[1]
Teles, R.B.A.; Diniz, T.C.; Pinto, T.C.C.; De Oliveira, Jr., R.G.; Silva, M.G. Flavonoids as therapeutic agents in Alzheimer’s and Parkinson’s diseases: A systematic review of preclinical evidences. Oxid. Med. Cell. Longev., 2018, 2018, 7043213.
[2]
O’Brien, R.J.; Wong, P.C. Amyloid precursor protein preocessing and Alzheimer’s disease. Annu. Rev. Neurosci., 2011, 34, 185-204.
[3]
Nussbaum, R.L.; Mcinnes, R.R.; Willard, H. F. Genética Médica, 7th ed. Elsevier: Rio de Janeiro. 2008.
[4]
Makhouri, F.R.; Ghasemi, J.B.G. In Silico studies in drug research against neurodegenerative diseases. Curr. Neuropharmacol., 2018, 16(6), 664-723.
[6]
Floyd, R.; Hensley, K. Oxidative stress in brain aging implications for therapeutics of neurodegenerative diseases. Neurobiol. Aging, 2002, 23(5), 795-807.
[7]
Harman, D. Aging: A theory based on free radical and radiation chemistry. Sci. Aging Knowl. Environ., 2002, 37, 14-17.
[8]
Ghareeb, D.A.; Elahwany, A.M.D.; El-Mallawany, S.M.; Saif, A.A. In vitro screening for anti-acetylcholiesterase, anti-oxidant, anti-glucosidase, anti-inflammatory and anti-bacterial effect of three traditional medicinal plants. Biotechnol. Biotechnol. Equip., 2014, 28(6), 1155-1164.
[9]
Cedrim, P.C.A.S.; Barros, E.M.A.; Do Nascimento, T.G. Propriedades antioxidantes do açaí (Euterpe oleracea) na síndrome metabólica. Braz. J. Food. Technol., 2018, 21, 1-7.
[10]
Prince, M.; Wimo, A.; Guerchet, M.; Ali, G.C.; Wu, Y.T.; Prina, M. World Alzheimer’s Report 2015: The Global Impact of Dementia. An Analysis of Prevalence, Incidence, Cost and Trends; Alzheimer’s Disease International: London, 2015.
[11]
Zufferey, V.; Donati, A.; Popp, J.; Meuli, R.; Rossier, J.; Frackowiak, R.; Draganski, B.; Von-Gunten, A.; Kherif, F. Neuroticism, depression, and anxiety traits exacerbate the state of cognitive impairment and hippocampal vulnerability to Alzheimer’s disease. Alzheimers Dement. (Amst.), 2017, 7, 107-114.
[12]
Tan, R.H.; Kril, J.J.; Yang, Y.; Tom, N.; Hodges, J.R.; Villemagne, V.L.; Rowe, C.C.; Leyton, C.E.; Kwok, J.B.J.; Ittner, L.M.; Halliday, G.M. Assessment of amyloid b in pathologically confirmed frontotemporal dementia syndromes. Alzheimers Dement. (Amst.), 2017, 9, 10-20.
[13]
Picanço, L.C.S.; Ozela, P.F.; Brito, M.F.B.; Pinheiro, A.A.; Padilha, E.C.; Braga, F.S.; Da Silva, C.H.T.P.; Dos Santos, C.B.R.; Rosa, J.M.C.; Hage-Melim, L.I. da Silva. Alzheimer’s disease: A review from the pathophysiology to diagnosis, new perspectives for pharmacological treatment. Curr. Med. Chem., 2017, 24, 1-19.
[14]
Piechotta, A.; Parthier, C.; Kleinschmidt, M.; Gnoth, K.; Pillot, T.; Lues, I.; Demuth, H.U.; Schilling, S.; Rahfeld, J.U.; Stubbs, M.T. Structural and functional analyses of pyroglutamate-Amyloid-β-Specific antibodies as a basis for Alzheimer immunotherapy. JBC, 2017, 292(30), 12713-12724.
[15]
Akram, M.; Allah, N. Effects of medicinal plants on Alzheimer’s disease and memory deficits. Neural Regen. Res., 2017, 4(12), 660-670.
[16]
Savica, R.; Grossardt, B.R.; Rocca, W.A.; Bower, J.H. Parkinson disease with and without dementia: A prevalence study and future projections. Mov. Disord., 2018, 33(4), 537-543.
[17]
Bhattacharjee, S. Impulse control disorders in Parkinson’s disease: Review of pathophysiology, epidemiology, clinical features, management, and future challenges. Neurol. India, 2018, 66(4), 967-975.
[18]
Sveinbjornsdottir, S. The clinical symptoms of parkinson’s disease. J. Neurochem., 2016, 1, 318-324.
[19]
Rizek, P.; Kumar, N.; Jog, M.S. An update on the diagnosis and treatment of Parkinson disease. CMAJ, 2016, 188(16), 1157-1165.
[20]
Zhuo, C.; Xue, R.; Luo, L.; Ji, F.; Tian, H.; Qu, H.; Lin, X.; Jiang, R.; Tao, R. Efficacy of antidepressive medication for depression in Parkinson disease: A network meta-analysis. Medicine (Baltimore), 2017, 96(22), 1-11.
[21]
Yuan, M.; Sperry, L.; Malhado-Chang, N.; Duffy, A.; Wheelock, V.; Farias, S.; O’Connor, K.; Olichney, J.; Shahlaie, K.; Zhang, L. Atypical antipsychotic therapy in parkinson’s disease psychosis: A retrospective study. Brain Behav., 2017, 7(6), 1-6.
[22]
Perez-Pardo, P.; Kliest, T.; Dodiya, H.B.; Broersen, L.M.; Garssen, J.; Keshavarzian, A.; Kraneveld, A.D. The gut-brain axis in Parkinson’s disease: Possibilities for food-based therapies. Eur. J. Pharmacol., 2017, 817, 86-95.
[23]
Abeliovich, A.; Gitler, A.D. Defects in trafficking bridge Parkinson’s disease pathology and genetics. Nat. Insight, 2016, 539(7628), 207-216.
[24]
Riek, R.; Eisenberg, D.S. The activities of amyloids from a structural perspective. Nat. Insight, 2016, 539(7628), 227-235.
[25]
Shal, B.; Ding, W.; Ali, H.; Kim, Y.S.; Khan, S. Anti-neuroinflammatory potential of natural products in attenuation of alzheimer’s disease. Front. Pharmacol., 2018, 9(548), 1-17.
[26]
Dornas, W.C.; Oliveira, T.T. Rodrigues-das-Dores, R.G.; Santos, A.F.; Nagem, T.J. Flavonoides: Potencial terapêutico no estresse oxidativo. Rev. Cienc. Farm. Basica Apl., 2007, 28(3), 241-249.
[27]
Campos, M.T.G.; Leme, F.O.P. Oxidative stress: Pathophysiology and laboratory diagnosis. PUBVET, 2018, 12(1), 1-8.
[28]
Barreiros, A.L.B.S.; David, J.M.; David, J.P. Oxidative stress: relationship between generation of reactive species and defense of the organism. Quim. Nova, 2006, 29(1), 113-123.
[29]
Ferrer, I.; Martinez, A.; Blanco, R.; Dalfó, E.; Carmona, M. Neuropathology of sporadic parkinson disease before the appearance of parkinsonism: Preclinical parkinson disease. J. Neural Trans., 2011, 118(5), 821-839.
[30]
Camm, E.J.; Tijsseling, D.; Richter, H.G.; Adler, A.; Hansell, J.A.; Derks, J.B.; Cross, C.M.; Giussani, D.A. Oxidative stress in the developing brain: Effects of postnatal glucocorticoid therapy and antioxidants in the rat. PLoS One, 2011, 6(6), 1-9.
[31]
Seo, J.S.; Park, J.Y.; Choi, J.; Kim, T.K.; Shin, J.H.; Lee, J.K.; Han, P.L. NADPH oxidase mediates de pressive behavior induced by chronic stress in mice. J. Neurosci., 2012, 32(28), 9690-9699.
[32]
Suwanjang, W.; Abramov, A.Y.; Govitrapong, P.; Chetsawang, B. Melatonin attenuates dexamethasone toxicity induced oxidative stress, calpain and caspase activation in human neuroblastoma SH-SY5Y cells. J. Steroid Biochem. Mol. Biol., 2013, 138, 116-122.
[33]
Petruk, G.; Illiano, A.; Del Giudice, R.; Raiola, A.; Amoresano, A.; Rigano, M.M.; Piccoli, R.; Monti, D.M. Malvidin and cyanidin derivatives from açaí fruit (Euterpe oleracea Mart.) counteract UV-A-induced oxidative stress in immortalized fibroblasts. J. Photochem. Photobiol. B Biol., 2017, 172, 42-51.
[34]
Aghagolzadeh, M.; Moghaddam, A.; Seyedalipour, B. Olive leaf extract reverses the behavioral disruption and oxidative stress induced by intrasrtiatal injectioin of 6-hydroxydopamine in rats. Web Sci., 2017, 21(1), 44-53.
[35]
Bhat, A.H.; Dar, K.B.; Anees, S.; Zargar, M.A.; Masood, A.; Sofi, M.A.; Ganie, S.A. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases: A mechanistic insight. Biomed. Pharmacother., 2015, 74, 101-110.
[36]
Thanan, R.; Oikawa, S.; Hiraku, Y.; Ohnishi, S.; Ma, N.; Pinlaor, S.; Yongvanit, P.; Kawanishi, S.; Murata, M. Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int. J. Mol. Sci., 2015, 16, 193-217.
[37]
Hussain, G.; Zhang, L.; Rasul, A.; Anwar, H.; Sohail, M.U.; Razzaq, A.; Aziz, N.; Shabbir, A.; Ali, M.; Sun, T. Role of plant-derived flavonoids and their mechanism in attenuation of Alzheimer’s and parkinson’s diseases: An update of recent data. Molecules, 2018, 23, 814.
[38]
Oikawa, S.; Kobayashi, H.; Kitamura, Y.; Zhu, H.; Obata, K.; Minabe, Y.; Dazortsava, M.; Ohashi, K.; Tada-Oikawa, S.; Takahashi, H.; Yata, K.; Murata, M.; Yamashima, T. Proteomic analysis of carbonylated proteins in the monkey substantia nigra after ischemia-reperfusion. Free Radic. Res., 2014, 48(6), 694-705.
[39]
Mishra, C.B.; Manral, A.; Kumari, S.; Saini, V.; Tiwari, M. Design, synthesis and evaluation of novel indandione derivatives as multifunctional agents with cholinesterase inhibition, anti-bamyloid aggregation, antioxidant and neuroprotection properties against Alzheimer’s disease. Bioorg. Med. Chem., 2016, 24, 3829-3841.
[40]
Markesbery, W.R. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic. Biol. Med., 1997, 23(1), 134-147.
[41]
Halliwell, B. The antioxidant paradox. Lancet, 2000, 355, 1179.
[42]
Finland, J.; Lac, G.E.; Filaire, E. Oxidative stress: Relationship with exercise and training. Sports Med., 2006, 36, 327-358.
[43]
Devi, S.A.; Manjula, K.R.; Subramanyam, M.V.V. Protective role of vitamins E and C against oxidative stress caused by intermittent cold exposure in aging rat’s frontoparietal cortex. Neurosci. Lett., 2012, 529(2), 155-160.
[44]
Harrison, F.E.; May, J.M. Vitamin C function in the brain: Vital role of the ascorbate transporter SVCT2. Free Radic. Biol. Med., 2009, 46(6), 719-730.
[45]
D’Oliveira, F.A.; Frank, A.A.; Soares, E.A. A influência dos minerais na doença de Parkinson. Nutrir. Rev. Soc. Bras. Alim. Nutri., 2007, 32(1), 77-88.
[46]
Dolinsky, M. Nutrição funcional; Roca: São Paulo, 2009.
[47]
Cerqueira, F.M.; Medeiros, M.H.G.; Augusto, O. Antioxidantes dietéticos: Controvérsias e perspectivas. Quim. Nova, 2007, 30(2), 441-449.
[48]
Kolahdouzan, M.; Hamadeh, M.J. The neuroprotective effects of caffeine in neurodegenerative diseases. CNS Neurosci. Ther., 2017, 23(4), 272-290.
[49]
Anandhan, A.; Tamilselvam, K.; Radhiga, T.; Rao, S.; Essa, M.M.; Manivasagam, T. Theaflavin, a black tea polyphenol, protects nigral dopaminergic neurons against chronic MPTP/probenecid induced parkinson’s disease. Brain Res., 2012, 1433, 104-113.
[50]
Guo, S.; Yan, J.; Yang, T.; Yang, X.; Bezard, E.; Zhao, B. Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson’s disease through inhibition of ROS NO pathway. Biol. Psychiatry, 2007, 62, 1353-1362.
[51]
Karuppagounder, S.S.; Madathil, S.K.; Pandey, M.; Haobam, R.; Rajamma, U.; Mohanakumar, K.P. Quercetin up-regulates mitochondrial complex- I activity to protect against programmed cell death in rotenone model of parkinson’s disease in rats. J. Neurosci., 2013, 236, 136-148.
[52]
Kim, H.G.; Ju, M.S.; Shim, J.S.; Kim, M.C.; Lee, S.H.; Huh, Y.; Kim, S.Y.; Oh, M.S. Mulberry fruit protects dopaminergic neurons in toxin-induced Parkinson’s disease models. Br. J. Nutr., 2010, 104, 8-16.
[53]
Strathearn, K.E.; Yousef, G.G.; Grace, M.H.; Roy, S.L.; Tame, M.A.; Ferruzzi, M.G.; Wu, Q.; Simon, J.E.; Lila, M.A.; Rochet, J. Neuroprotective effects of anthocyaninand proanthocyanidin-rich extracts in cellular models of Parkinson׳s disease. Brain Res., 2014, 25(1555), 60-77.
[54]
Teixeira, M.D.Azevedo Efeito neuroprotetor da catequina e do
estresse de imobilização subcrônico na doença de parkinson experimental.
205 p. Tese (Doutorado em Farmacologia)- Programa de
Pós-Graduação em Farmacologia, Universidade Federal do Ceará , 2011.
[55]
Santos, A.C.A.; Marques, M.M.P.; Soares, A.K.O.; Farias, L.M.; Ferreira, A.K.A.; Carvalho, M.L. Potencial antioxidante de antocianinas em fontes alimentares: Revisão sistemática. R. Interd, 2014, 7(3), 149-156.
[56]
Wong, D.Y.S.; Musgrave, I.F.; Harvey, B.S.; Smid, S.D. Açaí (Euterpe oleracea Mart.) berry extract exerts neuroprotective effects against β-amyloid exposure in vitro. Neurosci. Lett., 2013, 556, 221-226.
[57]
Alqurashi, Randah M.; Alarifi, Sehad N.; Walton, Gemma E.; Costabile, Adele F.; Rowland, Ian R.; Commane, Daniel M. In vitro approaches to assess the effects of açaí (Euterpe oleracea) digestion on polyphenol availability and the subsequent impact on the faecal microbiota. Food Chem., 2017, 234, 190-198.
[58]
Yamaguchi, K.K.L.; Pereira, L.F.R.; Lamarão, C.V.; Lima, E.S.; Veiga-Junior, V.F. Amazon açaí: Chemistry and biological activities: A review. Food Chem., 2015, 179, 137-151.
[59]
Kang, J.; Li, Z.; Wu, T.; Jensen, G.S.; Schauss, A.G.; Wu, X. Anti-oxidant capacities of flavonoid compounds isolated from açaí pulp (Euterpe oleracea Mart.). Food Chem., 2010, 122, 610-617.
[60]
Jensen, G.S.; Wu, X.; Patterson, K.M.; Barnes, J.; Carter, S.G.; Scherwitz, L. In vitro and in vivo antioxidant and anti-inflammatory capacities of an antioxidant-rich fruit and berry juice blend. Results of a pilot and randomized, double-blinded, placebo-controlled, crossover study. J. Agric. Food Chem., 2008, 56(18), 8326-8333.
[61]
Mertens-Talcott, S.U.; Rios, J.; Jilma-Stohlawetz, P.; Pacheco-Palencia, L.A.; Meibohm, B.; Talcott, S.T. Pharmacokinetics of anthocyanins and antioxidant effects after the consumption of anthocyanin-rich açaí juice and pulp (Euterpe oleracea Mart.) in human healthy volunteers. J. Agric. Food Chem., 2008, 56, 7796-7802.
[62]
Garzón, G.A.; Narváez-Cuenca, C.E.; Vincken, J.P.; Gruppen, H. Polyphenolic composition and antioxidant activity of açaí (Euterpe oleracea Mart.) from Colombia. Food Chem., 2017, 217, 364-372.
[63]
Ford, C.T.; Richardson, S.; Mcardle, F.; Lotito, S.B.; Crozier, A.; Mcardle, A.; Jackson, M.J. Identification of (poly)phenol treatments that modulate the release of pro-inflammatory cytokines by human lymphocytes. Br. J. Nutr., 2016, 115, 1699-1710.
[64]
Pala, D.; Barbosa, P.O.; Silva, C.T.; Souza, M.O.; Freitas, F.R.; Volp, A.C.P.; Maranhão, R.C.; Freitas, R.N. Açaí (Euterpe oleracea Mart.) dietary intake affects plasma lipids, apolipoproteins, cholesteryl ester transfer to high-density lipoprotein and redox metabolism: A prospective study in women. Clin. Nutr., 2018, 37, 618-623.
[65]
Cambrussi, A.N.C.O.; Da Conceição, I.D.; Freitas, A.R.; Dos Santos, P.S.; De Sousa, R.R.M.; Eiras, C.; Ribeiro, A.B. O papel da nanotecnologia na redução do estresse oxidativo: Uma revisão. Bolet. Inform. Geum, 2018, 9(2), 1-11.
[66]
Choi, D.Y.; Lee, Y.J.; Hong, J.T.; Lee, H.J. Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer’s disease. Brain Res. Bull., 2012, 87(2), 144-153.
[67]
Fortalezas, S. Tavares, Lucélia, Pimpão, Rui; Tyagi, Meenu; Pontes, Vera; Alves, P.M.; Gordon, M.D.; Stewart, D.; Ferreira, R.B.; Santos, C.N. Antioxidant Properties and Neuroprotective Capacity of Strawberry Tree Fruit (Arbutus unedo). Nutrients, 2010, 2(2), 214-229.
[68]
Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. Am. J. Clin. Nutr., 2005, 81, 230-242.
[69]
Ganesan, P.; Ko, H.M.; Kim, I.S.; Choi, D.K. Recent trends in the development of nanophytobioactive compounds and delivery systems for their possible role in reducing oxidative stress in parkinson’s disease models. Int. J. Nanomedicine, 2015, 10, 6757.
[70]
Ghosh, A.; Mandal, A.K.; Sarkar, S.; Panda, S.; Das, N. Nanoencapsulation of quercetin enhances its dietary efficacy in combating arsenic-induced oxidative damage in liver and brain of rats. Life Sci., 2009, 84(3-4), 75-80.
[71]
Huang, Q.; Yu, H.; Ru, Q. Bioavailability and delivery of nutraceuticals using nanotechnology. J. Food Sci., 2010, 75(1), R50-R57.
[72]
Tsai, Y.M.; Jan, W.C.; Chien, C.F.; Lee, W.C.; Lin, L.C.; Tsai, T.H. Optimised nano-formulation on the bioavailability of hydrophobic polyphenol, curcumin, in freely-moving rats. Food Chem., 2011, 127(3), 918-925.
[73]
Li, L.; Braiteh, F.S.; Kurzrock, R. Liposome-encapsulated curcumin. Cancer, 2005, 104, 1322-1331.
[74]
Min, J.W.; Hu, J.J.; He, M.; Sanchez, R.M.; Huang, W.X.; Liu, Y.Q.; Bsoul, N.B.; Han, S.; Yin, J.; Liu, W.H.; He, X.H.; Peng, B.W. Vitexin reduces hypoxia-ischemia neonatal brain injury by the inhibition of HIF-1alpha in a rat pup model. Neuropharmacology, 2015, 99, 38-50.
[75]
Abbasi, E.; Nassiri-asl, M.; Sheikhi, M.; Shafiee, M. Effects of vitexin on scopolamine-induced memory impairment in rats. Chin. J. Physiol., 2013, 56(3), 184-189.
[76]
Oztanir, M.N.; Ciftci, O.; Cetin, A.; Aladag, M.A. Hesperidin attenuates oxidative and neuronal damage caused by global cerebral ischemia/reperfusion in a C57BL/J6 mouse model. Neurol. Sci., 2014, 35(9), 1393-1399.
[77]
Rong, Z.; Pan, R.; Xu, Y.; Zhang, C.; Cao, Y.; Liu, D. Hesperidin pretreatment protects hypoxia-ischemic brain injury in neonatal rat. Neuroscience, 2013, 255, 292-299.
[78]
Gaur, V.; Kumar, A. Hesperidin pre-treatment attenuates NO-mediated cerebral ischemic reperfusion injury and memory dysfunction. Pharmacol. Rep., 2010, 62(4), 635-648.
[79]
Heo, H.J.; Kim, S.C.; Shin, M.J.; Kim, B.G.; Kim, D.H.S. Effect of antioxidant flavanone, naringenin, from Citrus junoson neuroprotection. J. Agric. Food Chem., 2004, 52, 1520-1525.
[80]
Hua, L.; Xiaoyu, W.L.; Peihong, L.; Hua, W. Polyphenolic compounds and antioxidant properties of selected China wines. Food Chem., 2009, 112, 454-460.
[81]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5(47), 1-15.
[82]
Nielsen, I.L.F.; Chee, W.S.; Poulsen, L.; Offord-Cavin, E.; Rasmussen, S.E.; Frederiksen, H.; Enslen, M.; Barron, D.; Horcajada, M.N.; Williamson, G. Bioavailability is improved by enzymatic modification of the citrus flavonoid hesperidin in humans: A randomized, double-blind, crossover trial. J. Nutr., 2006, 136(2), 404-408.
[83]
Vrbovská, H.; Babincová, M. Comparative analysis of synthetic and nutraceutical antioxidants as possible neuroprotective agents. Pharmazie, 2016, 71(12), 724-726.
[84]
Dornas, W.C.; Oliveira, T.T. Rodrigues-das-Dores, R.G.; Santos, A.F.; Nagem, T.J. Flavonoides: Potencial terapêutico no estresse oxidativo. Rev. Ciênc. Farm. Básica Apl., 2007, 28(3), 241-249.
[85]
Gallori, S.; Bilia, A.R.; Bergonzi, M.C.; Barbosa, W.L.R.; Vincieri, F.F. Polyphenolic constituents of fruit pulp of Euterpe oleracea mart. (Açaí palm). Chromatographia, 2004, 59, 739-743.
[86]
Torma, P.D.; Brasil, A.V.; Carvalho, A.V.; Jablonski, A.; Rabelo, T.K.; Moreira, J.C.; Gelain, D.P.; Flôres, S.H.; Augusti, P.R.; Rios, A.O. Hydroethanolic extracts from different genotypes of açaí (Euterpe oleracea) presented antioxidant potential and protected human neuron-like cells (SH-SY5Y). Food Chem., 2017, 222, 94-104.
[87]
Basli, A.; Soulet, S.; Chaher, N.; Mérillon, M.; Chibane, J.; Monti, P. Wine polyphenols: Potential agents in neuroprotection. Oxid. Med. Cell. Longev., 2012, 2012, 805762.
[88]
Swaminathan, A.; Jicha, G.A. Nutrition and prevention of Alzheimer’s dementia. Front. Aging Neurosci., 2014, 6, 282.
[89]
Molino, S.; Dossena, M.; Buonocore, D.; Ferrari, F.; Venturini, L.; Ricevuti, G.; Verri, M. Polyphenols in dementia: From molecular basis to clinical trials. Life Sci., 2016, 161(15), 69-77.
[90]
Heo, H.J.; Lee, C.Y. Protective effects of quercetin and vitamin C against oxidative stress-induced neurodegeneration. J. Agric. Food Chem., 2004, 52(25), 7514-7517.
[91]
Aziz, N.; Kim, M.Y.; Cho, J.Y. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J. Ethnopharmacol., 2018, 225, 342-358.
[92]
Dash, R.; Uddin, M.M.N.; Hosen, S.M.Z.; Rahim, Z.B.; Dinar, A.M.; Kabir, M.S.H.; Sultan, R.A.; Islam, A.; Hossain, M.K. Molecular docking analysis of known flavonoids as duel COX-2 inhibitors in the context of cancer. Bioinformation, 2015, 11, 543-549.
[93]
Kutil, Z.; Temml, V.; Maghradze, D.; Pribylova, M.; Dvorakova, M.; Schuster, D.; Vanek, T.; Landa, P. Impact of wines and wine constituents on cyclooxygenase-1, cyclooxygenase-2, and 5-lipoxygenase catalytic activity. Mediators Inflamm., 2014, 2014, 178931.
[94]
Goettert, M.; Schattel, V.; Koch, P.; Merfort, I.; Laufer, S. Biological evaluation and structural determinants of p38alpha mitogen-activated-protein kinase and c-Jun-Nterminal kinase 3 inhibition by flavonoids. ChemBioChem, 2010, 11, 2579-2588.
[95]
Lee, J.O.; Jeong, D.; Kim, M.Y.; Cho, J.Y. ATP-binding pocket-targeted suppression of Src and Syk by luteolin contributes to its anti-inflammatory action. Mediators Inflamm., 2015a, 2015, 967053.
[96]
Lee, Y.S.; Kim, M.S.; Lee, D.H.; Kwon, T.H.; Song, H.H.; Oh, S.R.; Yoon, D.Y. Luteolin 8-C-beta-fucopyranoside downregulates IL-6 expression by inhibiting MAPKs and the NF-kappaB signaling pathway in human monocytic cells. Pharmacology, 2015b, 67, 581-587.
[97]
Kwon, Y. Luteolin as a potential preventive and therapeutic candidate for alzheimer’s disease. Exp. Gerontol., 2017, 95, 39-43.
[98]
Bui, T.T.; Nguyen, T.H. Natural product for the treatment of alzheimer’s disease. J. Basic Clin. Physiol. Pharmacol., 2017, 28(5), 413-423.
[99]
Fu, X.; Zhang, J.; Guo, L.; Xu, Y.; Sun, L.; Wang, S.; Feng, Y.; Gou, L.; Zhang, L.; Liu, Y. Protective role of luteolin against cognitive dysfunction induced by chronic cerebral hypoperfusion in rats. Pharmacol. Biochem. Behav., 2014, 126, 122-130.
[100]
Lee, W.; Ku, S.K.; Bae, J.S. Vascular barrier protective effects of orientin and isoorientin in LPS-induced inflammation in vitro and in vivo. Vascul. Pharmacol., 2014, 62(1), 3-14.
[101]
Praveena, R.; Sadasivam, K.; Deepha, V.; Sivakumar, R. Antioxidant potential of orientin: A combined experimental and DFT approach. J. Mol. Struct., 2014, 1061, 114-123.
[102]
Anilkumar, K.; Reddy, G.V.; Azad, R.; Yarla, N.S.; Dharmapuri, G.; Srivastava, A.; Kamal, M.A.; Pallu, R. Evaluation of anti-inflammatory properties of isoorientin isolated from tubers of Pueraria tuberosa. Oxid. Med. Cell. Longev., 2017, 2017, 5498054.
[103]
Ielciu, I.; Mouithys-Mickalad, A.; Franck, T.; Angenot, L.; Ledoux, A.; Păltinean, R.; Cieckiewicz, E.; Etienne, D.; Tits, M.; Crişan, G.; Frédérich, M. Flavonoid composition, cellular antioxidant activity and (myelo)peroxidase inhibition of a Bryonia alba L. (Cucurbitaceae) leaves extract. J. Pharm. Pharmacol., 2019, 71(2), 230-239.
[104]
Karaoğlan, E.S.; Albayrak, A.; Kutlu, Z.; Bayir, Y. Gastroprotective and antioxidant effects of Eremurus spectabilis Bieb. methanol extract and its isolated component isoorientin on indomethacin induced gastric ulcers in rats1. Acta Cir. Bras., 2018, 33(7), 609-6018.
[105]
Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther., 2002, 96(2-3), 67-202.
[106]
Dantuluri, M.; Gunnarsson, G.T.; Riaz, M.; Nguyen, H.; Desai, U.R. Capillary electrophoresis of highly sulfated flavanoids and flavonoids. Anal. Biochem., 2005, 336, 316-322.
[107]
Rijke, E.; Out, P.; Niessen, W.M.; Ariese, F.; Gooijer, C.; Brinkman, U.A. Analytical separation and detection methods for flavonoids. J. Chromatog, 2006, 1112, 31-63.
[108]
Sabogal-Guáqueta, A.M.; Muñoz-Manco, J.I.; Ramírez-Pineda, J.R.; Lamprea-Rodriguez, M.; Osorio, E.; Cardona-Gomez, G.P. The flavonoid quercetin ameliorates alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology, 2015, 93, 134-145.
[109]
Ansaria, M.A.; Abdula, H.M.; Joshia, G.; Opiia, W.O.; Butterfielda, D.A. Protective effect of quercetin in primary neurons against Aβ(1-42): Relevance to Alzheimer’s disease. J. Nutr. Biochem., 2009, 20, 269-275.
[110]
Selvaraj, K.; Chowdhury, R.; Bhattacharjee, C. Isolation and structural elucidation of flavonoids from aquatic fern azolla microphylla and evaluation of free radical scavenging activity. Int. J. Pharm. Pharm. Sci., 2013, 5, 743-749.
[111]
Sandoval-Acuña, C.; Ferreira, J.; Speisky, H. Polyphenols and mitochondria: An update on their increasingly emerging ROS-scavenging independent actions. Arch. Biochem. Biophys., 2014, 559, 75-90.
[112]
Carrasco-Pozo, C.; Mizgier, M.L.; Speisky, H.; Gotteland, M. Differential protective effects of quercetin, resveratrol, rutin and epigallocatechin gallate against mitochondrial dysfunction induced by indomethacin in Caco-2 cells. Chem. Biol. Interact., 2012, 195, 199-205.
[113]
Kuang, H.; Tang, Z.; Zhang, C.; Wang, Z.; Li, W.; Yang, C.; Wang, Q.; Yang, B.; Kong, A. Taxifolin activates the Nrf2 anti-oxidative stress pathway in mouse skin epidermal JB6 P+ cells through epigenetic modifications. Int. J. Mol. Sci., 2017, 18, 1546.
[114]
Rehman, K.; Chohan, T.A.; Waheed, I.; Gilani, Z.; Akash, M.S.H. Taxifolin prevents postprandial hyperglycemia by regulating the activity of amylase: Evidence from an in vivo and in silico studies. J. Cell. Biochem., 2018, 120(1), 425-438.
[115]
Manigandan, K.; Jayaraj, R.L.; Jagatheesh, K.; Elangovan, N. Taxifolin mitigates oxidative DNA damage in vitro and protects zebrafish (Danio rerio) embryosagainst cadmium toxicity. Environ. Toxicol. Pharmacol., 2015, 39, 1252-1261.
[116]
Vogiatzoglou, A.; Mulligan, A. A.; Luben, R.N.; Lentjes, M.A.; Heiss, C.; Kelm, M.; Merx, M.W.; Spencer, J.P.; Schroeter, H.; Kuhnle, G.G. Assessment of the dietary intake of total flavan-3-ols, monomeric flavan-3-ols, proanthocyanidins and theaflavins in the European Union. Br. J. Nutr., 2014, 111(8), 1463-1473.
[117]
Vallverdú-Queralt, A.; Boix, N.; Piqué, E.; Gómez-Catalan, J.; Medina-Remon, A.; Sasot, G.; Mercader-Martí, M.; Llobet, J.M.; Lamuela-Raventos, R.M. Identification of phenolic compounds in red wine extract samples and zebrafish embryos by HPLC-ESILTQ- Orbitrap-MS. Food Chem., 2015, 181, 146-151.
[118]
Nijveldt, R.J.; Van Nood, E.; Van Hoorn, D.E.; Boelens, P.G.; Van Norren, K.; Van Leeuwen, P.A. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr., 2001, 74(4), 418-425.
[119]
Crozier, A.; Jaganath, I.B.; Clifford, N. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat. Prod. Rep., 2009, 26(8), 965-1096.
[120]
Ursini, F.; Sevanian, A. Wine polyphenols and optimal nutrition. Ann. N. Y. Acad. Sci., 2002, 957, 200-209.
[121]
Auger, C.; Al-Awwadi, N.; Bornet, A.; Rouanet, J.M.; Gasc, F.; Cros, G.; Teissedre, P.L. Catechins and procyanidins in mediterranean diets. Food Res. Int., 2004, 37, 233-245.
[122]
Spadafranca, A.; Martinez Conesa, C.; Sirini, S.; Testolin, G. Effect of dark chocolate on plasma epicatechin levels, DNA resistance to oxidative stress and total antioxidant activity in healthy subjects. Br. J. Nutr., 2009, 103(7), 1008-1014.
[123]
Rojano, B.A.; Vahos, I.C.Z.; Arbeláez, A.F.A.; Martínez, A.J.M.; Correa, F.B.C.; Carvajal, L.G. Polyphenols and antioxidant activity of the fruit freeze-dried palm naidi (Colombian Açai) (Euterpe oleracea Mart.). Rev. Fac. Nac. Agron Medel., 2011, 64(2), 6213-6220.
[124]
Melo, P.S.; Massarioli, A.P.; Denny, C.; Dos Santos, L.F.; Franchin, M.; Pereira, G.E.; Vieira, T.M.; Rosalen, P.L.; De Alencar, S.M. Winery by-products: Extraction optimization, phenolic composition and cytotoxic evaluation to act as a new source of scavenging of reactive oxygen species. Food Chem., 2015, 181, 60-169.
[125]
Downey, M.O.; Harvey, J.S.; Robinson, S.P. Analysis of tannins in seeds and skins of Shiraz grapes throughout berry development. Aust. J. Grape Wine Res., 2003, 9(1), 15-27.
[126]
Mccarthy, T.L.; Kerry, J.P.; Kerry, J.F.; Lynch, P.B.; Buckley, D.J. Evaluation of the antioxidant potential of natural food/plant extracts as compared with synthetic antioxidants and vitamin e in raw and cooked pork patties. Meat Sci., 2001, 58(1), 45-52.
[127]
Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod., 2000, 63, 1035-1042.
[128]
Huber, L.S.; Rodriguez-Amaya, D.B. Flavonois e flavonas: Fontes brasileiras e fatores que influenciam a composição em alimentos. Aliment. Nutr., 2008, 19(1), 97-108.
[129]
Mercer, L.D.; Kelly, B.L.; Horne, M.K.; Beart, P.M. Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: investigations in primary rat mesencephalic cultures. Biochem. Pharmacol., 2005, 69, 339-345.
[130]
Ramirez-Sanchez, I.; Taub, P.R.; Ciaraldi, T.P.; Nogueira, L.; Coe, T.; Perkins, G. Ho an, M.; Maisel, A.S.; Henry, R.R.; Ceballos, G.; Villarreal, F. (-)-Epicatechin rich cocoa mediated modulation of oxidative stress regulators in skeletal muscle of heart failure and type 2 diabetes patients. Int. J. Cardiol., 2013, 168, 3982-3990.
[131]
Sousa, R.L.; Filizola, R.G.; Diniz, M.F.F.M.; Sousa, E.S.S.; Moraes, J.L.R. Ensaio clínico placebo-controlado com isoflavonas da soja para sintomas depressivos em mulheres no climatério. Rev. Bras. Ginecol. Obstet., 2006, 28(2), 91-100.
[132]
González, C.N.; Durán, A.S. Soya isoflavones and evidences on cardiovascular protection. Nutr. Hosp., 2014, 29(6), 1271-1282.
[133]
Oshima, A.; Mine, W.; Nakada, M.; Yanase, E. Analysis of isoflavones and coumestrol in soybean sprouts. Biosci. Biotechnol. Biochem., 2016, 80(11), 2077-2079.
[134]
Chen, S.Q.; Lin, J.P.; Wang, S.Z. Chen, L.C.; Hong, Y.; Zhang, K.M. Puerarin protects rat cervical intervertebral disc annulus fibrosus cells: An optimal concentration study. Zhongguo Zuzhi Gongcheng Yanjiu, 2013, 17, 1156-1161.
[135]
Tian, F.; Xu, L.H.; Zhao, W.; Tian, L.J.; Ji, X.L. The neuroprotective mechanism of puerarin treatment of acute spinal cord injury in rats. Neurosci. Lett., 2013, 543, 64-68.
[136]
Zhang, Y.B.; Du, G.Y.; Xiong, Y.L.; Zhao, Y.; Cui, H.F.; Cao, C.Y.; Liu, S. Protective effects of 3′-methoxy-puerarin on rat brain suffering from ischemia. Zhongguo Zhongyao Zazhi, 2008, 33, 537-540.
[137]
Xiao, B.; Sun, Z.; Cao, F.; Wang, L.; Liao, Y.; Liu, X. Pan.: R.; Chang, Q. Brain pharmacokinetics and the pharmacological effects on striatal neurotransmitter levels of pueraria lobata isoflavonoids in rat. Front. Pharmacol., 2017, 8, 1-9.
[138]
Krenn, L.; Steitz, M.; Schlicht, C.; Kurth, H.; Gaedcke, F. Anthocyanin- and proanthocyanidin-rich extracts of berries in food supplements-analysis with problems. Pharmazie, 2007, 62(11), 803-812.
[139]
Santos, C.B.R.; Vieira, J.B.; Lobato, C.C.; Hage-Melim, L.I.S.; Souto, R.N.P.; Lima, C.S.; Costa, E.V.M.; Brasil, D.S.B.; Macêdo, W.J.C.; Carvalho, J.C.T. A Sar and Qsar study of new artemisinin compounds with antimalarial activity. Molecules, 2014, 19, 367-399.
[140]
Barbosa, P.O.; Pala, D.; Silva, C.T.; De Souza, M.O.; Do Amaral, J.F.; Vieira, R.A.L.; Folly, G.A.F.; Volp, A.C.P.; De Freitas, R.N. Açaí (Euterpe oleracea Mart.) pulp dietary intake improves cellular antioxidant enzymes and biomarkers of serum in healthy women. Nutrition, 2016, 32, 674-680.
[141]
Thummayot, S.; Tocharus, C.; Pinkaew, D.; Viwatpinyo, K.; Sringarm, K.; Tocharus, J. Neuroprotective effect of purple rice extract and its constituent against amyloid beta-induced neuronal cell death in SK-N-SH cells. Neurotoxicology, 2014, 45, 149-158.
[142]
Badshah, H.; Kim, T.H.; Kim, M.O. Protective effects of Anthocyanins against Amyloid beta-induced neurotoxicity in vivo and in vitro. Neurochem. Int., 2015, 80, 51-59.
[143]
Cesar, L.T.; Cabral, M.F.; Maia, G.A.; Figueiredo, R.W.; Miranda, M.R.; Sousa, P.H.; Brasil, I.M.; Gomes, C.L. Effects of clarification on physicochemical characteristics, antioxidante capacity and quality atributes of açaí (Euterpe oleracea Mart.) juice. J. Food Sci. Technol., 2014, 51(11), 3293-3300.
[144]
Reddy, M.V.; Su, C.R.; Chiou, W.F.; Liu, Y.N.; Chen, R.Y.; Bastow, K.F.; Lee, K.H.; Wu, T.S. Design, synthesis, and biological evaluation of Mannich bases of heterocyclic chalcone analogs as cytotoxic agents. Bioorg. Med. Chem., 2008, 16, 7358-7370.
[145]
Kang, J.; Xie, C.; Li, Z.; Nagarajan, S.; Schauss, A.G.; Wu, T.; Wu, X. Flavonoids from açaí (Euterpe oleracea Mart.) pulp and their antioxidant and anti-inflammatory activities. Food Chem., 2011, 128(1), 152-157.
[146]
Nielsen, S.F.; Christensen, S.B.; Cruciani, G.; Kharazmi, A.; Liljefors, T. Antileishmanial chalcones: Statistical design, synthesis, and three-dimensional quantitative structure-activity relationship analysis. J. Med. Chem., 1998, 41(24), 4819-4832.
[147]
Liu, M.; Wilairat, P.; Go, M.L. Antimalarial alkoxylated and hydroxylated chalones: Structure-activity relationship analysis. J. Med. Chem., 2001, 44(25), 4443-4452.
[148]
Rojas, J.; Dominguez, J.N.; Charris, J.E.; Lobo, G.; Paya, M.; Ferrandiz, M.L. Synthesis and inhibitory activity of dimethylamino-chalcone derivatives on the induction of nitric oxide synthase. Eur. J. Med. Chem., 2002, 37(8), 699-705.
[149]
Sahu, N.K.; Balbhadra, S.S.; Choudhary, J.; Kohli, D.V. Exploring pharmacological significance of chalcone scaffold: A review. Curr. Med. Chem., 2012, 19(2), 209-225.
[150]
Bukhari, S.N.A.; Jasamai, M.; Jantan, I.; Ahmad, W. Review of methods and various catalysts used for chalcone synthesis. Mini Rev. Org. Chem., 2013, 10(1), 73-83.
[151]
Repanas, A.K.; Hadjipavlou-Litina, D. Chalcones in cancer: Understanding their role in terms of QSAR. II part. Mini Rev. Org. Chem., 2013, 13(7), 952-970.
[152]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[153]
Elmann, A.; Telerman, A.; Erlank, H.; Mordechay, S.; Rindner, M.; Ofir, R.; Kashman, Y. Protective and antioxidant effects of a chalconoid from pulicaria incisa on brain astrocytes. Oxid. Med. Cell. Longev., 2013, 1, 1-10.
[154]
Kelly, E.; Vyas, P.; Weber, J.T. Biochemical properties and neuroprotective effects of compounds in various species of berries. Molecules, 2018, 23(1), 26.
[155]
Yuyama, L.K.O.; Aguiar, J.P.L.; Filho, D.F.S.; Yuyama, K.; Varejao, M.J.; Favaro, D.I.T.; Vasconcelos, M.B.A.; Pimentel, S.A.; Caruso, M.S.F. Caracterização físico-química do suco de açaí de Euterpe precatoria Mart. oriundo de diferentes ecossistemas amazônicos. Acta Amazon., 2011, 41(4), 545-552.
[156]
Schulz, M.; Biluca, F.C.; Gonzaga, L.V.; Borges, G.S.C.; Vitali, L.; Micke, G.A.; De Gois, J.S.; De Almeida, T.S.; Borges, D.L.G.; Miller, P.R.M.; Costa, A.C.O.; Fett, R. Bioaccessibility of bioactive compounds and antioxidant potential of juçara fruits (Euterpe edulis Martius) subjected to in vitro gastrointestinal digestion. Food Chem., 2017, 228, 447-454.
[157]
Peixoto, H.; Roxo, M.; Krstin, S.; Röhrig, T.; Richling, E.; Wink, M. An Anthocyanin-rich extract of açaí (Euterpe precatoria Mart.) increases stress resistance and retards aging-related markers in Caenorhabditis elegans. J. Agric. Food Chem., 2016, 64, 1283-1290.
[158]
Da Silva, H.R.; De Assis, D.C.; Prada, A.L.; Keita, H.; Amado, J.R.R.; Carvalho, J.C.T. Euterpe oleracea Mart. (açaí): An old known plant with a new perspective. Afr. Pharm. Pharmacol., 2016, 10(46), 995-1006.
[159]
De Bem, G.F.; Da Costa, C.A.; De Oliveira, P.R.; Cordeiro, V.S.; Santos, I.B.; De Carvalho, L.C.; Souza, M.A.; Ognibene, D.T.; Daleprane, J.B.; Sousa, P.J.; Resende, A.C.; De Moura, R.S. Protective effect of Euterpe oleracea Mart (açai) extract on programmed changes in the adult rat offspring caused by maternal protein restriction during pregnancy. J. Pharm. Pharmacol., 2014, 66(9), 1328-1338.
[160]
Gordon, A.; Cruz, A.P.G.; Cabral, L.M.C.; De Freitas, S.C.; Dib Taxi, C.M.A.; Donangelo, C.M.; Mattietto, R.A.; Friedrich, M.; Matta, V.M.; Marx, F. Chemical characterisation and evaluation of antioxidant properties of Açai fruits (Euterpe Oleracea Mart.) during ripening. Food Chem., 2012, 133, 256-263.
[161]
Rojano, B.A.; Vahos, I.C.Z.; Arbeláez, A.F.A.; Martínez, A.J.M.; Correa, F.B.C.; Carvajal, L.G. Polyphenols and antioxidant activity of the fruit freeze-dried palm naidi (Colombian Açai) (Euterpe oleracea Mart). Rev. Fac. Nac. Agron Medel., 2011, 6(4), 6213-6220.
[162]
De Souza, M.O.; Silva, M.; Silva, M.E.; Oliveira, R.P.; Pedrosa, M.L. Diet supplementation with açaí (Euterpe oleracea Mart.) pulp improves biomarkers of oxidative stress and the serum lipid profile in rats. Nutrition, 2010, 26(7-8), 804-810.
[163]
Hogan, S.; Chung, H.; Zhang, L.; Li, J.; Lee, Y.; Dai, Y.; Zhou, K. Antiproliferative and antioxidant properties of anthocyanin-rich extract from açai. Food Chem., 2010, 118(2), 208-214.
[164]
Rufino, M.S.M.; Alves, R.E.; Brito, E.S.; Pérez-Jiménez, J.; Saura-Calixto, F.; Mancini-Filho, J. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem., 2010, 121(4), 996-1002.
[165]
Spada, P.D.; Dani, C.; Bortolini, G.V.; Funchal, C.; Henriques, J.A.; Salvador, M. Frozen fruit pulp of Euterpe oleracea Mart. (açaí) prevents hydrogen peroxide-induced damage in the cerebral cortex, cerebellum, and hippocampus of rats. J. Med. Food, 2009, 12, 1084-1088.
[166]
Chin, Y.W.; Chai, H.B.; Keller, W.J.; Kinghorn, A.D. Lignans and other constituents of the fruits of Euterpe oleracea (Açai) with antioxidant and cytoprotective activities. J. Agric. Food Chem., 2008, 56(17), 7759-7764.
[167]
Santos, G.M.; Maia, G.A.; Sousa, P.H.M.; Costa, J.M.C.; Figueiredo, R.W.; Prado, G.M. Correlação entre atividade antioxidante e compostos bioativos de polpas comerciais de açaí (Euterpe oleracea Mart). Arch. Latinoam. Nutr., 2008, 58, 187-192.
[168]
Pacheco-Palencia, L.A.; Mertens-Talcott, S.; Talcott, S.T. Chemical composition, antioxidant properties, and thermal stability of a phytochemical enriched oil from açai (Euterpe oleracea Mart.). J. Agric. Food Chem., 2008, 56(12), 4631-4636.
[169]
Rocha, A.P.; Carvalho, L.C.; Sousa, M.A.; Madeira, S.V.; Sousa, P.J.; Tano, T.; Schini-Kerth, V.B.; Resende, A.C.; Soares de Moura, R. Endothelium-dependent vasodilator effect of Euterpe oleracea Mart. (açaí) extracts in mesenteric vascular bed of the rat. Vascul. Pharmacol., 2007, 46, 97-104.
[170]
Kang, J.; Xie, C.; Nagarajan, S.; Schauss, A.G.; Wu, T.; Wu, X. Flavonoids from açaí (Euterpeoleracea Mart.) pulp and their antioxidante and antiinflammatory activities. Food Chem., 2011, 128, 152-157.
[171]
Favacho, A.S.H.; Oliveira, B.R.; Santos, K.C.; Medeiros, B.J.L.; Souza, P.J.C.; Perazzo, F.F.; Carvalho, J.C.T. Anti-inflammtory and antinociceptive activities of Euterpe oleracea oil. Braz. J. Pharmacog., 2011, 21(1), 105-114.
[172]
Matheus, M.E.; De Oliveira, S.B.F.; Silveira, C.S.; Rodrigues, V.P.; De Sousa, F.M.; Fernandes, P.D. Inhibitory effects of Euterpe oleracea Mart. on nitric oxide production and iNOS expression. Ethnopharmacology, 2006, 107(2), 291-296.
[173]
Schauss, A.G.; Wu, X.; Prior, R.L.; Ou, B.; Patel, D.; Huang, D.N.; Kababick, J.P. Phytochemical and nutrient composition of the freeze -dried amazonian palm berry, Euterpe oleracea Mart. (Açaí). J. Agric. Food Chem., 2006, 22(54), 8598-8603.
[174]
Machado, A.K.; Andreazza, A.C.; Da Silva, T.M.; Boligon, A.A.; Do Nascimento, V.; Scola, G.; Duong, A.; Cadoná, F.C.; Ribeiro, E.E.; Da Cruz, I.B.M. Neuroprotective effects of Açaí (Euterpe oleracea Mart.) against rotenone in vitro exposure. Oxid. Med. Cell. Longev., 2016, 2016, 1-14.
[175]
Xie, C.; Kang, J.; Lietal, Z. The açaí flavonoid velutin is a potent anti-inflammatory agent: Blockade of LPS-mediated TNF-α and IL-6 production through inhibiting NF-kB activation and MAPK pathway. J. Nutr. Biochem., 2012, 23(9), 1184-1191.
[176]
An, F.; Yang, G.D.; Tian, J.M.; Wang, S.H. Antioxidant effects of the orientin and vitexin in trollies 6 chinensis bunge in D-galactose-aged mice. Neural Regen. Res., 2012, 7(33), 2565-2575.
[177]
Mathew, S.; Abraham, T.E.; Zakaria, Z.A. Reactivity of phenolic compounds towards free radicals under in vitro conditions. J. Food Sci. Technol., 2015, 52(9), 5790-5798.
[178]
Popovic, M.; Caballero-Bleda, M.; Benavente-García, O.; Castillo, J. The flavonoid apigenin delays forgetting of passive avoidance conditioning in rats. J. Psychopharmacol., 2014, 28(5), 498-501.
[179]
Carey, A.N.; Miller, M.G.; Fisher, D.R.; Bielinski, D.F.; Poulose, S.M.; Shukitt-Hale, B. Dietary supplementation with the polyphenol-rich açaí pulps (Euterpe oleracea Mart. and Euterpe precatoria Mart.) improves cognition in aged rats and attenuates inflammatory signaling in BV-2 microglial cells. Nutr. Neurosci., 2017, 20(4), 238-245.
[180]
Carey, A.N.; Gomes, S.M.; Shukitt-Hale, B. Blueberry supplementation improves memory in middle-aged mice fed a high-fat diet. J. Agric. Food Chem., 2014, 62(18), 3972-3978.
[181]
Rufino, M.S.M.; Pérez-Jiménez, J.; Arranz, S.; Alves, R.E.; Brito, E.S.; Oliveira, M.S.P.; Saura-Calixto, F. Açaí (Euterpe oleracea) ‘BRS Pará’: A tropical fruit source of antioxidant dietary fiber and high antioxidant capacity oil. Food Res. Int., 2011, 44(7), 2100-2106.
[182]
Guimarães, L.C.; Silva, H.C.G.; Melo, F.G.; Oliveira, H.; Botrel, M.O.; Espíndola, F.S. Estudo prospectivo de produtos e processos tecnológicos com o açaí (Euterpe oleracea). Cadernos de Prospecção, 2017, 10(2), 215-225.
[183]
Poulose, S.M.; Fisher, D.R.; Bielinski, D.F.; Gomes, S.M.; Rimando, A.M.; Schauss, A.G.; Shukitt-Hale, B. Restoration of stressor-induced calcium dysregulation and autophagy inhibition by polyphenol-rich açaí (Euterpe spp.) fruit pulp extracts in rodent brain cells in vitro. Nutrition, 2014, 7, 853-862.
[184]
Ajit, D.; Simonyi, A.; Li, R.; Chen, Z.; Hannink, M.; Fritsche, K.L.; Mossine, V.V.; Smith, R.E.; Dobbs, T.K.; Luo, R.; Folk, W.R.; Gu, Z.; Lubahn, D.B.; Weisman, G.A.; Sun, G.Y. Phytochemicals and botanical extracts regulate NF-κB and Nrf2/ARE reporter activities in DI TNC1 astrocytes. Neurochem. Int., 2016, 97, 49-56.
[185]
Poulose, S.M.; Bielinski, D.F.; Carey, A.; Schauss, A.G.; Shukitt-Hale, B. Modulation of oxidative stress, inflammation, autophagy and expression of Nrf2 in hippocampus and frontal cortex of rats fed with açaí-enriched diets. Nutr. Neurosci., 2016, 20(5), 305-315.
[186]
Machado, S.F.; Kuo, J.; Wohlenberg, M.F.; Da Rocha, F.M.; Freitas, M.; Oliveira, A.S.; Andrade, R.B.; Wannmacher, C.M.; Dani, C.; Funchal, C. Subchronic treatment with açaí frozen pulp prevents the brain oxidative damage in rats with acute liver failure. Metab. Brain Dis., 2016, 31(6), 1427-1434.
[187]
Menezes, E.M.S.; Torres, A.T.; Srur, A.U.S. Valor nutricional da polpa de açaí (Euterpe oleracea Mart) liofilizada. Acta Amazôn., 2008, 38(2), 311-316.
[188]
Gruenwald, J. Novel botanical ingredients for beverages. Clin. Dermatol., 2009, 27, 210-216.
[189]
Chin, Y.; Chai, H.B.; Keller, W.J.; Kinghorn, A.D. Lignans and other constituents of the fruits of Euterpe oleracea (açaí) with antioxidant and cytoprotective activities. J. Agric. Food Chem., 2008, 56, 7759-7764.
[190]
Matheus, M.E.; De Oliveira, F.S.B.; Silveira, C.S.; Rodrigues, V.P.; De Sousa, M.F.; Fernandes, P.D. Inhibitory effects of Euterpe edulis Mart. on nitric oxide production and iNOS expression. J. Ethnopharmacol., 2006, 107, 291-296.
[191]
Hassimotto, N.M.A.; Genovese, M.I.; Lajolo, F.M. Antioxidant activity of dietary fruits, vegetables, and commercial frozen fruit pulps. J. Agric. Food Chem., 2005, 53(8), 2928-2935.
[192]
Rodrigues, R.B.; Lichtenthäler, R.; Zimmermann, B.F.; Papagiannopoulos, M.; Fabricius, H.; Marx, F.; Maia, J.G.; Almeida, O. Total oxidant scavenging capacity of Euterpe oleracea Mart. (açai) seeds and identification of their polyphenolic compounds. J. Agric. Food Chem., 2006, 54(12), 4162-4167.
[193]
Spada, P.D.S.; De Souza, G.G.; Bortolini, G.V.; Henriques, J.A.; Salvador, M. Antioxidant, mutagenic, and antimutagenic activity of frozen fruits. J. Med. Food, 2008, 11(1), 144-151.
[194]
Dowling, D.K.; Simmons, L.W. Reactive oxygen species as universal constraints in life-history evolution. Proc. Royal Soc. B Biol. Sci., 2009, 276(1663), 1737-1745.
[195]
Nichenametla, S.N.; Taruscio, T.G.; Barney, D.L.; Exon, J.H. A review of the effects and mechanisms of polyphenolics in cancer. Crit. Rev. Food Sci. Nutr., 2006, 46(2), 161-183.
[196]
Marchioro, M.; Dani, C.; Funchal, C. Efeito dos antioxidantes exógenos em modelos experimentais da doença de Parkinson. Ciênc. Movim., 2016, 18, 36.
[197]
Chinta, S.J.; Andersen, J.K. Nitrosylation and nitration of mitochondrial complex I in Parkinson’s disease. Free Radic. Res., 2011, 45(1), 53-58.
[198]
Spivey, A. Rotenone and paraquat linked to Parkinson’s disease: Human exposure study supports years of animal studies. Environ. Health Perspect., 2011, 119(6), A259.