[1]
Lu, A.H.; Salabas, E.L.; Schuth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed., 2007, 46, 1222-1244.
[2]
Khan, M.; Seubsai, A.; Onal, I.; Senkan, S. High throughput synthesis and screening of new catalytic materials for the direct epoxidation of propylene. Comb. Chem. High Throughput Screen., 2010, 13, 67-74.
[3]
Maleki, A.; Rabbani, M.; Shahrokh, S. Preparation and characterization of a silica‐based magnetic nanocomposite and its application as a recoverable catalyst for the one‐pot multicomponent synthesis of quinazolinone derivatives. Appl. Organomet. Chem., 2015, 29, 809-814.
[4]
Azizi, K.; Karimi, M.; Shaterianb, H.R.; Heydari, A. Ultrasound irradiation for the green synthesis of chromenes using L-arginine-functionalized magnetic nanoparticles as a recyclable organocatalyst. RSC Advances, 2014, 4, 42220-42225.
[6]
Zhu, L.P.; Zhang, W.D.; Xiao, H.M.; Yang, Y.; Fu, S.Y. Facile synthesis of metallic co hierarchical nanostructured microspheres by a simple solvothermal process. . J. Phys. Chem. C, 2008, 112, 10073-10078.
[7]
Matoussevitcha, N.; Gorschinskia, A.; Habichta, W.; Bolleb, J.; Dinjusa, E.; Bönnemanna, H.; Behrensa, S. Surface modification of metallic Co nanoparticles. . J. Magn. Magn. Mater., 2007, 311, 92-96.
[8]
Liu, W.; Zhong, W.; Wu, X.; Tang, N.; Du, Y. Hydrothermal microemulsion synthesis of cobalt nanorods and self-assembly into square-shaped nanostructures. . J. Cryst. Growth, 2005, 284, 446-452.
[9]
Su, Y.; Yang, X.; Tang, J. Spectra study and size control of cobalt nanoparticles passivated with oleic acid and triphenylphosphine. Appl. Surf. Sci., 2010, 256, 2353-2360.
[10]
Liang, X.; Zhao, L. Room-temperature synthesis of air-stable cobalt nanoparticles and their highly efficient adsorptionability for Congo red. RSC Advances, 2012, 2, 5485-5487.
[11]
Puntes, V.F.; Krishnan, K.M.; Alivisatos, A.P. Colloidal nanocrystal shape and size control: The case of cobalt. Science, 2001, 291, 2115-2117.
[12]
Skumryev, V.; Stoyanov, S.; Zhang, Y.; Hadjipanayis, G.; Givord, D.; Nogu’es, J. Beating the superparamagnetic limit with exchange bias. Nature, 2003, 423, 850-853.
[13]
Yu, Y.; Mendoza-Garcia, A.; Ning, B.; Sun, S. Cobalt‐substituted magnetite nanoparticles and their assembly into ferrimagnetic nanoparticle arrays. Adv. Mater., 2013, 25, 3090-3094.
[14]
Xiong, J.; Wang, Y.; Xue, Q.; Wu, X. Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid. Green Chem., 2011, 13, 900-904.
[15]
Raveendran, P.; Fu, J.; Wallen, S.L. Completely “green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc., 2003, 125, 13940-13941.
[16]
Liu, J.; Qin, G.; Raveendran, P.; Ikushima, Y. Facile “green” synthesis, characterization, and catalytic function of β‐D‐glucose‐stabilized Au nanocrystals. Chemistry Eur. J.,, 2006, 12, 2131-2138.
[17]
Abdel-Rahman, A.H.; Keshk, E.M.; Hanna, M.A.; El-Bady, S.M. Synthesis and evaluation of some new spiro indoline-based heterocycles as potentially active antimicrobial agents. Bioorg. Med. Chem., 2004, 12, 2483-2488.
[18]
Zaki, M.E.A.; Soliman, H.A.; Hiekal, O.A.; Rashad, A.E.Z. Pyrazolopyranopyrimidines as a class of anti-inflammatory agents. Z. Naturforsch., 2006, 61c, 1-5.
[19]
Wang, J.L.; Liu, D.; Zhang, Z.J.; Shan, S.; Han, X.; Srinivasula, S.M.; Huang, Z. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl. Acad. Sci. USA, 2000, 97, 7124-7129.
[20]
Abdelrazek, F.M.; Metz, P.; Kataeva, O.; Jaeger, A.; El-Mahrouky, S.F. Synthesis and molluscicidal activity of new chromene and pyrano[2,3-c]pyrazole derivatives. . Arch. Pharm. Chem. Life Sci, 2007, 340, 543-548.
[21]
Wu, H.; Zhang, L.L.; Tian, Z.Q.; Huang, Y.D.; Wang, Y.M. Highly efficient enantioselective construction of bispirooxindoles containing three stereocenters through an organocatalytic cascade michael–cyclization reaction. . Chemistry Eur. J., 2013, 19, 1747-1753.
[22]
Dandia, A.; Saini, D.; Bhaskaran, S.; Saini, D.K. Ultrasound promoted green synthesis of spiro[pyrano[2,3-c]pyrazoles] as antioxidant agents. Med. Chem. Res., 2014, 23, 725-734.
[23]
Mecadon, H.; Rohman, M.R.; Kharbangar, I.; Laloo, B.M.; Kharkongor, I.; Rajbangshi, M.; Myrboh, B. L-Proline as an efficicent catalyst for the multi-component synthesis of 6-amino-4-alkyl/aryl-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitri-les in water. Tetrahedron Lett., 2011, 52, 3228-3231.
[24]
Liu, X.; Xu, X.; Wang, X.; Yang, W.; Qian, Q.; Zhang, M. A facile and convenient way to functionalized trifluoromethylated spirocyclic[indole-3,4-pyrano[2,3-c]pyrazole] derivatives. . Tetrahedron Lett., 2013, 54, 4451-4455.
[25]
Ambethkar, S.; Padmini, V.; Bhuvanesh, N. A green and efficient protocol for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives via a one-pot, four component reaction by grinding method. J. Adv. Res., 2015, 6, 975-985.
[26]
Rahath Kubra, I.; Ramalakshmi, K.; Mohan, Rao. L. Antioxidant enriched fractions from zingiber officinale roscoe. E-J. Chem., 2011, 8, 721-726.
[27]
Mukherjee, S.; Mandal, N.; Dey, A.; Mondal, B. An Approach towards optimization of the extraction of polyphenolic antioxidants from ginger (Zingiberofficinale). J. Food Sci. Technol., 2014, 51, 3301-3308.
[28]
Kumar, K.P.; Paul, W.; Sharma, C.P. green synthesis of silver Nanoparticles with Zingiberofficinale extract and study of its blood compatibility. BioNanoSci, 2012, 2, 144-152.
[29]
Rahmani, A.H. Al shabrmi, F.M.; Aly, S.M. Active ingredients of ginger as potential candidates in the prevention and treatment of diseases via modulation of biological activities. Int. J. Physiol. Pathophysiol. Pharmacol., 2014, 6, 125-136.
[30]
Prasad, S.; Tyagi, A.K. Ginger and its constituents: Role in prevention and treatment of gastrointestinal cancer. Gastroenterol. Res. Pract., 2015, 2015, 1-11.
[31]
Ghasemzadeh, M.A.; Elyasi, Z.; Azimi-Nasrabad, M.; Mirhosseini-Eshkevari, B. Magnetite nanoparticles-supported aptes as a powerful and recoverable nanocatalyst for the preparation of 2-amino-5,10-dihydro- 5,10-dioxo-4h-benzo[g]chromenes and tetr-ahydrobenzo[g]quinoline-5,10- diones. Comb. Chem. High Throughput Screen., 2017, 20, 64-76.
[32]
Ghasemzadeh, M.A.; Abdollahi-Basir, M.H.; Babaei, M. Fe3O4@SiO2-NH2 core-shell nancomposite as efficient and green catalyst for the multi-component synthesis of highly substituted chromeno[2,3-b]pyridines in aqueous ethanol media. . Green Chem. Lett. Rev., 2015, 8, 40-49.
[33]
Ghasemzadeh, M.A. Synthesis and characterization of Fe3O4@SiO2 NPs as an effective catalyst for the synthesis of tetrahydrobenzo[a]xanthen-11-ones. Acta Chim. Slov., 2015, 62, 977-985.
[34]
Hasan Nasrollahi, S.M.; Ghasemzadeh, M.A.; Zolfaghari, M.R. Synthesis and antibacterial evaluation of some new 1,4-dihydropyridines in the presence of Fe3O4@silica sulfonic acid nanocomposite as catalyst. Acta Chim. Slov., 2018, 65, 199-207.
[35]
Ansari, S.M.; Bhor, R.D.; Rai, K.R.; Sen, D.; Mazumde, S.; Ghosh, K.; Kolekar, Y.D.; Ramana, C.V. Cobalt nanoparticles for biomedical applications: Facile synthesis, physiochemical characterization, cytotoxicity behavior and biocompatibility. Appl. Surf. Sci., 2017, 414, 171-187.
[37]
Azzam, S.H.S.; Pasha, M.A. Simple and efficient protocol for the synthesis of novel dihydro-1H-pyrano[2,3-c]pyrazol-6-ones via a one-pot four-componentreaction. Tetrahedron Lett., 2012, 53, 6834-6837.
[38]
Elnaghdi, N.M.H.; Al-Hokbany, N.S. Organocatalysis in synthesis: L-proline as an enantioselective catalyst in the synthesis of pyrans and Thiopyrans. Molecules, 2012, 17, 4300-4312.
[39]
Brahmachari, G.; Banerjee, B. Facile and one-pot access to diverse and densely functionalized 2-Amino-3-cyano -4H- pyrans and pyran – Annulated Heterocyclic Scaffolds via an eco-friendly multicomponent reaction at room temperature using urea as a novel organo-catalyst. ACS Sustain. Chem.& Eng., 2014, 2, 411-422.