Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Biodiesel Production from Insects: From Organic Waste to Renewable Energy

Author(s): Hoang Chinh Nguyen, Ngoc Tuan Nguyen, Chia-Hung Su*, Fu-Ming Wang, Tuyet Nhung Tran, Ying-Tzu Liao and Shih-Hsiang Liang

Volume 23, Issue 14, 2019

Page: [1499 - 1508] Pages: 10

DOI: 10.2174/1385272823666190422125120

Price: $65

Abstract

The conversion of organic wastes into biodiesel has become an attractive solution to address waste surplus problems and energy depletion. Oleaginous insects can degrade various organic wastes to accumulate fat-based biomass, thus serving as a potential feedstock for biodiesel production. Therefore, the use of insects fed on organic waste for biodiesel production has increasingly attracted considerable investigations. In recent years, different insect species have been studied for their efficiency in converting various organic wastes and for producing biodiesel from their fat. Several methods have been developed for biodiesel production from insects to improve yields and reduce production costs and environmental impacts. This review summarizes the latest findings of the use of insects for converting organic wastes into biodiesel. The production processes and fuel properties of biodiesel produced from insects are also discussed.

Keywords: Bioconversion, biodiesel, organic waste, insect, renewable energy, transesterification.

Graphical Abstract
[1]
Mishra, V.K.; Goswami, R. A review of production, properties and advantages of biodiesel. Biofuels, 2017, 9(2), 273-289.
[http://dx.doi.org/10.1080/17597269.2017.1336350]
[2]
Atabani, A.E.; Silitonga, A.S.; Badruddin, I.A.; Mahlia, T.M.I.; Masjuki, H.H.; Mekhilef, S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew. Sustain. Energy Rev., 2012, 16(4), 2070-2093.
[http://dx.doi.org/10.1016/j.rser.2012.01.003]
[3]
Yellapu, S.K.; Kaur, R.; Kumar, L.R.; Tiwari, B.; Zhang, X.; Tyagi, R.D. Recent developments of downstream processing for microbial lipids and conversion to biodiesel. Bioresour. Technol., 2018, 256, 515-528.
[http://dx.doi.org/10.1016/j.biortech.2018.01.129] [PMID: 29472122]
[4]
Zhou, Z.; Yang, L.; Wang, Y.; He, C.; Duan, C. Recent advance on chemical fixation of carbon dioxide by metal-organic frame-works as heterogeneous catalysts. Curr. Org. Chem., 2018, 22(18), 1809-1824.
[http://dx.doi.org/10.2174/1385272822666180423144934]
[5]
Owolabi, R.U.; Adejumo, A.L.; Aderibigbe, A.F. Biodiesel: Fuel for the future (a brief review). Int. J. Energy Eng., 2012, 2(5), 223-231.
[http://dx.doi.org/10.5923/j.ijee.20120205.06]
[6]
Atadashi, I.M.; Aroua, M.K.; Aziz, A.A. High quality biodiesel and its diesel engine application: a review. Renew. Sustain. Energy Rev., 2010, 14(7), 1999-2008.
[http://dx.doi.org/10.1016/j.rser.2010.03.020]
[7]
Sharma, Y.C.; Singh, B.; Upadhyay, S.N. Advancements in development and characterization of biodiesel: A review. Fuel, 2008, 87(12), 2355-2373.
[http://dx.doi.org/10.1016/j.fuel.2008.01.014]
[8]
Jiaqiang, E.; Pham, M.; Zhao, D.; Deng, Y.; Le, D.; Zuo, W.; Zhu, H.; Liu, T.; Peng, Q.; Zhang, Z. Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review. Renew. Sustain. Energy Rev., 2017, 80, 620-647.
[http://dx.doi.org/10.1016/j.rser.2017.05.250]
[9]
Singh, S.P.; Singh, D. Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renew. Sustain. Energy Rev., 2010, 14(1), 200-216.
[http://dx.doi.org/10.1016/j.rser.2009.07.017]
[10]
Murugesan, A.; Umarani, C.; Chinnusamy, T.R.; Krishnan, M.; Subramanian, R.; Neduzchezhain, N. Production and analysis of bio-diesel from non-edible oils- a review. Renew. Sustain. Energy Rev., 2009, 13(4), 825-834.
[http://dx.doi.org/10.1016/j.rser.2008.02.003]
[11]
Vijayakumar, C.; Ramesh, M.; Murugesan, A.; Panneerselvam, N.; Subramaniam, D.; Bharathiraja, M. Biodiesel from plant seed oils as an alternate fuel for compression ignition engines-a review. Environ. Sci. Pollut. Res. Int., 2016, 23(24), 24711-24730.
[http://dx.doi.org/10.1007/s11356-016-7754-2] [PMID: 27743330]
[12]
Abdulla, R.; Chan, E.S.; Ravindra, P. Biodiesel production from Jatropha curcas: A critical review. Crit. Rev. Biotechnol., 2011, 31(1), 53-64.
[http://dx.doi.org/10.3109/07388551.2010.487185] [PMID: 20572796]
[13]
Parawira, W. Biodiesel production from Jatropha curcas: A review. Sci. Res. Essays, 2010, 5(14), 1796-1808.
[14]
Koh, M.Y.; Ghazi, T.I.M. A review of biodiesel production from Jatropha curcas L. oil. Renew. Sustain. Energy Rev., 2011, 15(5), 2240-2251.
[http://dx.doi.org/10.1016/j.rser.2011.02.013]
[15]
Issariyakul, T.; Dalai, A.K. Biodiesel from vegetable oils. Renew. Sustain. Energy Rev., 2014, 31, 446-471.
[http://dx.doi.org/10.1016/j.rser.2013.11.001]
[16]
Ambat, I.; Srivastava, V.; Sillanpää, M. Recent advancement in biodiesel production methodologies using various feedstock: A review. Renew. Sustain. Energy Rev., 2018, 90, 356-369.
[http://dx.doi.org/10.1016/j.rser.2018.03.069]
[17]
Banković-Ilić, I.B.; Stojković, I.J.; Stamenković, O.S.; Veljkovic, V.B.; Hung, Y.T. Waste animal fats as feedstocks for biodiesel production. Renew. Sustain. Energy Rev., 2014, 32, 238-254.
[http://dx.doi.org/10.1016/j.rser.2014.01.038]
[18]
Avhad, M.; Marchetti, J. A review on recent advancement in catalytic materials for biodiesel production. Renew. Sustain. Energy Rev., 2015, 50, 696-718.
[http://dx.doi.org/10.1016/j.rser.2015.05.038]
[19]
Pinzi, S.; Leiva, D.; López‐García, I.; Redel‐Macías, M.D.; Dorado, M.P. Latest trends in feed stocks for biodiesel production. Biofuels Bioprod. Biorefin., 2014, 8(1), 126-143.
[http://dx.doi.org/10.1002/bbb.1435]
[20]
Alajmi, F.S.; Hairuddin, A.A.; Adam, N.M.; Abdullah, L.C. Recent trends in biodiesel production from commonly used animal fats. Int. J. Energy Res., 2018, 42(3), 885-902.
[http://dx.doi.org/10.1002/er.3808]
[21]
Kirubakaran, M.; Selvan, V.A.M. A comprehensive review of low cost biodiesel production from waste chicken fat. Renew. Sustain. Energy Rev., 2018, 82, 390-401.
[http://dx.doi.org/10.1016/j.rser.2017.09.039]
[22]
Balat, M. Potential alternatives to edible oils for biodiesel production - A review of current work. Energy Convers. Manage., 2011, 52(2), 1479-1492.
[http://dx.doi.org/10.1016/j.enconman.2010.10.011]
[23]
Lam, M.K.; Lee, K.T.; Mohamed, A.R. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnol. Adv., 2010, 28(4), 500-518.
[http://dx.doi.org/10.1016/j.biotechadv.2010.03.002] [PMID: 20362044]
[24]
Yaakob, Z.; Mohammad, M.; Alherbawi, M.; Alam, Z.; Sopian, K. Overview of the production of biodiesel from waste cooking oil. Renew. Sustain. Energy Rev., 2013, 18, 184-193.
[http://dx.doi.org/10.1016/j.rser.2012.10.016]
[25]
Chen, C.Y.; Yeh, K.L.; Aisyah, R.; Lee, D.J.; Chang, J.S. Cultivation, photo bioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresour. Technol., 2011, 102(1), 71-81.
[http://dx.doi.org/10.1016/j.biortech.2010.06.159] [PMID: 20674344]
[26]
Wiley, P.E.; Campbell, J.E.; McKuin, B. Production of biodiesel and biogas from algae: A review of process train options. Water Environ. Res., 2011, 83(4), 326-338.
[http://dx.doi.org/10.2175/106143010X12780288628615] [PMID: 21553588]
[27]
Halim, R.; Danquah, M.K.; Webley, P.A. Extraction of oil from microalgae for biodiesel production: A review. Biotechnol. Adv., 2012, 30(3), 709-732.
[http://dx.doi.org/10.1016/j.biotechadv.2012.01.001] [PMID: 22266377]
[28]
Ma, X.; Gao, M.; Gao, Z.; Wang, J.; Zhang, M.; Ma, Y.; Wang, Q. Past, current, and future research on microalga-derived biodiesel: A critical review and bibliometric analysis. Environ. Sci. Pollut. Res. Int., 2018, 25(11), 10596-10610.
[http://dx.doi.org/10.1007/s11356-018-1453-0] [PMID: 29502258]
[29]
Mondal, M.; Goswami, S.; Ghosh, A.; Oinam, G.; Tiwari, O.N.; Das, P.; Gayen, K.; Mandal, M.K.; Halder, G.N. Production of biodiesel from microalgae through biological carbon capture: A review. 3 Biotech, 2017, 7(2), 99.
[30]
Cho, H.U.; Park, J.M. Biodiesel production by various oleaginous microorganisms from organic wastes. Bioresour. Technol., 2018, 256, 502-508.
[http://dx.doi.org/10.1016/j.biortech.2018.02.010] [PMID: 29478783]
[31]
Taparia, T.; Mvss, M.; Mehrotra, R.; Shukla, P.; Mehrotra, S. Developments and challenges in biodiesel production from microalgae: A review. Biotechnol. Appl. Biochem., 2016, 63(5), 715-726.
[http://dx.doi.org/10.1002/bab.1412] [PMID: 26178774]
[32]
Yee, W. Microalgae from the Selenastraceae as emerging candidates for biodiesel production: A mini review. World J. Microbiol. Biotechnol., 2016, 32(4), 64.
[http://dx.doi.org/10.1007/s11274-016-2023-6] [PMID: 26931604]
[33]
Faried, M.; Samer, M.; Abdelsalam, E.; Yousef, R.; Attia, Y.; Ali, A. Biodiesel production from microalgae: processes, technologies and recent advancements. Renew. Sustain. Energy Rev., 2017, 79, 893-913.
[http://dx.doi.org/10.1016/j.rser.2017.05.199]
[34]
Meng, X.; Yang, J.; Xu, X.; Zhang, L.; Nie, Q.; Xian, M. Biodiesel production from oleaginous microorganisms. Renew. Energy, 2009, 34(1), 1-5.
[http://dx.doi.org/10.1016/j.renene.2008.04.014]
[35]
Balasubramanian, L.; Subramanian, G.; Nazeer, T.T.; Simpson, H.S.; Rahuman, S.T.; Raju, P. Cyanobacteria cultivation in industrial wastewaters and biodiesel production from their biomass: A review. Biotechnol. Appl. Biochem., 2011, 58(4), 220-225.
[http://dx.doi.org/10.1002/bab.31] [PMID: 21838795]
[36]
Chen, J.; Li, J.; Zhang, X.; Tyagi, R.D.; Dong, W. Ultra-sonication application in biodiesel production from heterotrophic oleaginous microorganisms. Crit. Rev. Biotechnol., 2018, 38(6), 902-917.
[http://dx.doi.org/10.1080/07388551.2017.1418733] [PMID: 29510650]
[37]
Sitepu, I.R.; Garay, L.A.; Sestric, R.; Levin, D.; Block, D.E.; German, J.B.; Boundy-Mills, K.L. Oleaginous yeasts for biodiesel: Current and future trends in biology and production. Biotechnol. Adv., 2014, 32(7), 1336-1360.
[http://dx.doi.org/10.1016/j.biotechadv.2014.08.003] [PMID: 25172033]
[38]
Mardhiah, H.H.; Ong, H.C.; Masjuki, H.; Lim, S.; Lee, H. A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils. Renew. Sustain. Energy Rev., 2017, 67, 1225-1236.
[http://dx.doi.org/10.1016/j.rser.2016.09.036]
[39]
Manzano-Agugliaro, F.; Sanchez-Muros, M.; Barroso, F.; Martínez-Sánchez, A.; Rojo, S.; Pérez-Bañón, C. Insects for biodiesel production. Renew. Sustain. Energy Rev., 2012, 16(6), 3744-3753.
[http://dx.doi.org/10.1016/j.rser.2012.03.017]
[40]
Bowling, J.J.; Anderson, J.B.; Armbrust, K.L.; Hamann, M.T. Evaluation of potential biodiesel feedstock production from oleaginous insect Solenopsis sp. Fuel, 2014, 117, 5-7.
[http://dx.doi.org/10.1016/j.fuel.2013.08.058]
[41]
Mohd-Noor, S.N.; Wong, C.Y.; Lim, J.W.; Uemura, Y.; Lam, M.K.; Ramli, A.; Bashir, M.J.; Tham, L. Optimization of self-fermented period of waste coconut endosperm destined to feed black soldier fly larvae in enhancing the lipid and protein yields. Renew. Energy, 2017, 111, 646-654.
[http://dx.doi.org/10.1016/j.renene.2017.04.067]
[42]
Pleissner, D.; Rumpold, B.A. Utilization of organic residues using heterotrophic microalgae and insects. Waste Manag., 2018, 72, 227-239.
[http://dx.doi.org/10.1016/j.wasman.2017.11.020] [PMID: 29150257]
[43]
Čičková, H.; Newton, G.L.; Lacy, R.C.; Kozánek, M. The use of fly larvae for organic waste treatment. Waste Manag., 2015, 35, 68-80.
[http://dx.doi.org/10.1016/j.wasman.2014.09.026] [PMID: 25453313]
[44]
Meher, L.C.; Sagar, D.V.; Naik, S.N. Technical aspects of biodiesel production by transesterification-A review. Renew. Sustain. Energy Rev., 2006, 10(3), 248-268.
[http://dx.doi.org/10.1016/j.rser.2004.09.002]
[45]
Parawira, W. Biotechnological production of biodiesel fuel using bio-catalysed transesterification: A review. Crit. Rev. Biotechnol., 2009, 29(2), 82-93.
[http://dx.doi.org/10.1080/07388550902823674] [PMID: 19412829]
[46]
Nomanbhay, S.; Ong, M.Y. A review of microwave-assisted reactions for biodiesel production. Bioengineering (Basel), 2017, 4(2), 57.
[http://dx.doi.org/10.3390/bioengineering4020057] [PMID: 28952536]
[47]
Su, C.H.; Nguyen, H.C.; Pham, U.K.; Nguyen, M.L.; Juan, H.Y. Biodiesel production from a novel nonedible feedstock, soursop (Annona muricata L.) seed oil. Energies, 2018, 11(10), 2562.
[http://dx.doi.org/10.3390/en11102562]
[48]
Salvi, B.; Panwar, N. Biodiesel resources and production technologies - a review. Renew. Sustain. Energy Rev., 2012, 16(6), 3680-3689.
[http://dx.doi.org/10.1016/j.rser.2012.03.050]
[49]
Soltani, S.; Rashid, U.; Yunus, R.; Taufiq-Yap, Y.H. Synthesis of biodiesel through catalytic transesterification of various feed stocks using fast solvothermal technology: A critical review. Catal. Rev., Sci. Eng., 2015, 57(4), 407-435.
[http://dx.doi.org/10.1080/01614940.2015.1066640]
[50]
Balat, M.; Balat, H. A critical review of bio-diesel as a vehicular fuel. Energy Convers. Manage., 2008, 49(10), 2727-2741.
[http://dx.doi.org/10.1016/j.enconman.2008.03.016]
[51]
Taher, H.; Al-Zuhair, S.; Al-Marzouqi, A.H.; Haik, Y.; Farid, M.M. A review of enzymatic transesterification of micro algal oil-based biodiesel using supercritical technology. Enzyme Res., 2011.2011468292
[http://dx.doi.org/10.4061/2011/468292] [PMID: 21915372]
[52]
Jegannathan, K.R.; Abang, S.; Poncelet, D.; Chan, E.S.; Ravindra, P. Production of biodiesel using immobilized lipase - a critical review. Crit. Rev. Biotechnol., 2008, 28(4), 253-264.
[http://dx.doi.org/10.1080/07388550802428392] [PMID: 19051104]
[53]
Fjerbaek, L.; Christensen, K.V.; Norddahl, B. A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol. Bioeng., 2009, 102(5), 1298-1315.
[http://dx.doi.org/10.1002/bit.22256] [PMID: 19215031]
[54]
Atabani, A.; Badruddin, I.A.; Badarudin, A.; Khayoon, M.; Triwahyono, S. Recent scenario and technologies to utilize non-edible oils for biodiesel production. Renew. Sustain. Energy Rev., 2014, 37, 840-851.
[http://dx.doi.org/10.1016/j.rser.2014.05.064]
[55]
Tan, T.; Lu, J.; Nie, K.; Deng, L.; Wang, F. Biodiesel production with immobilized lipase: A review. Biotechnol. Adv., 2010, 28(5), 628-634.
[http://dx.doi.org/10.1016/j.biotechadv.2010.05.012] [PMID: 20580809]
[56]
Jothiramalingam, R.; Wang, M.K. Review of recent developments in solid acid, base, and enzyme catalysts (heterogeneous) for biodiesel production via transesterification. Ind. Eng. Chem. Res., 2009, 48(13), 6162-6172.
[http://dx.doi.org/10.1021/ie801872t]
[57]
Cazaban, D.; Wilson, L.; Betancor, L. Lipase immobilization on siliceous supports: Application to synthetic reactions. Curr. Org. Chem., 2017, 21(2), 96-103.
[http://dx.doi.org/10.2174/1385272821666161108103040]
[58]
Bezbradica, D.; Crovic, M.J.; Tanaskovic, S.; Lukovic, N.; Carevic, M.; Milivojevic, A.; Knezevic-Jugovic, Z. Enzymatic syntheses of esters-green chemistry for valuable food, fuel and fine chemicals. Curr. Org. Chem., 2017, 21(2), 104-138.
[http://dx.doi.org/10.2174/1385272821666161108123326]
[59]
Abbaszaadeh, A.; Ghobadian, B.; Omidkhah, M.R.; Najafi, G. Current biodiesel production technologies: A comparative review. Energy Convers. Manage., 2012, 63, 138-148.
[http://dx.doi.org/10.1016/j.enconman.2012.02.027]
[60]
Verma, P.; Sharma, M.; Dwivedi, G. Impact of alcohol on biodiesel production and properties. Renew. Sustain. Energy Rev., 2016, 56, 319-333.
[http://dx.doi.org/10.1016/j.rser.2015.11.048]
[61]
Li, Q.; Zheng, L.; Cai, H.; Garza, E.; Yu, Z.; Zhou, S. From organic waste to biodiesel: black soldier fly, Hermetia illucens, makes it feasible. Fuel, 2011, 90(4), 1545-1548.
[http://dx.doi.org/10.1016/j.fuel.2010.11.016]
[62]
Li, Q.; Zheng, L.; Qiu, N.; Cai, H.; Tomberlin, J.K.; Yu, Z. Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar production. Waste Manag., 2011, 31(6), 1316-1320.
[http://dx.doi.org/10.1016/j.wasman.2011.01.005] [PMID: 21367596]
[63]
Zheng, L.; Hou, Y.; Li, W.; Yang, S.; Li, Q.; Yu, Z. Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes. Energy, 2012, 47(1), 225-229.
[http://dx.doi.org/10.1016/j.energy.2012.09.006]
[64]
Zheng, L.; Li, Q.; Zhang, J.; Yu, Z. Double the biodiesel yield: rearing black soldier fly larvae, Hermetia illucens, on solid residual fraction of restaurant waste after grease extraction for biodiesel production. Renew. Energy, 2012, 41, 75-79.
[http://dx.doi.org/10.1016/j.renene.2011.10.004]
[65]
Li, W.; Li, Q.; Zheng, L.; Wang, Y.; Zhang, J.; Yu, Z.; Zhang, Y. Potential biodiesel and biogas production from corncob by anaerobic fermentation and black soldier fly. Bioresour. Technol., 2015, 194, 276-282.
[http://dx.doi.org/10.1016/j.biortech.2015.06.112] [PMID: 26210140]
[66]
Yang, S.; Li, Q.; Gao, Y.; Zheng, L.; Liu, Z. Biodiesel production from swine manure via housefly larvae (Musca domestica L.). Renew. Energy, 2014, 66, 222-227.
[http://dx.doi.org/10.1016/j.renene.2013.11.076]
[67]
Wang, H.; Rehman, K.U.; Liu, X.; Yang, Q.; Zheng, L.; Li, W.; Cai, M.; Li, Q.; Zhang, J.; Yu, Z. Insect biorefinery: A green approach for conversion of crop residues into biodiesel and protein. Biotechnol. Biofuels, 2017, 10(1), 304.
[http://dx.doi.org/10.1186/s13068-017-0986-7] [PMID: 29255487]
[68]
Li, Z.; Yang, D.; Huang, M.; Hu, X.; Shen, J.; Zhao, Z.; Chen, J. Chrysomya megacephala (Fabricius) larvae: A new biodiesel resource. Appl. Energy, 2012, 94, 349-354.
[http://dx.doi.org/10.1016/j.apenergy.2012.01.068]
[69]
Leung, D.; Yang, D.; Li, Z.; Zhao, Z.; Chen, J.; Zhu, L. Biodiesel from Zophobas morio larva oil: Process optimization and FAME characterization. Ind. Eng. Chem. Res., 2012, 51(2), 1036-1040.
[http://dx.doi.org/10.1021/ie201403r]
[70]
Zheng, L.; Hou, Y.; Li, W.; Yang, S.; Li, Q.; Yu, Z. Exploring the potential of grease from yellow mealworm beetle (Tenebrio molitor) as a novel biodiesel feedstock. Appl. Energy, 2013, 101, 618-621.
[http://dx.doi.org/10.1016/j.apenergy.2012.06.067]
[71]
Yang, S.; Li, Q.; Zeng, Q.; Zhang, J.; Yu, Z.; Liu, Z. Conversion of solid organic wastes into oil via Boettcherisca peregrine (Diptera: Sarcophagidae) larvae and optimization of parameters for biodiesel production. PLoS One, 2012, 7(9)e45940
[http://dx.doi.org/10.1371/journal.pone.0045940] [PMID: 23029331]
[72]
Leong, S.Y.; Kutty, S.R.M.; Malakahmad, A.; Tan, C.K. Feasibility study of biodiesel production using lipids of Hermetia illucens larva fed with organic waste. Waste Manag., 2016, 47(Pt A), 84-90.
[http://dx.doi.org/10.1016/j.wasman.2015.03.030] [PMID: 25872864]
[73]
Rehman, K.U.; Cai, M.; Xiao, X.; Zheng, L.; Wang, H.; Soomro, A.A.; Zhou, Y.; Li, W.; Yu, Z.; Zhang, J. Cellulose decomposition and larval biomass production from the co-digestion of dairy manure and chicken manure by mini-livestock (Hermetia illucens L.). J. Environ. Manage., 2017, 196, 458-465.
[http://dx.doi.org/10.1016/j.jenvman.2017.03.047] [PMID: 28342340]
[74]
Meneguz, M.; Schiavone, A.; Gai, F.; Dama, A.; Lussiana, C.; Renna, M.; Gasco, L. Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. J. Sci. Food Agric., 2018, 98(15), 5776-5784.
[http://dx.doi.org/10.1002/jsfa.9127] [PMID: 29752718]
[75]
Surendra, K.; Olivier, R.; Tomberlin, J.K.; Jha, R.; Khanal, S.K. Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renew. Energy, 2016, 98, 197-202.
[http://dx.doi.org/10.1016/j.renene.2016.03.022]
[76]
Salomone, R.; Saija, G.; Mondello, G.; Giannetto, A.; Fasulo, S.; Savastano, D. Environmental impact of food waste bioconversion by insects: application of life cycle assessment to process using Hermetia illucens. J. Clean. Prod., 2017, 140, 890-905.
[http://dx.doi.org/10.1016/j.jclepro.2016.06.154]
[77]
ur Rehman, K.; Rehman, A.; Cai, M.; Zheng, L.; Xiao, X.; Somroo, A.A.; Wang, H.; Li, W.; Yu, Z.; Zhang, J. Conversion of mixtures of dairy manure and soybean curd residue by black soldier fly larvae (Hermetia illucens L.). J. Clean. Prod., 2017, 154, 366-373.
[http://dx.doi.org/10.1016/j.jclepro.2017.04.019]
[78]
Nguyen, H.C.; Liang, S.H.; Chen, S.S.; Su, C.H.; Lin, J.H.; Chien, C.C. Enzymatic production of biodiesel from insect fat using methyl acetate as an acyl acceptor: Optimization by using response surface methodology. Energy Convers. Manage., 2018, 158, 168-175.
[http://dx.doi.org/10.1016/j.enconman.2017.12.068]
[79]
Zi-zhe, C.; De-po, Y.; Sheng-qing, W.; Yong, W.; Reaney, M.J.; Zhi-min, Z.; Long-ping, Z.; Guo, S.; Yi, N.; Dong, Z. Conversion of poultry manure to biodiesel, a practical method of producing fatty acid methyl esters via housefly (Musca domestica L.) larval lipid. Fuel, 2017, 210, 463-471.
[http://dx.doi.org/10.1016/j.fuel.2017.08.109]
[80]
Nguyen, H.C.; Liang, S.H.; Doan, T.T.; Su, C.H.; Yang, P.C. Lipase-catalyzed synthesis of biodiesel from black soldier fly (Hermetica illucens): Optimization by using response surface methodology. Energy Convers. Manage., 2017, 145, 335-342.
[http://dx.doi.org/10.1016/j.enconman.2017.05.010]
[81]
Knothe, G. “Designer” biodiesel: Optimizing fatty ester composition to improve fuel properties. Energy Fuels, 2008, 22(2), 1358-1364.
[http://dx.doi.org/10.1021/ef700639e]
[82]
Ramos, M.J.; Fernández, C.M.; Casas, A.; Rodríguez, L.; Pérez, A. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour. Technol., 2009, 100(1), 261-268.
[http://dx.doi.org/10.1016/j.biortech.2008.06.039] [PMID: 18693011]
[83]
Wang, C.; Qian, L.; Wang, W.; Wang, T.; Deng, Z.; Yang, F.; Xiong, J.; Feng, W. Exploring the potential of lipids from black soldier fly: New paradigm for biodiesel production (I). Renew. Energy, 2017, 111, 749-756.
[http://dx.doi.org/10.1016/j.renene.2017.04.063]
[84]
Sun, M.; Xu, X.; Zhang, Q.; Rui, X.; Wu, J.; Dong, M. Ultrasonic-assisted aqueous extraction and physicochemical characterization of oil from Clanis bilineata. J. Oleo Sci., 2018, 67(2), 151-165.
[http://dx.doi.org/10.5650/jos.ess17108] [PMID: 29367478]
[85]
Jin, G.; Yang, F.; Hu, C.; Shen, H.; Zhao, Z.K. Enzyme-assisted extraction of lipids directly from the culture of the oleaginous yeast Rhodosporidium toruloides. Bioresour. Technol., 2012, 111, 378-382.
[http://dx.doi.org/10.1016/j.biortech.2012.01.152] [PMID: 22361072]
[86]
Nguyen, H.C.; Liang, S.H.; Li, S.Y.; Su, C.H.; Chien, C.C.; Chen, Y.J.; Huong, D.T.M. Direct transesterification of black soldier fly larvae (Hermetia illucens) for biodiesel production. J. Taiwan Inst. Chem. Eng., 2018, 85, 165-169.
[http://dx.doi.org/10.1016/j.jtice.2018.01.035]
[87]
European Standard, EN 14214. Automotive fuels-fatty acid methyl esters (FAME) for diesel engines-requirements and test methods.. 2008.
[88]
Feng, Y.; Zhang, A.; Li, J.; He, B. A continuous process for biodiesel production in a fixed bed reactor packed with cation-exchange resin as heterogeneous catalyst. Bioresour. Technol., 2011, 102(3), 3607-3609.
[http://dx.doi.org/10.1016/j.biortech.2010.10.115] [PMID: 21078550]
[89]
Nielsen, P.; Rancke-Madsen, A.; Holm, H.; Burton, R. Production of biodiesel using liquid lipase formulations. J. Am. Oil Chem. Soc., 2016, 93(7), 905-910.
[http://dx.doi.org/10.1007/s11746-016-2843-4]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy