Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Review Article

Chitosan Applications on Pharmaceutical Sciences: A Review

Author(s): Cintia Alejandra Briones Nieva, Mercedes Villegas, Alicia Graciela Cid, Analía Irma Romero and José María Bermúdez*

Volume 9, Issue 3, 2019

Page: [167 - 181] Pages: 15

DOI: 10.2174/2210303109666190404143906

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Chitosan (CS) is a biomaterial derived from chitin, known for its excellent biological properties. One of the most interesting features of CS is its potential for chemical derivatization, which makes it a versatile material and allows to expand its applications. In the last years, the interest on this polymer and its pharmaceutical applications has notably increased. This biopolymer is being widely studied for its interesting properties, such as bioadhesion, antimicrobial activity, biocompatibility, and biodegradability. Other promising properties of CS include its modulation of immunological response, hemostasis, and wound and bone healing activity.

Objective: In this work, a critical review is performed covering its conventional and novel applications, specially focused on pharmaceutical area, providing a clear picture of the current state of art to serve as a basis to direct future research in this field.

Conclusion: Despite all the qualities of this polymer, there are only few CS-based products in the market, so it is a priority to enhance the research to develop new technologies and CS-based systems to enforce this biopolymer in the industry.

Keywords: Biomaterials, pharmaceutical applications, biodegradable, biocompatible, drug delivery/release, gene therapy.

Next »
Graphical Abstract
[1]
Fiamingo, A.; Delezuk, J.A.D.M.; Trombotto, S.; David, L.; Campana-Filho, S.P. Extensively deacetylated high molecular weight chitosan from the multistep ultrasound-assisted deacetylation of beta-chitin. Ultrason. Sonochem., 2016, 32, 79-85.
[2]
Elizabeth, B. Alogenosis iatrogénica; PhD Thesis, Universidad Católica de Cuenca: Cuenca, Ecuador, 2012.
[3]
Kadajji, V.G.; Betageri, G.V. Water soluble polymers for pharmaceutical applications. Polymers , 2011, 3(4), 1972-2009.
[4]
Dutta, P.K.; Dutta, J.; Tripathi, V.S. Chitin and chitosan: Chemistry, properties and application. J. Sci. Ind. Res. , 2004, 63(1), 20-31.
[5]
Macleod, G.; Fell, T. J.; Collett, J. An in vitro investigation into the potential for bimodal drug release from pectin/chitosan/HPMC-coated tablets. Int. J. Pharm., 1999, 188(1), 11-18.
[6]
Kokil, S.; Patil, P.; Mahadik, K.; Paradkar, A. Studies on spray-dried mixtures of chitosan and hydrolyzed gelatin as tablet binder: A technical note. AAPS PharmSciTech, 2005, 6(3), 437-443.
[7]
Chuang, C.Y.; Don, T.M.; Chiu, W.Y. Synthesis and characterization of stimuli‐responsive porous/hollow nanoparticles by self‐assembly of chitosan‐based graft copolymers and application in drug release. J. Polym. Sci. A1, 2010, 48(11), 2377-2387.
[8]
Ribeiro, P.A.F.; Dias, D.S.; Lage, D.P.; Costa, L.E.; Martins, V.T.; Tavares, G.S.V.; Mendonça, D.V.C.; Lima, M.P.; Oliveira, J.S.; Steiner, B.T.; Machado-de-Ávila, R.A.; Roatt, B.M.; Chávez-Fumagalli, M.A.; Menezes-Souza, D.; Duarte, M.C.; Teixeira, A.L.; Coelho, E.A.F. Evaluation of a Leishmania hypothetical protein administered as DNA vaccine or recombinant protein against Leishmania infantum infection and its immunogenicity in humans. Cell. Immunol., 2018, 331, 67-77.
[9]
Boateng, J.S.; Matthews, K.H.; Stevens, H.N.E.; Eccleston, G.M. Wound healing dressings and drug delivery systems: A review. J. Pharm. Sci., 2008, 97(8), 2892-2923.
[10]
Singla, A.K.; Chawla, M. Chitosan: Some pharmaceutical and biological aspects-an update. J. Pharm. Pharmacol., 2001, 53(8), 1047-1067.
[11]
Muzzarelli, R.A.A.; Muzzarelli, C. Chitosan chemistry: Relevance to the biomedical sciences. In: Polysaccharides I: Structure, Characterization and Use; Heinze, T., Ed.; Springer Berlin: Heidelberg, 2005; Vol. 186, pp. 151-209.
[12]
Englehart, M.S.; Cho, S.D.; Tieu, B.H.; Morris, M.S.; Underwood, S.J.; Karahan, A.; Muller, P.J.; Differding, J.A.; Farrell, D.H.; Schreiber, M.A. A novel highly porous silica and chitosan-based hemostatic dressing is superior to HemCon and gauze sponges. J. Trauma, 2008, 65(4), 884-890.
[13]
Malmquist, J.P.; Clemens, S.C.; Oien, H.J.; Wilson, S.L. Hemostasis of oral surgery wounds with the HemCon Dental Dressing. J. Oral Maxillofac. Surg., 2008, 66(6), 1177-1183.
[14]
Brown, M.A.; Daya, M.R.; Worley, J.A. Experience with chitosan dressings in a civilian EMS system. J. Emerg. Med., 2009, 37(1), 1-7.
[15]
Landriscina, A.; Rosen, J.; Friedman, A.J. Biodegradable chitosan nanoparticles in drug delivery for infectious disease. Nanomedicine (Lond.), 2015, 10(10), 1609-1619.
[16]
Park, J.H.; Saravanakumar, G.; Kim, K.; Kwon, I.C. Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv. Drug Deliv. Rev., 2010, 62(1), 28-41.
[17]
Gan, Q.; Wang, T. Chitosan nanoparticle as protein delivery carrier-systematic examination of fabrication conditions for efficient loading and release. Colloids Surf. B Biointerfaces, 2007, 59(1), 24-34.
[18]
Illum, L.; Jabbal-Gill, I.; Hinchcliffe, M.; Fisher, A.N.; Davis, S.S. Chitosan as a novel nasal delivery system for vaccines. Adv. Drug Deliv. Rev., 2001, 51(1-3), 81-96.
[19]
Mao, S.; Sun, W.; Kissel, T. Chitosan-based formulations for delivery of DNA and siRNA. Adv. Drug Deliv. Rev., 2010, 62(1), 12-27.
[20]
Galván Márquez, I.; Akuaku, J.; Cruz, I.; Cheetham, J.; Golshani, A.; Smith, M.L. Disruption of protein synthesis as antifungal mode of action by chitosan. Int. J. Food Microbiol., 2013, 164(1), 108-112.
[21]
Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol., 2010, 144(1), 51-63.
[22]
Badawy, M.E.I.; Rabea, E.I. A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. Int. J. Carbohydr. Chem., 2011, 1, 1-29.
[23]
Gamal, R.F.; El-Tayeb, T.S.; Raffat, E.I.; Ibrahim, H.M.M.; Bashandy, A.S. Optimization of chitin yield from shrimp shell waste by Bacillus subtilis and impact of gamma irradiation on production of low molecular weight chitosan. Int. J. Biol. Macromol., 2016, 91, 598-608.
[24]
Percot, A.; Viton, C.; Domard, A. Optimization of chitin extraction from shrimp shells. Biomacromolecules, 2003, 4(1), 12-18.
[25]
Crofton, A.R.; Hudson, S.M.; Howard, K.; Pender, T.; Abdelgawad, A.; Wolski, D.; Kirsch, W.M. Formulation and characterization of a plasma sterilized, pharmaceutical grade chitosan powder. Carbohydr. Polym., 2016, 146, 420-426.
[26]
Jayakumar, R.; Prabaharan, M.; Reis, R.L.; Mano, J.F. Graft copolymerized chitosan-present status and applications. Carbohydr. Polym., 2005, 62(2), 142-158.
[27]
Harris, M.; Alexander, C.; Wells, C.M.; Bumgardner, J.D.; Carpenter, D.P.; Jennings, J.A. Chitosan for the delivery of antibiotics. In: Chitosan Based Biomaterials; Jennings, J.A.; Bumgardner, J.D., Eds.; Woodhead Publishing, 2017; Vol. 2, pp. 147-173.
[28]
Ramasamy, P.; Subhapradha, N.; Thinesh, T.; Selvin, J.; Selvan, K.M.; Shanmugam, V.; Shanmugam, A. Characterization of bioactive chitosan and sulfated chitosan from Doryteuthis singhalensis (Ortmann, 1891). Int. J. Biol. Macromol., 2017, 99, 682-691.
[29]
Gierszewska, M.; Ostrowska-Czubenko, J. Chitosan-based membranes with different ionic crosslinking density for pharmaceutical and industrial applications. Carbohydr. Polym., 2016, 153, 501-511.
[30]
Jóźwiak, T.; Filipkowska, U.; Szymczyk, P.; Rodziewicz, J.; Mielcarek, A. Effect of ionic and covalent crosslinking agents on properties of chitosan beads and sorption effectiveness of Reactive Black 5 dye. React. Funct. Polym., 2017, 114, 58-74.
[31]
Maslakci, N.N.; Ulusoy, S.; Oksuz, A.U. Investigation of the effects of plasma-treated chitosan electrospun fibers onto biofilm formation. Sens. Actuators, 2017, 246, 887-895.
[32]
Illum, L. Chitosan and its use as a pharmaceutical excipient. Pharm. Res., 1998, 15(9), 1326-1331.
[33]
Drechsler, M.; Garbacz, G.; Thomann, R.; Schubert, R. Development and evaluation of chitosan and chitosan/Kollicoat® Smartseal 30 D film-coated tablets for colon targeting. Eur. J. Pharm. Biopharm., 2014, 88(3), 807-815.
[34]
Upadrashta, S.M.; Katikaneni, P.R.; Nuessle, N.O. Chitosan as a tablet binder. Drug Dev. Ind. Pharm., 1992, 18(15), 1701-1708.
[35]
Movaffagh, J.; Ghodsi, A.; Fazly Bazzaz, B.S.; Sajadi Tabassi, S.A.; Ghodrati Azadi, H. The use of natural biopolymer of chitosan as biodegradable beads for local antibiotic delivery: Release studies. Jundishapur J. Nat. Pharm. Prod., 2013, 8(1), 27-33.
[36]
Sogias, I.A.; Williams, A.C.; Khutoryanskiy, V.V. Why is chitosan mucoadhesive? Biomacromolecules, 2008, 9(7), 1837-1842.
[37]
Gonçalves, I.; Henriques, P.; Seabra, C.; Martins, M.C. The potential utility of chitosan micro/nanoparticles in the treatment of gastric infection. Expert Rev. Anti Infect. Ther., 2014, 12(8), 981-992.
[38]
Wang, M.; Liu, M.; Xie, T.; Zhang, B-F.; Gao, X-L. Chitosan-modified cholesterol-free liposomes for improving the oral bioavailability of progesterone. Colloids Surf. B Biointerfaces, 2017, 159, 580-585.
[39]
Ubaid, M.; Murtaza, G. Fabrication and characterization of genipin cross-linked chitosan/gelatin hydrogel for pH-sensitive, oral delivery of metformin with an application of response surface methodology. Int. J. Biol. Macromol., 2018, 114, 1174-1185.
[40]
S.,, P.; Y.,, G. Polymers in mucoadhesive buccal drug delivery system – A review. Int. J. Res. Pharm. Sci. , 2010.
[41]
Freag, M.S.; Saleh, W.M.; Abdallah, O.Y. Exploiting polymer blending approach for fabrication of buccal chitosan-based composite sponges with augmented mucoadhesive characteristics. Eur. J. Pharm. Sci., 2018, 120, 10-19.
[42]
Portero, A.; Teijeiro-Osorio, D.; Alonso, M.J.; Remuñán-López, C. Development of chitosan sponges for buccal administration of insulin. Carbohydr. Polym., 2007, 68(4), 617-625.
[43]
Tejada, G.; Barrera, M.G.; Piccirilli, G.N.; Sortino, M.; Frattini, A.; Salomon, C.J.; Lamas, M.C.; Leonardi, D. Development and evaluation of buccal films based on chitosan for the potential treatment of oral candidiasis. AAPS PharmSciTech, 2017, 18(4), 936-946.
[44]
Moes, A.J. Gastroretentive dosage forms. Crit. Rev. Ther. Drug Carrier Syst., 1993, 10(2), 143-195.
[45]
Yang, L.; Eshraghi, J.; Fassihi, R. A new intragastric delivery system for the treatment of Helicobacter pylori associated gastric ulcer: in vitro evaluation. J. Control. Release, 1999, 57(3), 215-222.
[46]
Praveen, R.; Prasad Verma, P.R.; Venkatesan, J.; Yoon, D-H.; Kim, S-K.; Singh, S.K. In vitro and in vivo evaluation of gastro-retentive carvedilol loaded chitosan beads using Gastroplus™. Int. J. Biol. Macromol., 2017, 102, 642-650.
[47]
Kim, S.; Jo, A.; Ahn, J. Application of chitosan–alginate microspheres for the sustained release of bacteriophage in simulated gastrointestinal conditions. Int. J. Food Sci. Technol., 2015, 50(4), 913-918.
[48]
Abruzzo, A.; Bigucci, F.; Cerchiara, T.; Saladini, B.; Gallucci, M.C.; Cruciani, F.; Vitali, B.; Luppi, B. Chitosan/alginate complexes for vaginal delivery of chlorhexidine digluconate. Carbohydr. Polym., 2013, 91(2), 651-658.
[49]
Marciello, M.; Rossi, S.; Caramella, C.; Remuñán-López, C. Freeze-dried cylinders carrying chitosan nanoparticles for vaginal peptide delivery. Carbohydr. Polym., 2017, 170, 43-51.
[50]
Dabaghian, M.; Latifi, A.M.; Tebianian, M. NajmiNejad, H.; Ebrahimi, S.M. Nasal vaccination with r4M2e.HSP70c antigen encapsulated into N-trimethyl chitosan (TMC) nanoparticulate systems: Preparation and immunogenicity in a mouse model. Vaccine, 2018, 36(20), 2886-2895.
[51]
Agnihotri, S.A.; Mallikarjuna, N.N.; Aminabhavi, T.M. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control. Release, 2004, 100(1), 5-28.
[52]
Luppi, B.; Bigucci, F.; Abruzzo, A.; Corace, G.; Cerchiara, T.; Zecchi, V. Freeze-dried chitosan/pectin nasal inserts for antipsychotic drug delivery. Eur. J. Pharm. Biopharm., 2010, 75(3), 381-387.
[53]
Huang, Y.C.; Vieira, A.; Huang, K.L.; Yeh, M.K.; Chiang, C.H. Pulmonary inflammation caused by chitosan microparticles. J. Biomed. Mater. Res. A, 2005, 75(2), 283-287.
[54]
Zhang, W.F.; Zhao, X.T.; Zhao, Q.S.; Zha, S.H.; Liu, D.M.; Zheng, Z.J.; Li, W.T.; Zhou, H.Y.; Yan, F. Biocompatibility and characteristics of theophylline/carboxymethyl chitosan microspheres for pulmonary drug delivery. Polym. Int., 2014, 63(6), 1035-1040.
[55]
Manca, M.L.; Manconi, M.; Valenti, D.; Lai, F.; Loy, G.; Matricardi, P.; Fadda, A.M. Liposomes coated with chitosan–xanthan gum (chitosomes) as potential carriers for pulmonary delivery of rifampicin. J. Pharm. Sci., 2012, 101(2), 566-575.
[56]
Oyarzun-Ampuero, F.A.; Brea, J.; Loza, M.I.; Torres, D.; Alonso, M.J. Chitosan-hyaluronic acid nanoparticles loaded with heparin for the treatment of asthma. Int. J. Pharm., 2009, 381(2), 122-129.
[57]
Anirudhan, T.S.; Nair, S.S.; Nair, A.S. Fabrication of a bioadhesive transdermal device from chitosan and hyaluronic acid for the controlled release of lidocaine. Carbohydr. Polym., 2016, 152, 687-698.
[58]
Cui, Z.; Zheng, Z.; Lin, L.; Si, J.; Wang, Q.; Peng, X.; Chen, W. Electrospinning and crosslinking of polyvinyl alcohol/chitosan composite nanofiber for transdermal drug delivery. Adv. Polym. Technol., 2018, 37(6), 1917-1928.
[59]
De Campos, A.M.; Sanchez, A.; Alonso, M.J. Chitosan nanoparticles: A new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int. J. Pharm., 2001, 224(1-2), 159-168.
[60]
Schipper, N.G.; Olsson, S.; Hoogstraate, J.A.; deBoer, A.G.; Varum, K.M.; Artursson, P. Chitosans as absorption enhancers for poorly absorbable drugs 2: Mechanism of absorption enhancement. Pharm. Res., 1997, 14(7), 923-929.
[61]
Felt, O.; Furrer, P.; Mayer, J.M.; Plazonnet, B.; Buri, P.; Gurny, R. Topical use of chitosan in ophthalmology: Tolerance assessment and evaluation of precorneal retention. Int. J. Pharm., 1999, 180(2), 185-193.
[62]
Wadhwa, S.; Paliwal, R.; Paliwal, S.R.; Vyas, S.P. Nanocarriers in ocular drug delivery: An update review. Curr. Pharm. Des., 2009, 15(23), 2724-2750.
[63]
Natesan, S.; Pandian, S.; Ponnusamy, C.; Palanichamy, R.; Muthusamy, S.; Kandasamy, R. Co-encapsulated resveratrol and quercetin in chitosan and peg modified chitosan nanoparticles: For efficient intra ocular pressure reduction. Int. J. Biol. Macromol., 2017, 104(Pt B), 1837-1845.
[64]
Rodrigues, L.B.; Leite, H.F.; Yoshida, M.I.; Saliba, J.B.; Cunha, A.S., Jr; Faraco, A.A. In vitro release and characterization of chitosan films as dexamethasone carrier. Int. J. Pharm., 2009, 368(1-2), 1-6.
[65]
Bhattarai, N.; Gunn, J.; Zhang, M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev., 2010, 62(1), 83-99.
[66]
Jayakumar, R.; Menon, D.; Manzoor, K.; Nair, S.V.; Tamura, H. Biomedical applications of chitin and chitosan based nanomaterials-A short review. Carbohydr. Polym., 2010, 82(2), 227-232.
[67]
Lai, W.F.; Lin, M.C. Nucleic acid delivery with chitosan and its derivatives. J. Control. Release, 2009, 134(3), 158-168.
[68]
Buschmann, M.D.; Merzouki, A.; Lavertu, M.; Thibault, M.; Jean, M.; Darras, V. Chitosans for delivery of nucleic acids. Adv. Drug Deliv. Rev., 2013, 65(9), 1234-1270.
[69]
Amidi, M.; Romeijn, S.G.; Verhoef, J.C.; Junginger, H.E.; Bungener, L.; Huckriede, A.; Crommelin, D.J.; Jiskoot, W. N-trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination: biological properties and immunogenicity in a mouse model. Vaccine, 2007, 25(1), 144-153.
[70]
Li, Y.; Dong, H.; Wang, K.; Shi, D.; Zhang, X.; Zhuo, R. Stimulus-responsive polymeric nanoparticles for biomedical applications. Sci. China Chem., 2010, 53(3), 447-457.
[71]
Du, H.; Liu, M.; Yang, X.; Zhai, G. The design of pH-sensitive chitosan-based formulations for gastrointestinal delivery. Drug Discov. Today, 2015, 20(8), 1004-1011.
[72]
Yilmaz, E.; Yalinca, Z.; Yahya, K.; Sirotina, U. pH responsive graft copolymers of chitosan. Int. J. Biol. Macromol., 2016, 90, 68-74.
[73]
Li, Z.; Shim, H.; Cho, M.O.; Cho, I.S.; Lee, J.H.; Kang, S-W.; Kwon, B.; Huh, K.M. Thermo-sensitive injectable glycol chitosan-based hydrogel for treatment of degenerative disc disease. Carbohydr. Polym., 2018, 184, 342-353.
[74]
Jeong, Y-I.L.; Cha, B.; Lee, H.L.; Song, Y.H.; Jung, Y.H.; Kwak, T.W.; Choi, C.; Jeong, G-W.; Nah, J.W.; Kang, D.H. Simple nanophotosensitizer fabrication using water-soluble chitosan for photodynamic therapy in gastrointestinal cancer cells. Int. J. Pharm., 2017, 532(1), 194-203.
[75]
Goycoolea, F.M.; Milkova, V. Electrokinetic behavior of chitosan adsorbed on o/w nanoemulsion droplets. Colloids Surf. A, 2017, 519, 205-211.
[76]
Natesan, S.; Ponnusamy, C.; Sugumaran, A.; Chelladurai, S.; Shanmugam Palaniappan, S.; Palanichamy, R. Artemisinin loaded chitosan magnetic nanoparticles for the efficient targeting to the breast cancer. Int. J. Biol. Macromol., 2017, 104, 1853-1859.
[77]
Mumper, R.J.; Wang, J.; Claspell, J.M.; Rolland, A.P. Novel polymeric condensing carriers for gene delivery; P. Controll. Release Soc., 1995, p. 22.
[78]
Li, L.; Jiang, G.; Yu, W.; Liu, D.; Chen, H.; Liu, Y.; Tong, Z.; Kong, X.; Yao, J. Preparation of chitosan-based multifunctional nanocarriers overcoming multiple barriers for oral delivery of insulin. Mater. Sci. Eng. C Mater. Biol. Appl, 2017, 70, 278-286.
[79]
Kim, T-H.; Jiang, H-L.; Jere, D.; Park, I-K.; Cho, M-H.; Nah, J-W.; Choi, Y.J.; Akaike, T.; Cho, C.S. Chemical modification of chitosan as a gene carrier in vitro and in vivo. Prog. Polym. Sci., 2007, 32(7), 726-753.
[80]
Tamboli, V.; Mishra, G.P.; Mitra, A.K. Polymeric vectors for ocular gene delivery. Ther. Deliv., 2011, 2(4), 523-536.
[81]
Prabaharan, M.; Mano, J.F. Chitosan-based particles as controlled drug delivery systems. Drug Deliv., 2005, 12(1), 41-57.
[82]
Duceppe, N.; Tabrizian, M. Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery. Expert Opin. Drug Deliv., 2010, 7(10), 1191-1207.
[83]
Ishii, T.; Okahata, Y.; Sato, T. Mechanism of cell transfection with plasmid/chitosan complexes. BBA-Biomembranes, 2001, 1514(1), 51-64.
[84]
Kiang, T.; Wen, J.; Lim, H.W.; Leong, K.W. The effect of the degree of chitosan deacetylation on the efficiency of gene transfection. Biomaterials, 2004, 25(22), 5293-5301.
[85]
Senel, S.J.; McClure, S. Potential applications of chitosan in veterinary medicine. Adv. Drug Deliv. Rev., 2004, 56, 1467-1480.
[86]
Amaduzzi, F.; Bomboi, F.; Bonincontro, A.; Bordi, F.; Casciardi, S.; Chronopoulou, L.; Diociaiuti, M.; Mura, F.; Palocci, C.; Sennato, S. Chitosan–DNA complexes: Charge inversion and DNA condensation. Colloids Surf. B Biointerfaces, 2014, 114, 1-10.
[87]
Boonthum, C.; Namdee, K.; Boonrungsiman, S.; Chatdarong, K.; Saengkrit, N.; Sajomsang, W.; Ponglowhapan, S.; Yata, T. Chitosan-based DNA delivery vector targeted to gonadotropin-releasing hormone (GnRH) receptor. Carbohydr. Polym., 2017, 157, 311-320.
[88]
Lee, Y.H.; Park, H.I.; Choi, J.S. Novel glycol chitosan-based polymeric gene carrier synthesized by a Michael addition reaction with low molecular weight polyethylenimine. Carbohydr. Polym., 2016, 137, 669-677.
[89]
Feng, C.; Sun, G.; Wang, Z.; Cheng, X.; Park, H.; Cha, D.; Kong, M.; Chen, X. Transport mechanism of doxorubicin loaded chitosan based nanogels across intestinal epithelium. Eur. J. Pharm. Biopharm., 2014, 87(1), 197-207.
[90]
Moura, M.; Gil, M.; Figueiredo, M. Delivery of cisplatin from thermosensitive co-cross-linked chitosan hydrogels. Eur. Polym. J., 2013, 49(9), 2504-2510.
[91]
Tan, M.L.; Choong, P.F.; Dass, C.R. Review: doxorubicin delivery systems based on chitosan for cancer therapy. J. Pharm. Pharmacol., 2009, 61(2), 131-142.
[92]
Li, S.; Xiong, Y.; Zhang, X. Poloxamer surface modified trimethyl chitosan nanoparticles for the effective delivery of methotrexate in osteosarcoma. Biomed. Pharmacother., 2017, 90, 872-879.
[93]
Rudzinski, W.E.; Palacios, A.; Ahmed, A.; Lane, M.A.; Aminabhavi, T.M. Targeted delivery of small interfering RNA to colon cancer cells using chitosan and PEGylated chitosan nanoparticles. Carbohydr. Polym., 2016, 147, 323-332.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy