toxic interaction of toluidine blue with calf thymus DNA. J. Hazard. Mater., 2010, 175(1-3), 274-278.
[http://dx.doi.org/10.1016/j.jhazmat.2009.09.160] [PMID: 19864063]
[64]
Wu, X.; Liu, J.; Wang, Q.; Xue, W.; Yao, X.; Zhang, Y.; Jin, J. Spectroscopic and molecular modeling evidence of clozapine binding to human serum albumin at subdomain IIA. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 79(5), 1202-1209.
[http://dx.doi.org/10.1016/j.saa.2011.04.043] [PMID: 21640635]
[65]
da Silva, C.M.; Silva, M.M.; Reis, F.S.; Ruiz, A.L.T.G.; de Carvalho, J.E.; Santos, J.C.C.; Figueiredo, I.M.; Alves, R.B.; Modolo, L.V.; de Fátima, Â. Studies on free radical scavenging, cancer cell antiproliferation, and calf thymus DNA interaction of Schiff bases. J. Photochem. Photobiol. B, 2017, 172, 129-138.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.05.020] [PMID: 28549321]
[66]
Shahabadi, N.; Hadidi, S.; Ghasemian, Z.; Taherpour, A.A.; Racemic, R.; Racemic, R. S-venlafaxine hydrochloride-DNA interaction: experimental and computational evidence. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 145, 540-552.
[http://dx.doi.org/10.1016/j.saa.2015.03.073] [PMID: 25801443]
[67]
Rahman, Y.; Afrin, S.; Husain, M.A.; Sarwar, T.; Ali, A.; Shamsuzzaman, T.M.; Tabish, M. Unravelling the interaction of pirenzepine, a gastrointestinal disorder drug, with calf thymus DNA: An in vitro and molecular modelling study. Arch. Biochem. Biophys., 2017, 625-626, 1-12.
[http://dx.doi.org/10.1016/j.abb.2017.05.014] [PMID: 28558964]
[68]
Das, S.; da Silva, C.J.; Silva, M.M.; Dantas, M.D.A.; de Fátima, Â.; Góis Ruiz, A.L.T.; da Silva, C.M.; de Carvalho, J.E.; Santos, J.C.C.; Figueiredo, I.M.; da Silva-Júnior, E.F.; de Aquino, T.M.; de Araújo-Júnior, J.X.; Brahmachari, G.; Modolo, L.V. Highly functionalized piperidines: Free radical scavenging, anticancer activity, DNA interaction and correlation with biological activity. J. Adv. Res., 2017, 9, 51-61.
[http://dx.doi.org/10.1016/j.jare.2017.10.010] [PMID: 30046486]
[69]
Sarwar, T.; Husain, M.A.; Rehman, S.U.; Ishqi, H.M.; Tabish, M. Multi-spectroscopic and molecular modelling studies on the interaction of esculetin with calf thymus DNA. Mol. Biosyst., 2015, 11(2), 522-531.
[http://dx.doi.org/10.1039/C4MB00636D] [PMID: 25424306]
[70]
Savariz, F.C.; Foglio, M.A.; Ruiz, A.L.; da Costa, W.F. Silva, Mde.M.; Santos, J.C.C.; Figueiredo, I.M.; Meyer, E.; de Carvalho, J.E.; Sarragiotto, M.H. Synthesis and antitumor activity of novel 1-substituted phenyl 3-(2-oxo-1,3,4-oxadiazol-5-yl) β-carbolines and their Mannich bases. Bioorg. Med. Chem., 2014, 22(24), 6867-6875.
[http://dx.doi.org/10.1016/j.bmc.2014.10.031] [PMID: 25464885]
[71]
Manikandan, R.; Viswanathamurthi, P.; Velmurugan, K.; Nandhakumar, R.; Hashimoto, T.; Endo, A. Synthesis, characterization and crystal structure of cobalt(III) complexes containing 2-acetylpyridine thiosemicarbazones: DNA/protein interaction, radical scavenging and cytotoxic activities. J. Photochem. Photobiol. B, 2014, 130, 205-216.
[http://dx.doi.org/10.1016/j.jphotobiol.2013.11.008] [PMID: 24342132]
[72]
Ramana, M.M.; Betkar, R.; Nimkar, A.; Ranade, P.; Mundhe, B.; Pardeshi, S. In vitro DNA binding studies of antiretroviral drug nelfinavir using ethidium bromide as fluorescence probe. J. Photochem. Photobiol. B, 2015, 151, 194-200.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.08.012] [PMID: 26310356]
[73]
Marques, R.A.; Gomes, A.O.C.V.; de Brito, M.V.; Dos Santos, A.L.P.; da Silva, G.S.; de Lima, L.B.; Nunes, F.M.; de Mattos, M.C.; de Oliveira, F.C.E.; do Ó Pessoa, C.; de Moraes, M.O.; de Fátima, Â.; Franco, L.L.; Silva, M.M.; Dantas, M.D.A.; Santos, J.C.C.; Figueiredo, I.M.; da Silva-Júnior, E.F.; de Aquino, T.M.; de Araújo-Júnior, J.X.; de Oliveira, M.C.F.; Leslie Gunatilaka, A.A. Annonalide and derivatives: Semisynthesis, cytotoxic activities and studies on interaction of annonalide with DNA. J. Photochem. Photobiol. B, 2018, 179, 156-166.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.01.016] [PMID: 29413989]
[74]
Silva, M.M.; Nascimento, E.O.O.; Silva, E.F.; Araújo, J.X.; Santana, C.C.; Grillo, L.A.M.; de Oliveira, R.S.; R.R., Costa P.; Buarque, C.D.; Santos, J.C.C.; Figueiredo, I.M. Interaction between bioactive compound 11a-N-tosyl-5-deoxi-pterocarpan (LQB-223) and Calf thymus DNA: Spectroscopic approach, electrophoresis and theoretical studies. Int. J. Biol. Macromol., 2017, 96, 223-233.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.12.044] [PMID: 27988296]
[75]
Silva, M.M.; Savariz, F.C.; Silva-Júnior, E.F.; de Aquino, T.M.; Sarragiotto, M.H.; Santos, J.C.C.; Figueiredo, I.M. Interaction of β-carbolines with DNA: Spectroscopic studies, correlation with biological activity and molecular docking. J. Braz. Chem. Soc., 2016, 27(9), 1558-1568.
[http://dx.doi.org/10.5935/0103-5053.20160035]
[76]
Zhang, Y.Z.; Zhou, B.; Zhang, X.P.; Huang, P.; Li, C.H.; Liu, Y. Interaction of malachite green with bovine serum albumin: determination of the binding mechanism and binding site by spectroscopic methods. J. Hazard. Mater., 2009, 163(2-3), 1345-1352.
[http://dx.doi.org/10.1016/j.jhazmat.2008.07.132] [PMID: 18786760]
[77]
Qais, F.A.; Abdullah, K.M.; Alam, M.M.; Naseem, I.; Ahmad, I. Interaction of capsaicin with calf thymus DNA: A multi-spectroscopic and molecular modelling study. Int. J. Biol. Macromol., 2017, 97, 392-402.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.022] [PMID: 28104368]
[78]
Kundu, P.; Chattopadhyay, N. Interaction of a bioactive pyrazole derivative with calf thymus DNA: Deciphering the mode of binding by multi-spectroscopic and molecular docking investigations. J. Photochem. Photobiol. B, 2017, 173, 485-492.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.06.022] [PMID: 28668517]
[79]
Wilhelm, M.; Mukherjee, A.; Bouvier, B.; Zakrzewska, K.; Hynes, J.T.; Lavery, R. Multistep drug intercalation: molecular dynamics and free energy studies of the binding of daunomycin to DNA. J. Am. Chem. Soc., 2012, 134(20), 8588-8596.
[http://dx.doi.org/10.1021/ja301649k] [PMID: 22548344]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy