[1]
Yurov, Y.B.; Iourov, I.Y. Editorial: Molecular cyto(post)genomics. Curr. Genomics, 2018, 19(3), 157.
[2]
Iourov, I.Y.; Vorsanova, S.G.; Yuri, B. Yourov (1951-2017). Mol. Cytogenet., 2018, 11(1), 36.
[3]
Iourov, I.Y.; Vorsanova, S.G.; Yurov, Y.B. Molecular cytogenetics and cytogenomics of brain diseases. Curr. Genomics, 2008, 9(7), 452-465.
[4]
South, S.T.; Lee, C.; Lamb, A.N.; Higgins, A.W.; Kearney, H.M. Working group for the American college of medical genetics and genomics laboratory quality assurance committee. ACMG standards and guidelines for constitutional cytogenomic microarray analysis, including postnatal and prenatal applications: Revision 2013. Genet. Med., 2013, 15(11), 901-909.
[5]
Silva, M.; de Leeuw, N.; Mann, K.; Schuring-Blom, H.; Morgan, S.; Giardino, D.; Rack, K.; Hastings, R. European guidelines for constitutional cytogenomic analysis. Eur. J. Hum. Genet., 2019, 27(1), 1-16.
[6]
Heng, H.H.; Horne, S.D.; Chaudhry, S.; Regan, S.M.; Liu, G.; Abdallah, B.Y.; Ye, C.J. A postgenomic perspective on molecular cytogenetics. Curr. Genomics, 2018, 19(3), 227-239.
[7]
Yurov, Y.B.; Vorsanova, S.G.; Iourov, I.Y. Ontogenetic variation of the human genome. Curr. Genomics, 2010, 11(6), 420-425.
[8]
Iourov, I.Y.; Vorsanova, S.G.; Yurov, Y.B. Genomic landscape of the Alzheimer’s disease brain: Chromosome instability--aneuploidy, but not tetraploidy--mediates neurodegeneration. Neurodegener. Dis., 2011, 8(1-2), 35-37.
[9]
Zhang, L.; Vijg, J. Somatic mutagenesis in mammals and its implications for human disease and aging. Annu. Rev. Genet., 2018, 52(1), 397-419.
[10]
Iourov, I.Y.; Vorsanova, S.G.; Yurov, Y.B. Somatic cell genomics of brain disorders: A new opportunity to clarify genetic-environmental interactions. Cytogenet. Genome Res., 2013, 139(3), 181-188.
[11]
Rehm, H.L. A new era in the interpretation of human genomic variation. Genet. Med., 2017, 19(10), 1092-1095.
[12]
Iourov, I.Y.; Vorsanova, S.G.; Yurov, Y.B. In silico molecular cytogenetics: A bioinformatic approach to prioritization of candidate genes and copy number variations for basic and clinical genome research. Mol. Cytogenet., 2014, 7(1), 98.
[13]
Wright, C.F.; FitzPatrick, D.R.; Firth, H.V. Paediatric genomics: Diagnosing rare disease in children. Nat. Rev. Genet., 2018, 19(5), 253-268.
[14]
Iourov, I.Y.; Vorsanova, S.G.; Yurov, Y.B. Pathway-based classification of genetic diseases. Mol. Cytogenet., 2019, 12(1), 4.
[15]
Iourov, I.Y.; Vorsanova, S.G.; Voinova, V.Y.; Yurov, Y.B. 3p22.1p21.31 microdeletion identifies CCK as Asperger syndrome candidate gene and shows the way for therapeutic strategies in chromosome imbalances. Mol. Cytogenet., 2015, 8(1), 82.
[16]
Fröhlich, H.; Balling, R.; Beerenwinkel, N.; Kohlbacher, O.; Kumar, S.; Lengauer, T.; Maathuis, M.H.; Moreau, Y. Murphy, S.A.; Przytycka, T.M.; Rebhan, M; Röst, H.; Schuppert, A.; Schwab, M.; Spang, R.; Stekhoven, D.; Sun, J.; Weber A.; Ziemek, D.; Zupan, B. From hype to reality: Data science enabling personalized medicine. BMC Med., 2018, 16(1), 150.