[1]
Ahsan, M.J.; Ansari, M.Y.; Yasmin, S.; Jadav, S.S.; Kumar, P.; Garg, S.K.; Aseri, A.; Khalilullah, H. Tuberculosis: Current treatment, diagnostics, and newer antitubercular agents in clinical trials. Infect. Disord. Drug Targets, 2015, 15(1), 32-41. [http://dx.doi.org/10.2174/1871526514666140923153329]. [PMID: 25246035].
[2]
Asif, M. A review of antimycobacterial drugs in development. Mini Rev. Med. Chem., 2012, 12(13), 1404-1418. [PMID: 22625412].
[3]
Pukrittayakamee, S.; Imwong, M.; Looareesuwan, S.; White, N.J. Therapeutic responses to antimalarial and antibacterial drugs in vivax malaria. Acta Trop., 2004, 89(3), 351-356. [http://dx.doi.org/10.1016/j.actatropica.2003.10.012]. [PMID: 14744561].
[4]
Bermudez, L.E.; Meek, L. Mefloquine and its enantiomers are active against Mycobacterium tuberculosis in vitro and in macrophages. Tuberc. Res. Treat., 2014, 2014530815 [http://dx.doi.org/10.1155/2014/530815]. [PMID: 25580293].
[5]
Krieger, D.; Vesenbeckh, S.; Schönfeld, N.; Bettermann, G.; Bauer, T.T.; Rüssmann, H.; Mauch, H. Mefloquine as a potential drug against multidrug-resistant tuberculosis. Eur. Respir. J., 2015, 46(5), 1503-1505. [http://dx.doi.org/10.1183/13993003.00321-2015]. [PMID: 26206875].
[6]
Kunin, C.M.; Ellis, W.Y. Antimicrobial activities of mefloquine and a series of related compounds. Antimicrob. Agents Chemother., 2000, 44(4), 848-852. [http://dx.doi.org/10.1128/AAC.44.4.848-852.2000]. [PMID: 10722480].
[7]
a)Jayaprakash, S.; Iso, Y.; Wan, B.; Franzblau, S.G.; Kozikowski, A.P. Design, synthesis, and SAR studies of mefloquine-based ligands as potential antituberculosis agents. ChemMedChem, 2006, 1(6), 593-597. [http://dx.doi.org/10.1002/cmdc.200600010]. [PMID: 16892398]
b)Jonet, A.; Dassonville-Klimpt, A.; Sonnet, P.; Mullié, C. Side chain length is more important than stereochemistry in the antibacterial activity of enantiomerically pure 4-aminoalcohol quinoline derivatives. J. Antibiot. (Tokyo), 2013, 66(11), 683-686. [http://dx.doi.org/10.1038/ja.2013.71]. [PMID: 23820616].
[8]
Gonçalves, R.S.B.; Kaiser, C.R.; Lourenço, M.C.S.; Bezerra, F.A.F.M.; de Souza, M.V.N.; Wardell, J.L.; Wardell, S.M.S.V.; Henriques, Md.; Costa, T. Mefloquine-oxazolidine derivatives, derived from mefloquine and arenecarbaldehydes: In vitro activity including against the multidrug-resistant tuberculosis strain T113. Bioorg. Med. Chem., 2012, 20(1), 243-248. [http://dx.doi.org/10.1016/j.bmc.2011.11.006]. [PMID: 22142615].
[9]
Rodrigues-Junior, V.S.; Villela, A.D.; Gonçalves, R.S.B.; Abbadi, B.L.; Trindade, R.V.; López-Gavín, A.; Tudó, G.; González-Martín, J.; Basso, L.A.; de Souza, M.V.N.; Campos, M.M.; Santos, D.S. Mefloquine and its oxazolidine derivative compound are active against drug-resistant Mycobacterium tuberculosis strains and in a murine model of tuberculosis infection. Int. J. Antimicrob. Agents, 2016, 48(2), 203-207. [http://dx.doi.org/10.1016/j.ijantimicag.2016.04.029]. [PMID: 27364701].
[10]
Barbosa-Lima, G.; Moraes, A.M.; Araújo, A.D.S.; da Silva, E.T.; de Freitas, C.S.; Vieira, Y.R.; Marttorelli, A.; Neto, J.C.; Bozza, P.T.; de Souza, M.V.N.; Souza, T.M.L. 2,8-bis(trifluoromethyl)quinoline analogs show improved anti-Zika virus activity, compared to mefloquine. Eur. J. Med. Chem., 2017, 127, 334-340. [http://dx.doi.org/10.1016/j.ejmech.2016.12.058]. [PMID: 28068604].
[11]
Franzblau, S.G.; Witzig, R.S.; McLaughlin, J.C.; Torres, P.; Madico, G.; Hernandez, A.; Degnan, M.T.; Cook, M.B.; Quenzer, V.K.; Ferguson, R.M.; Gilman, R.H. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J. Clin. Microbiol., 1998, 36(2), 362-366. [PMID: 9466742].
[12]
Ahmed, S.A.; Gogal, R.M., Jr; Walsh, J.E. A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. J. Immunol. Methods, 1994, 170(2), 211-224. [http://dx.doi.org/10.1016/0022-1759(94)90396-4]. [PMID: 8157999].