[1]
Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med., 2012, 4(165), 1-9.
[2]
Alangaden, G.J. Nosocomial fungal infections: Epidemiology, infection control, and prevention. Infect. Dis. Clin. North Am., 2011, 25(1), 201-225.
[3]
Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and multi-national prevalence of fungal diseases-estimate precision. J. Fungi., 2017, 3(4), 57.
[4]
Richardson, M.D. Changing patterns and trends in systemic fungal infections. J. Antimicrob. Chemother., 2005, 56(Suppl. 1), 1-7.
[5]
Pfaller, M.A.; Diekema, D.J. Epidemiology of invasive mycoses in North America. Crit. Rev. Microbiol., 2010, 36(1), 1-53.
[6]
Rajasingham, R.; Smith, R.M.; Park, B.J.; Jarvis, J.N.; Govender, N.P.; Chiller, T.M.; Denning, D.W.; Loyse, A.; Boulware, D.R. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect. Dis., 2017, 17(8), 873-881.
[7]
Kanafani, Z.A.; Perfect, J.R. Resistance to antifungal agents: mechanisms and clinical impact. Clin. Infect. Dis., 2008, 46(1), 120-128.
[8]
Mesa-Arango, A.C.; Scorzoni, L.; Zaragoza, O. It only takes one to do many jobs: Amphotericin B as antifungal and immunomodulatory drug. Front. Microbiol., 2012, 3(286), 1-10.
[9]
Silva, L.N.; Mello, T.P.; Ramos, L.S.; Branquinha, M.H.; Santos, A.L.S. New and promising chemotherapeutics for emerging infections involving drug-resistant non-albicans Candida species. Curr. Top. Med. Chem., 2019in press.
[10]
Coelho, C.; Casadevall, A. Cryptococcal therapies and drug targets: the old, the new and the promising. Cell. Microbiol., 2016, 18(6), 792-799.
[11]
Vincent, B.M.; Lancaster, A.K.; Scherz-Shouval, R.; Whitesell, L.; Lindquist, S. Fitness trade-offs restrict the evolution of resistance to amphotericin B. PLoS Biol., 2013, 11(10), 1-17.
[12]
Hamill, R.J. Amphotericin B formulations: A comparative review of efficacy and toxicity. Drugs, 2013, 73(9), 919-934.
[13]
Whaley, S.G.; Berkow, E.L.; Rybak, J.M.; Nishimoto, A.T.; Barker, K.S.; Rogers, P.D. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front. Microbiol., 2017, 7(2173), 1-12.
[14]
Verweij, P.E.; Chowdhary, A.; Melchers, W.J.G.; Meis, J.F. Azole resistance in Aspergillus fumigatus: Can we retain the clinical use of mold-active antifungal azoles? Clin. Infect. Dis., 2016, 62(3), 362-368.
[15]
Van Der Linden, J.W.; Warris, A.; Verweij, P.E. Aspergillus species intrinsically resistant to antifungal agents. Med. Mycol., 2011, 49(1), 1-8.
[16]
Chang, C.C.; Slavin, M.A.; Chen, S.C. New developments and directions in the clinical application of the echinocandins. Arch. Toxicol., 2017, 91(4), 1613-1621.
[17]
Sucher, A.J.; Chahine, E.B.; Balcer, H.E. Echinocandins: The newest class of antifungals. Ann. Pharmacother., 2009, 43(10), 1647-1657.
[18]
Arendrup, M.C.; Perlin, D.S. Echinocandin resistance: An emerging clinical problem? Curr. Opin. Infect. Dis., 2014, 27(6), 484-492.
[19]
Chowdhary, A.; Sharma, C.; Meis, J.F. Candida auris: A rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathog., 2017, 13(5), 1-10.
[20]
Cortegiani, A.; Misseri, G.; Fasciana, T.; Giammanco, A.; Giarratano, A.; Chowdhary, A. Epidemiology, clinical characteristics, resistance, and treatment of infections by Candida auris. J. Intensive Care, 2018, 6(69), 1-13.
[21]
Mello, T.P.; Bittencourt, V.C.B.; Liporagi-Lopes, L.C.; Aor, A.C.; Branquinha, M.H.; Santos, A.L.S. Insights into the social life and obscure side of Scedosporium/Lomentospora species: Ubiquitous, emerging and multidrug-resistant opportunistic pathogens. Fungal Biol. Rev., 2019, 33(1), 16-46.
[22]
Scorzoni, L. de Paula e Silva, A.C.A.; Marcos, C.M.; Assato, P.A.; de Melo, W.C.M.A.; de Oliveira, H.C.; Costa-Orlandi, C.B.; Mendes-Giannini, M.J.S.; Fusco-Almeida, A.M. Antifungal therapy: New advances in the understanding and treatment of mycosis. Front. Microbiol., 2017, 8(36), 1-23.
[23]
Miceli, M.H.; Kauffman, C.A. Isavuconazole: A new broad-spectrum triazole antifungal agent. Clin. Infect. Dis., 2015, 61(10), 1558-1565.
[24]
Sheng, C.; Zhang, W. New lead structures in antifungal drug discovery. Curr. Med. Chem., 2011, 18(5), 733-766.
[25]
Josefino, T.B. ACEA Biotech, Inc., San Francisco, US. Antifungal and antiparasitic polyene macrolides. US 9212201. 2015.
[26]
Kang, S.J.; Park, S.J.; Mishig-Ochir, T.; Lee, B.J. Antimicrobial peptides: therapeutic potentials. Expert Rev. Anti Infect. Ther., 2014, 12(12), 1477-1486.
[27]
Randal, E.H.; Chris, K.; Jian, He.; Daniel, Y.K.; Maxwell, A.; Jee-Hyun, S. C3 Jian, Inc., Marina Del Rey, California, US. Antibacterial and antifungal peptides. US 9072793. 2015.
[28]
Sean, P.P.; Samuel, G.H.; William, P.C. Wisconsin Alumni Research Foundation, Madison, US. Beta-peptides with antifungal activity. US 9168329. 2015.
[29]
Stefania, G.; Simone, D.S.; Federico, M. Michela, l. Polichem, S.A, Luxembourg. Secondary 8-hydroxyquinoline-7-carboxamide derivatives for use as antifungal agents. US 8969380. 2015.
[30]
David, J.O.; Leslie, T.J.; John, B.M.; Mornis, S.G.E.; Michael, B. F2G Limited British Body Corporate, Manchester, Great Britain. Dihydroorotate deshydrogenase as antifungal drug target and quinazolinone-based inhibitors. US 9034887. 2015.
[31]
James, P.L.; Robert, D.; Morris, S.G.E.; Philip, E.; Morse, D.G. F2G Limited British Body Corporate, Manchester, Great Britain. 2-oxo-2-(2-phenyl- 5,6,7,8-tettrahydro-indolizin-3-yl)-acetamide derivatives and related compounds as antifungal agents. US 8524705. 2013.
[32]
Morris, S.G.E.; Robert, D.; James, P.L.; Derek, L.; David, O.J.; Mike, B.; Morse, D.G. F2G Limited British Body Corporate, Manchester, Great Britain. Pyrrole antifungal agents. EP 2283006. 2015.
[33]
Lieven, M.; Marie, M.L.J.R.; Kelly, D.W. Janssen Pharmaceutica, Beerse, BE. Novel antifungal 5,6-dihydro4H-pyrrolo[1,2-α][1,4]-benzodiazepines and 6H-pyrrolo [1,2-α]][1,4] benzodiazepines substituted with bycyclic benzene derivatives. EP 2668187. 2014.
[34]
Warrilow, A.G.S.; Hull, C.M.; Parker, J.E.; Garvey, E.P.; Hoekstra, W.J.; Moore, W.R.; Schotzinger, R.J.; Kelly, D.E.; Kelly, S.L. The clinical candidate VT-1161 is a highly potent inhibitor of Candida albicans CYP51 but fails to bind the human enzyme. Antimicrob. Agents Chemother., 2014, 58(12), 7121-7127.
[35]
Garvey, E.P.; Hoekstra, W.J.; Moore, W.R.; Schotzinger, R.J.; Long, L.; Ghannoum, M.A. VT-1161 dosed once daily or once weekly exhibits potent efficacy in treatment of dermatophytosis in a guinea pig model. Antimicrob. Agents Chemother., 2015, 59(4), 1992-1997.
[36]
Lockhart, S.R.; Fothergill, A.W.; Iqbal, N.; Bolden, C.B.; Grossman, N.T.; Garvey, E.P.; Brand, S.R.; Hoekstra, W.J.; Schotzinger, R.J.; Ottinger, E.; Patterson, T.F.; Wiederhold, N.P. The investigational fungal Cyp51 inhibitor VT-1129 demonstrates potent in vitro activity against Cryptococcus neoformans and Cryptococcus gattii. Antimicrob. Agents Chemother., 2016, 60(4), 2528-2531.
[37]
Locke, J.B.; Almaguer, A.L.; Zuill, D.E.; Bartizal, K. Characterization of in vitro resistance development to the novel echinocandin CD101 in Candida species. Antimicrob. Agents Chemother., 2016, 60(10), 6100-6107.
[38]
Gonzalez-Lara, M.F.; Sifuentes-Osornio, J.; Ostrosky-Zeichner, L. Drugs in clinical development for fungal infections. Drugs, 2017, 77(14), 1505-1518.
[39]
Watanabe, N.A.; Miyazaki, M.; Horii, T.; Sagane, K.; Tsukahara, K.; Hata, K. E1210, a new broad-spectrum antifungal, suppresses Candida albicans hyphal growth through inhibition of glycosylphosphatidylinositol biosynthesis. Antimicrob. Agents Chemother., 2012, 56(2), 960-971.
[40]
Mitsuyama, J.; Nomura, N.; Hashimoto, K.; Yamada, E.; Nishikawa, H.; Kaeriyama, M.; Kimura, A.; Todo, Y.; Narita, H. In vitro and in vivo antifungal activities of T-2307, a novel arylamidine. Antimicrob. Agents Chemother., 2008, 52(4), 1318-1324.
[41]
Nishikawa, H.; Yamada, E.; Shibata, T.; Uchihashi, S.; Fan, H.; Hayakawa, H.; Nomura, N.; Mitsuyama, J. Uptake of T-2307, a novel arylamidine, in Candida albicans. J. Antimicrob. Chemother., 2010, 65(8), 1681-1687.
[42]
Shibata, T.; Takahashi, T.; Yamada, E.; Kimura, A.; Nishikawa, H.; Hayakawa, H.; Nomura, N.; Mitsuyama, J. T-2307 causes collapse of mitochondrial membrane potential in yeast. Antimicrob. Agents Chemother., 2012, 56(11), 5892-5897.
[43]
Nakamura, I.; Yoshimura, S.; Masaki, T.; Takase, S.; Ohsumi, K.; Hashimoto, M.; Furukawa, S.; Fujie, A. ASP2397: A novel antifungal agent produced by Acremonium persicinum MF-347833. J. Antibiot. (Tokyo), 2017, 70(1), 45-51.