Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Exploration of the Effect and Mechanism of ShenQi Compound in a Spontaneous Diabetic Rat Model

Author(s): Ya Liu, Jian Kang, Hong Gao, Xiyu Zhang, Jun Chao, Guangming Gong, Haipo Yuan and Chunguang Xie*

Volume 19, Issue 5, 2019

Page: [622 - 631] Pages: 10

DOI: 10.2174/1871530319666190225113859

Price: $65

Abstract

Background: Type 2 Diabetes Mellitus (T2DM) is a world-wide metabolic disease with no cure from drugs and treatment. In China, The Traditional Chinese Medicine (TCM) herbal formulations have been used to treat T2DM for centuries.

Methods: In this study, we proposed a formula called ShenQi Compound (SQC), which has been used in clinical therapeutics in China for several years. We evaluated the effect of SQC in a spontaneous diabetic rat model (GK rats) by detecting a series of blood indicators and performing histological observations. Meanwhile, the gene microarray and RT-qPCR experiments were used to explore the molecular mechanism of SQC treatment. In addition, western medicine, sitagliptin was employed as a comparison.

Results: The results indicated that SQC and sitagliptin could effectively improve the serum lipid (blood Total Cholesterol (TC) and blood Triglycerides (TG)), hormone levels (serum insulin (INS), Glucagon (GC) and Glucagon-Like Peptide-1 (GLP-1)), alleviated the inflammatory response (hypersensitive C-Reactive Protein (hsCRP)), blood glucose fluctuation (Mean Blood Glucose (MBG), standard deviation of blood glucose (SDBG) and Largest Amplitude of plasma Glucose Excursions (LAGE)), pancreatic tissue damage and vascular injury for T2DM. Compared with sitagliptin, SQC achieved a better effect on blood glucose fluctuation (p<0.01). Meanwhile, the gene microarray and RT-qPCR experiments indicated that SQC and sitagliptin may improve the T2DM through affecting the biological functions related to apoptosis and circadian rhythm. Moreover, SQC might be able to influence the mTOR signaling pathway by regulating Pik3r1, Ddit4 expression.

Conclusion: All these results indicate that SQC is an effective therapeutic drug on T2DM. Notably, SQC presents an obvious blood glucose fluctuation-preventing ability, which might be derived from the regulation of the mTOR signaling pathway.

Keywords: Type 2 diabetes mellitus, traditional Chinese medicine, gene microarray, blood glucose fluctuation, mTOR signaling pathway, sitagliptin.

Graphical Abstract
[1]
Control, C.F.D. Prevention, diabetes report card 2014. Atlanta, GA: Centers for disease control and prevention, US departmentof health and human services, , 2015.
[2]
Xu, Y.; Wang, L.; He, J.; Bi, Y.; Li, M.; Wang, T.; Wang, L.; Jiang, Y.; Dai, M.; Lu, J. Prevalence and control of diabetes in chinese adults. JAMA, 2013, 310(9), 948-958.
[3]
Palermo, A.; Maggi, D.; Maurizi, A.R.; Pozzilli, P.; Buzzetti, R. Prevention of type 2 diabetes mellitus: Is it feasible? Diabetes Metab. Res. Rev., 2014, 30(Suppl. 1), 4-12.
[4]
Chen, L.; Magliano, D.J.; Zimmet, P.Z. The worldwide epidemiology of type 2 diabetes mellitus-present and future perspectives. Nat. Rev. Endocrinol., 2011, 8(4), 228-236.
[5]
Markakis, K.; Bowling, F.L.; Boulton, A.J. The diabetic foot in 2015: An overview. Diabetes Metab. Res. Rev., 2016, 32(Suppl. 1), 169-178.
[6]
Bessueille, L.; Magne, D. Inflammation: A culprit for vascular calcification in atherosclerosis and diabetes. Cell. Mol. Life Sci., 2015, 72(13), 2475-2489.
[7]
Silva, Junior, W.S.; Godoy-Matos, A.F.; Kraemer-Aguiar, L.G. Dipeptidyl peptidase 4: A new link between diabetes mellitus and atherosclerosis? BioMed Res. Int., 2015, 2015(816164)
[8]
Noor, S.; Khan, R.U.; Ahmad, J. Understanding diabetic foot infection and its management. Diabetes Metab. J., 2017, 11(2), 149-156.
[9]
Kocyigit, D.; Gurses, K.M.; Yalcin, M.U.; Tokgozoglu, L. Anti-hyperglycemic agents for the treatment of type 2 diabetes mellitus: role in cardioprotection during the last decade. Endocr. Metab. Immune Disord. Drug Targets, 2017, 17(1), 19-31.
[10]
Duckworth, W.; Abraira, C.; Moritz, T.; Reda, D.; Emanuele, N.; Reaven, P.D.; Zieve, F.J.; Marks, J.; Davis, S.N.; Hayward, R.; Warren, S.R.; Goldman, S.; McCarren, M.; Vitek, M.E.; Henderson, W.G.; Huang, G.D.; Investigators, V. Glucose control and vascular complications in veterans with type 2 diabetes. N. Engl. J. Med., 2009, 360(2), 129-139.
[11]
Caprnda, M.; Mesarosova, D.; Ortega, P.F.; Krahulec, B.; Egom, E.; Rodrigo, L.; Kruzliak, P.; Mozos, I.; Gaspar, L. Glycemic variability and vascular complications in patients with type 2 diabetes mellitus. Folia Med. (Plovdiv), 2017, 59(3), 270-278.
[12]
Lee, A.L.; Chen, B.C.; Mou, C.H.; Sun, M.F.; Yen, H.R. Association of traditional chinese medicine therapy and the risk of vascular complications in patients with type ii diabetes mellitus: A nationwide, retrospective, taiwanese-registry, cohort study. Medicine, 2016, 95(3)e2536
[13]
Sun, G.D.; Li, C.Y.; Cui, W.P.; Guo, Q.Y.; Dong, C.Q.; Zou, H.B.; Liu, S.J.; Dong, W.P.; Miao, L.N. Review of herbal traditional chinese medicine for the treatment of diabetic nephropathy. J. Diabetes Res., 2016, 2016(5749857)
[14]
Tam, J.C.; Ko, C.H.; Zhang, C.; Wang, H.; Lau, C.P.; Chan, W.Y.; Leung, P.C.; Fung, K.P.; Zhang, J.F.; Lau, C.B. Comprehensive proteomic analysis of a Chinese 2-herb formula (Astragali Radix and Rehmanniae Radix) on mature endothelial cells. Proteomics, 2014, 14(17-18), 2089-2103.
[15]
Luan, S.S.; Yu, F.; Li, B.Y.; Qin, R.J.; Li, X.L.; Cai, Q.; Yin, W.B.; Cheng, M.; Gao, H.Q. Quantitative proteomics study of protective effects of grape seed procyanidin B2 on diabetic cardiomyopathy in db/db mice. Biosci. Biotechnol. Biochem., 2014, 78(9), 1577-1583.
[16]
Cai, Q.; Li, B.; Yu, F.; Lu, W.; Zhang, Z.; Yin, M.; Gao, H. Investigation of the protective effects of phlorizin on diabetic cardiomyopathy in db/db mice by quantitative proteomics. J. Diabetes Res., 2013, 2013(263845)
[17]
Gong, G.; Yuan, H.; Liu, Y.; Qi, L. Investigation of the effects and mechanisms of mai tong formula on lower limb macroangiopathy in a spontaneous diabetic rat model. J. Diabetes Res., 2016, 2016(8076796)
[18]
Xing, Q.; Chen, Y. Antidiabetic effects of a chinese herbal medicinal compound sangguayin preparation via pi3k/akt signaling pathway indb/dbmice. Evid. Based Complement. Alternat. Med., 2018, 2018(1), 1-11.
[19]
Cai, S.; Sun, W.; Fan, Y.; Guo, X.; Xu, G.; Xu, T.; Hou, Y.; Zhao, B.; Feng, X.; Liu, T. Effect of mulberry leaf (Folium Mori) on insulin resistance via IRS-1/PI3K/Glut-4 signalling pathway in type 2 diabetes mellitus rats. Pharm. Biol., 2016, 54(11), 2685-2691.
[20]
Gui, Q.F.; Xu, Z.R.; Xu, K.Y.; Yang, Y.M. The efficacy of ginseng-related therapies in type 2 diabetes mellitus: An updated systematic review and meta-analysis. Medicine, 2016, 95(6)e2584
[21]
Xie, W.; Zhao, Y.; Zhang, Y. Traditional chinese medicines in treatment of patients with type 2 diabetes mellitus. Evid. Based Complement. Alternat. Med., 2011, 2011(726723)
[22]
Yu, A.; Adelson, D.; Mills, D. Chinese herbal medicine versus other interventions in the treatment of type 2 diabetes: A systematic review of randomized controlled trials. J. Evid. Based Integr. Med., 2018, 23(2515690X18781519)
[23]
Yuan, Y.M.; Gao, J.W.; Shi, Z.; Huang, P.; Lu, Y.S.; Yao, M.C.; Huang, M. Herb-drug pharmacokinetic interaction between radix astragali and pioglitazone in rats. J. Ethnopharmacol., 2012, 144(2), 300-304.
[24]
Shi, Z.; Gao, J.; Yuan, Y.; Zhu, S.; Yao, M. Effect of raw radix rehmanniae on the pharmacokinetics of pioglitazone in rats. Pak. J. Pharm. Sci., 2014, 27(3), 537-539.
[25]
Barbieri, M.; Rizzo, M.R.; Marfella, R.; Boccardi, V.; Esposito, A.; Pansini, A.; Paolisso, G. Decreased carotid atherosclerotic process by control of daily acute glucose fluctuations in diabetic patients treated by DPP-IV inhibitors. Atherosclerosis, 2013, 227(2), 349-354.
[26]
Riche, D.M.; East, H.E.; Riche, K.D. Impact of sitagliptin on markers of beta-cell function: A meta-analysis. Am. J. Med. Sci., 2009, 337(5), 321-328.
[27]
Tremblay, A.J.; Lamarche, B.; Deacon, C.F.; Weisnagel, S.J.; Couture, P. Effects of sitagliptin therapy on markers of low-grade inflammation and cell adhesion molecules in patients with type 2 diabetes. Metabolism, 2014, 63(9), 1141-1148.
[28]
Mita, T.; Katakami, N.; Shiraiwa, T.; Yoshii, H.; Onuma, T.; Kuribayashi, N.; Osonoi, T.; Kaneto, H.; Kosugi, K.; Umayahara, Y.; Yamamoto, T.; Matsumoto, K.; Yokoyama, H.; Tsugawa, M.; Gosho, M.; Shimomura, I.; Watada, H. Collaborators on the sitagliptin preventive study of intima-media thickness evaluation, t., sitagliptin attenuates the progression of carotid intima-media thickening in insulin-treated patients with type 2 diabetes: The sitagliptin preventive study of intima-media thickness evaluation (spike): A randomized controlled trial. Diabetes Care, 2016, 39(3), 455-464.
[29]
Kautzky-Willer, A.; Handisurya, A. Metabolic diseases and associated complications: Sex and gender matter! Eur. J. Clin. Invest., 2009, 39(8), 631-648.
[30]
Wang, L.; Gao, P.; Zhang, M.; Huang, Z.; Zhang, D.; Deng, Q.; Li, Y.; Zhao, Z.; Qin, X.; Jin, D.; Zhou, M.; Tang, X.; Hu, Y.; Wang, L. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA, 2017, 317(24), 2515-2523.
[31]
Cheng, T.Y.; Chou, Y.J.; Huang, N.; Pu, C.; Chou, Y.J.; Chou, P. Exploring the role of multiple chronic conditions in traditional Chinese medicine use and three types of traditional Chinese medicine therapy among adults in Taiwan. J. Altern. Complement. Med., 2015, 21(6), 350-357.
[32]
Zhang, F.; Hu, C.; Cheng, S.; Wang, S.; Li, B.; Cao, D.; Fan, H.; Pan, R.; Yang, M.; Xu, Y. The investigation of the effect and mechanism of sophora moorcroftiana alkaloids in combination with albendazole on echinococcosis in an experimental rats model. J. Evid. Based Complementary Altern. Med., 2018, 2018(3523126)
[33]
Akash, M.S.; Rehman, K.; Chen, S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J. Cell. Biochem., 2013, 114(3), 525-531.
[34]
Satin, L.S.; Butler, P.C.; Ha, J.; Sherman, A.S. Pulsatile insulin secretion, impaired glucose tolerance and type 2 diabetes. Mol. Aspects Med., 2015, 42, 61-77.
[35]
Shankar, S.S.; Shankar, R.R.; Mixson, L.A.; Miller, D.L.; Pramanik, B.; O’Dowd, A.K.; Williams, D.M.; Frederick, C.B.; Beals, C.R.; Stoch, S.A.; Steinberg, H.O.; Kelley, D.E. Native oxyntomodulin has significant glucoregulatory effects independent of weight loss in obese humans with and without type 2 diabetes. Diabetes, 2018, 67(6), 1105-1112.
[36]
Rakshit, K.; Thomas, A.P.; Matveyenko, A.V. Does disruption of circadian rhythms contribute to beta-cell failure in type 2 diabetes? Curr. Diab. Rep., 2014, 14(4), 474.
[37]
Hanefeld, M.; Engelmann, K.; Appelt, D.; Sandner, D.; Weigmann, I.; Ganz, X.; Pistrosch, F.; Kohler, C.; Gasparic, A.; Birkenfeld, A.L. Intra-individual variability and circadian rhythm of vascular endothelial growth factors in subjects with normal glucose tolerance and type 2 diabetes. PloS one, 2017, 12(10)e0184234
[38]
Cui, T.; Zhang, L.; Huang, Y.; Yi, Y.; Tan, P.; Zhao, Y.; Hu, Y.; Xu, L.; Li, E.; Wang, D. MNDR v2.0: An updated resource of ncRNA–disease associations in mammals. Nucleic Acids Res., 2018, 46, D371-D374.
[39]
Howell, J.J.; Manning, B.D. mTOR couples cellular nutrient sensing to organismal metabolic homeostasis. Trends Endocrinol. Metab., 2011, 22(3), 94-102.
[40]
Kahn, B.B.; Myers, M.G., Jr mTOR tells the brain that the body is hungry. Nat. Med., 2006, 12(6), 615-617.
[41]
Yang, S.B.; Tien, A.C.; Boddupalli, G.; Xu, A.W.; Jan, Y.N.; Jan, L.Y. Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons. Neuron, 2012, 75(3), 425-436.
[42]
Ying, C.; Zhou, X.; Chang, Z.; Ling, H.; Cheng, X.; Li, W. Blood glucose fluctuation accelerates renal injury involved to inhibit the AKT signaling pathway in diabetic rats. Endocrine, 2016, 53(1), 81-96.
[43]
Yi, Y.; Zhao, Y.; Li, C.; Zhang, L.; Huang, H.; Li, Y.; Liu, L.; Hou, P.; Cui, T.; Tan, P. RAID v2.0: An updated resource of RNA-associated interactions across organisms. Nucleic Acids Res., 2017, 45, D115-D118.
[44]
Zhang, T.; Tan, P.; Wang, L.; Jin, N.; Li, Y.; Zhang, L.; Yang, H.; Hu, Z.; Zhang, L.; Hu, C.; Li, C.; Qian, K.; Zhang, C.; Huang, Y.; Li, K.; Lin, H.; Wang, D. RNALocate: A resource for RNA subcellular localizations. Nucleic Acids Res., 2017, 45(D1), D135-D138.
[45]
Zhang, Y.; Liu, T.; Chen, L.; Yang, J.; Yin, J.; Zhang, Y.; Yun, Z.; Xu, H.; Ning, L.; Guo, F.; Jiang, Y.; Lin, H.; Wang, D.; Huang, Y.; Huang, J. RIscoper: A tool for RNA-RNA interaction extraction from the literature. Bioinformatics, 2019.
[46]
Xie, Y.; Jia, Y.; Cuihua, X.; Hu, F.; Xue, M.; Xue, Y. Urinary exosomal microrna profiling in incipient type 2 diabetic kidney disease. J. Diabetes Res., 2017, 2017(5), 1-10.
[47]
Chen, Y.; Ma, H.; Zhu, D.; Zhao, G.; Wang, L.; Fu, X.; Chen, W. Discovery of novel insulin sensitizers: promising approaches and targets. PPAR Res., 2017, 2017(7), 1-13.
[48]
Wu, D.; Huang, Y.; Kang, J.; Li, K.; Bi, X.; Zhang, T.; Jin, N.; Hu, Y.; Tan, P.; Zhang, L. ncRDeathDB: A comprehensive bioinformatics resource for deciphering network organization of the ncRNA-mediated cell death system. Autophagy, 2015, 11(10), 1917-1926.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy