[1]
Liu, M.; Tang, M.; Li, M.; Gao, F.; Shi, C.; Hou, J.; Zeng, W.B. A new window for diagnosis and evaluation of cancer. Anticancer. Agents Med. Chem., 2016, 16, 1529-1540.
[2]
Saranath, D.; Khanna, A. Current status of cancer burden: Global and Indian scenario. Biomed. Res. J., 2014, 1, 1-5.
[3]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61, 69-90.
[4]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Threestep tumor targeting of paclitaxel using biotinylated PLA-PEG nanoparticles and avidin-biotin technology: Formulation development and in vitro anticancer activity. J. Pharm. Biopharm., 2008, 70, 66-74.
[5]
Wolinsky, J.B.; Colson, Y.L.; Grinstaff, M.W. Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric flms, rods, and wafers. J. Control. Release, 2012, 159, 14-26.
[6]
Losic, D.; Aw, M.S.; Santos, A.; Gulati, K.; Bariana, M. Titania nanotube arrays for local drug delivery: Recent advances and perspectives. Expert Opin. Drug Deliv., 2015, 12, 103-127.
[7]
Losic, D.; Simovic, S. Self-ordered nanopore and nanotube platforms for drug delivery applications. Expert Opin. Drug Deliv., 2009, 6, 1363-1381.
[8]
Panyam, J.; Zhou, W.Z.; Prabha, S. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: Implications for drug and gene delivery. FASEB J., 2002, 16, 1217-1226.
[9]
Portney, N.G.; Ozkan, M. Nano-oncology: Drug delivery, imaging, and sensing. Bioanal. Chem., 2006, 384, 620-630.
[10]
Caraglia, M.; De Rosa, G.; Salzano, G.; Santini, D.; Lamberti, M.; Sperlongano, P.; Lombardi, A.; Abbruzzese, A.; Addeo, R. Nanotech revolution for the anti-cancer drug delivery through blood-brain barrier. Curr. Cancer Drug, 2012, 12, 186-196.
[11]
Cui, W.; Li, J.; Decher, G. Self-assembled smart nanocarriers for targeted drug delivery. Adv. Mater., 2015, 28, 1302-1311.
[12]
Zhou, F.; Teng, F.; Deng, P.; Meng, N.; Song, Z.; Feng, R. Recent progress of nano-drug delivery system for liver cancer treatment. Anticancer. Agents Med. Chem., 2017, 17, 1884-1897.
[13]
Chen, Y.C.; Lo, C.L.; Lin, Y.F.; Hsiue, G.H. Rapamycin encapsulated in dual-responsive micelles for cancer therapy. Biomaterials, 2013, 34, 1115-1127.
[14]
Kaur, H.; Desai, S.D.; Kumar, V.; Rathi, P.; Singh, J. Heterocyclic drug-polymer conjugates for cancer targeted drug delivery. Anticancer. Agents Med. Chem., 2016, 16, 1355-1377.
[15]
Van, D.; McGuire, T.; Langer, R. Small scale systems for in vivo drug delivery. Nat. Biotechnol., 2003, 21, 1184-1191.
[16]
Sahoo, S.K.; Labhasetwar, V. Nanotech approaches to drug delivery and imaging. Drug Discov. Today, 2003, 8, 1112-1120.
[17]
Farokhzad, C.O.C.; Teply, J.; Sherifi, B.A.; Jon, I.; Kantoff, S.; Richie, P.W.; Langer, J.P. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. USA, 2006, 103, 6315-6320.
[18]
Leroux, J.C.; Deolker, E.; Gurmy, R.; Nenita, S. Micro encapsulations, methods and industrial application; Dekker: New York, 1996, pp. 537-574.
[19]
Jain, K.K. Advances in the field of nano-oncology. BMC Med., 2010, 8, 83.
[20]
Ng, K.K.; Lovell, J.F.; Zheng, G. Lipoprotein-inspired nanoparticles for cancer theranostics. Acc. Chem. Res., 2011, 44, 1105-1113.
[21]
Allison, B.A.; Waterfield, E.; Richter, A.M.; Levy, J.G. The effect of plasma lipoproteins on in vivo tumor photosensitization with benzoporphyrin derivative. J. Photoch. Photobio., 2010, 54, 709-715.
[22]
Zheng, G.; Li, H.; Zhang, M.; Sissel, L.; Britton, C.; Glickson, J.D. Low-density lipoprotein reconstituted by pyropheophorbide cholesteryl oleate as target-specific photosensitizer. Bioconjug. Chem., 2002, 13, 392-396.
[23]
Song, L.; Li, H.; Sunar, U.; Chen, J.; Corbin, I.; Yodh, A.G. Naphthalocyanine-reconstituted LDL nanoparticles for in vivo cancer imaging and treatment. Int. J. Nanomedicine, 2007, 2, 767-774.
[24]
Wang, R.N.; Gu, X.C.; Zhou, J.P.; Shen, L.J.; Yin, L.F.; Hua, P.Y.; Ding, Y. Green design “bioinspired disassembly-reassembly strategy” applied for improved tumor-targeted anticancer drug delivery. J. Control. Release, 2016, 235, 134-146.
[25]
Silva, R.A.G.D.; Huang, R.; Morris, J.; Fang, J.; Gracheva, E.O.; Ren, G. Structure of apolipoprotein A-I in spherical high density lipoproteins of different sizes. Proc. Natl. Acad. Sci. USA, 2008, 105, 12176-12181.
[26]
Bijsterbosch, M.K.; Van Berkel, T.J. Lactosylated high density lipoprotein: A potential carrier for the site-specific delivery of drugs to parenchymal liver cells. Mol. Pharmacol., 1992, 41, 404-411.
[27]
Mcconathy, W.J.; Nair, M.P.; Paranjape, S.; Mooberry, L.; Lacko, A.G. Evaluation of synthetic/reconstituted high-density lipoproteins as delivery vehicles for paclitaxel. Anticancer Drugs, 2008, 19, 183-188.
[28]
Cao, W.; Ng, K.K.; Corbin, I.; Zhang, Z.; Ding, L.; Chen, J. Synthesis and evaluation of a stable bacteriochlorophyll-analog and its incorporation into high density lipoprotein nanoparticles for tumor imaging. Bioconjug. Chem., 2009, 20, 2023-2031.
[29]
Charsteen, N.D. Ferritin. Uptake, storage and release of iron. Met. Ions Biol. Syst., 1998, 35, 479-514.
[30]
Li, L.; Fang, C.J.; Ryan, J.C. Binding and uptake of H-ferritin are mediated by human transferring receptor-1. Proc. Natl. Acad. Sci. USA, 2010, 107, 3505-3510.
[31]
He, D.; Marles-Wright, J. Ferritin family proteins and their use in bionanotechnology. N. Biotechnol., 2015, 32, 651-657.
[32]
James, F. Hainfeld. Uranium-loaded apoferritin with antibodies attached: Molecular design for uranium neutron-capture therapy. Acad. Sci. USA, 1992, 89, 11064-11068.
[33]
Yang, Z.; Wang, X.; Diao, H.; Zhang, J.; Li, H.; Sun, H. Encapsulation of platinum anticancer drugs by apoferritin. Chem. Commun., 2007, 33, 3453-3455.
[34]
Zhen, Z.; Tang, W.; Chen, H.; Lin, X.; Todd, T.; Wang, G. RGD-modified apoferritin nanoparticles for efficient drug delivery to tumors. ACS. Nanov., 2013, 7, 4830-4837.
[35]
Yao, H.C.; Zhao, W.W.; Zhang, S.G.; Guo, X.F.; Li, Y.; Du, B. Dual-functional carbon dot-labeled heavy-chain ferritin for self-targeting bio-imaging and chemo-photodynamic therapy. J. Mater. Chem. B, 2018, 6, 3107-3115.
[36]
Kratz, F. Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. J. Control. Release, 2008, 132, 171-183.
[37]
Elsadek, B.; Kratz, F. Impact of albumin on drug delivery-new applications on the horizon. J. Control. Release, 2011, 157, 4-28.
[38]
Dadparvar, M.; Wagner, S.; Wien, S.; Kufleitner, J.; Worek, F. HI 6 human serum albumin nanoparticles-development and transport over an in vitro blood-brain barrier model. Toxicol. Lett., 2011, 206, 60-66.
[39]
Li, X.; Mu, J.; Liu, F.; Tan, E.W.; Khezri, B.; Webster, R.D. Human transport protein carrier for controlled photoactivation of antitumor prodrug and real-time intracellular tumor imaging. Bioconjug. Chem., 2015, 26, 955-961.
[40]
Heyen, U.; Schuler, D. Growth and magnetosome formation by microaerophilic magnetospirillum strains in an oxygen-controlled fermentor. Appl. Microbiol. Biotechnol., 2003, 61, 536-544.
[41]
Bazylinski, D.A.; Frankel, R. Magnetosome formation in prokaryotes. Nat. Rev. Microbiol., 2004, 2, 217-230.
[42]
Bazylinski, D.A.; Frankel, R.B. Biologically controlled mineralization in prokaryotes. Rev. Mineral. Geochem., 2003, 54, 217-247.
[43]
Zhang, F.; Zhao, L.J.; Wang, S.M.; Yang, J.; Lu, G.H.; Luo, N.N.; Gao, X.Y.; Ma, G.H.; Xie, H.Y.; Wei, W. Construction of a biomimetic magnetosome and its application as a SiRNA carrier for high-performance anticancer therapy. Adv. Funct. Mater., 2017, 1703326.
[44]
Lee, S.; Ahn, J.H.; Choi, H.; Seo, J.M.; Cho, D.; Koo, K. Natural magnetic nanoparticle containing droplet for smart drug delivery and heat treatment. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2015, 2015, 3541-3544.
[45]
Sun, J.B.; Duan, J.H.; Dai, S.L.; Ren, J.; Zhang, Y.D.; Tian, J.S. in vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: The magnetic bio-nanoparticles as drug carriers. Cancer Lett., 2007, 258, 109-117.
[46]
Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L. Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev., 2004, 56, 185-229.
[47]
Nagaraju, K.; Reddy, R.; Reddy, N. A review on protein functionalized carbon nanotubes. J. Appl. Biomater. Funct. Mater., 2015, 13, 301-312.
[48]
Pondman, K.M.; Paudyal, B.; Sim, R.B.; Kaur, A.; Kouser, L.; Tsolaki, A.G. Pulmonary surfactant protein SP-D opsonises carbon nanotubes and augments their phagocytosis and subsequent pro-inflammatory immune response. Nanoscale, 2017, 19, 1097-1109.
[49]
Guo, Q. Carbon nanotubes-based drug delivery to cancer and brain. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2017, 37, 635-641.
[50]
Shao, W. A new carbon nanotube-based breast cancer drug delivery system: Preparation and in vitro analysis using paclitaxel. Cell Biochem. Biophys., 2015, 71, 1405-1414.
[51]
Romano-Feinholz, S. Cytotoxicity induced by carbon nanotubes in experimental malignant glioma. Int. J. Nanomedicine, 2017, 12, 6005-6026.
[52]
Bilan, R. Quantum dot surface chemistry and functionalization for cell targeting and imaging. Bioconjug. Chem., 2015, 26, 609-624.
[53]
Pohanka, M. Quantum dots in the therapy: Current trends and perspectives. Mini Rev. Med. Chem., 2017, 17, 650-656.
[54]
Sarkar, N. Carbon quantum dot tailored calcium alginate hydrogel for pH responsive controlled delivery of vancomycin. Eur. J. Pharm. Sci., 2017, 109, 359-371.
[55]
Haine, A.T.; Niidome, T. Quantum dots in the therapy: Current trends and perspectives. Chem. Pharm. Bull. (Tokyo), 2017, 65, 625-628.
[56]
Zhang, W.J.; Hong, C.Y.; Pan, C.Y. Efficient fabrication of photosensitive polymeric nano-objects via an ingenious formulation of RAFT dispersion polymerization and their application for drug delivery. Biomacromolecule, 2017, 18, 1210-1217.
[57]
Zhang, Z.; Wang, J.; Nie, X.; Wen, T.; Ji, Y.; Wu, X.; Zhao, Y.; Chen, C. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J. Am. Chem. Soc., 2014, 136, 7317-7326.
[58]
Song, Z.; Liu, Y.; Shi, J.; Ma, T.; Zhang, Z.; Ma, H. Hydroxyapatite/mesoporous silica coated gold nanorods with improved degradability as a multi-responsive drug delivery platform. Mat. Sci. End. C-Mater., 2018, 83, 90-98.
[59]
Wáng, Y.J.; Choi, Y.; Chen, Z.; Laurent, S.; Gibbs, S.L. Molecular imaging: from bench to clinic. J. Mater. Chem. B, 2015, 3, 8383-8393.
[60]
Wang, Y.X.J.; Wang, D.W.; Zhu, X.M.; Zhao, F.; Leung, K.C. Carbon coated superparamagnetic iron oxide nanoparticles for sentinel lymph nodes mapping. Quant. Imaging Med. Surg., 2012, 2, 53-56.
[61]
Rieter, W.J.; Taylor, K.M.; An, H.; Weili, L.A.; Wenbin, L. Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. J. Am. Chem. Soc., 2006, 128, 9024-9025.
[62]
Kerbellec, N.; Catala, L.; Daiguebonne, C.; Gloter, A.; Stephan, O.; Bünzli, J.C. Luminescent coordination nanoparticles. New J. Chem., 2008, 32, 584-587.
[63]
Aimé, C.; Nishiyabu, R.; Gondo, R.; Kimizuka, N. Switching on luminescence in nucleotide/lanthanide coordination nanoparticles via synergistic interactions with a cofactor ligand. Chem. Eur. J., 2010, 16, 3604-3607.
[64]
Imaz, I.; Hernando, J.; Ruiz-Molina, D.; Maspoch, D. Metal-organic spheres as functional systems for guest encapsulation. Angew. Chem. Int. Ed., 2010, 48, 2325-2329.
[65]
Yan, X.; Zhu, P.; Fei, J.; Li, J. Self-assembly of peptide-inorganic hybrid spheres for adaptive encapsulation of guests. Adv. Mater., 2010, 22, 1283-1287.
[66]
Rowe, M.D.; Thamm, D.H.; Kraft, S.L.; Boyes, S.G. Polymer-modified gadolinium metal-organic framework nanoparticles used as multifunctional nanomedicines for the targeted imaging and treatment of cancer. Biomacromolecule, 2009, 10, 983-993.
[67]
Nishiyabu, R.; Hashimoto, N.; Cho, T.; Watanabe, K.; Yasunaga, T.; Endo, A. Nanoparticles of adaptive supramolecular networks self-assembled from nucleotides and lanthanide ions. J. Am. Chem. Soc., 2009, 131, 2151-2158.
[68]
Taylorpashow, K.M.L.; Rocca, J.D.; Xie, Z.; Tran, S.; Lin, W. Post-synthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J. Am. Chem. Soc., 2009, 131, 14261-14263.
[69]
Nishiyabu, R.; Hashimoto, N.; Cho, T.; Watanabe, K.; Yasunaga, T.; Endo, A. Nanoparticles of adaptive supramolecular networks self-assembled from nucleotides and lanthanide ions. J. Am. Chem. Soc., 2009, 131, 2151-2158.
[70]
Culver, J.; Akers, W.; Achilefu, S. Multimodality molecular imaging with combined optical and SPECT/PET modalities. J. Nucl. Med., 2008, 49, 169-172.
[71]
Lee, J.H.; Park, G.; Hong, G.H.; Choi, J.; Choi, H.S. Design considerations for targeted optical contrast agents. Imaging Med. Surg., 2012, 2, 266-273.
[72]
Park, K. Polysaccharide-based near-infrared fluorescence nanoprobes for cancer diagnosis. Imaging Med. Surg., 2012, 2, 106-113.
[73]
Wilson, K.; Homan, K.; Emelianov, S. Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nat. Commun., 2012, 3, 618-628.
[74]
Yao, J.; Wang, L.V. Photoacoustic tomography: Fundamentals, advances and prospects. Contrast Media. Mol., 2011, 6, 332-345.
[75]
Kim, J.; Park, S.; Jung, Y.; Chang, S.; Park, J.; Zhang, Y. Programmable real-time clinical photoacoustic and ultrasound imaging system. Sci. Rep-UK, 2016, 6, 35137-35148.
[76]
Zackrisson. S, van de Ven S.M.W.Y, Gambhir, S.S. Light in and sound out: Emerging translational strategies for photoacoustic imaging. Cancer Res., 2014, 74, 979-1004.
[77]
Upputuri, P.K.; Pramanik, M. Recent advances toward preclinical and clinical translation of photoacoustic tomography: A review. J. Biomed. Opt., 2017, 22, 41006.
[78]
Agarwal, A.; Huang, S.W.; O’Donnell, M.; Day, K.C. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J. Appl. Phys., 2007, 102, 064701-064704.
[79]
De, Z.A.; Zavaleta, C.; Keren, S.; Vaithilingam, S.; Bodapati, S.; Liu, Z. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol., 2008, 3, 557-562.
[80]
Moon, H.; Kumar, D.; Kim, H.; Sim, C.; Chang, J.H.; Kim, J.M. Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging. ACS Nano, 2015, 9, 2711-2719.
[81]
Liu, Y.; Kang, N.; Lv, J.; Zhou, Z.; Zhao, Q.; Ma, L. Deep photoacoustic/luminescence/magnetic resonance multimodal imaging in living subjects using high‐efficiency upconversion nanocomposites. Adv. Mater., 2016, 28, 6411-6419.
[82]
Shashkov, E.V.; Everts, M.; Galanzha, E.I.; Zharov, V.P. Quantum dots as multimodal photoacoustic and photothermal contrast agents. Nano Lett., 2008, 8, 3953-3958.
[83]
Bornhop, D.J.; Geng, K.; Stoica, G.; Wang, L.V.; Wegiel, M.A.; Wang, X. Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent. Opt. Lett., 2004, 29, 730-732.
[84]
Cheng, L.; He, W.; Gong, H.; Wang, C.; Chen, Q.; Cheng, Z. Pegylated micelle nanoparticles encapsulating a non‐fluorescent near‐infrared organic dye as a safe and highly‐effective photothermal agent for in vivo cancer therapy. Adv. Funct. Mater., 2013, 23, 5893-5902.
[85]
Park, J.; Kim, K.; Jung, Y.; Kim, J. Cover picture: Metal nanoparticles for virus detection. ChemNanoMat, 2016, 2, 922-922.
[86]
Weber, J.; Beard, P.C.; Bohndiek, S.E. Contrast agents for molecular photoacoustic imaging. Nat. Methods, 2016, 13, 639-650.
[87]
Hua, G.; Ziliang, D.; Yumeng, L.; Shengnan, Y.; Liang, C.; Wenyao, X. Engineering of multifunctional nanomicelles for combined photothermal and photodynamic therapy under the guidance of multimodal imaging. Adv. Funct. Mater., 2015, 24, 6492-6502.
[88]
Guo, M.; Mao, H.; Li, Y.; Zhu, A.; He, H.; Yang, H. Dual imaging-guided photothermal/photodynamic therapy using micelles. Biomaterials, 2014, 35, 4656-4666.
[89]
Aimé, C.; Nishiyabu, R.; Gondo, R.; Kimizuka, N. Switching on luminescence in nucleotide/lanthanide coordination nanoparticles via synergistic interactions with a cofactor ligand. Chem-Eur. J., 2010, 16, 3604-3607.
[90]
Wang, Y.X. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Surg., 2011, 1, 35-40.
[91]
Banci, L.; Bertini, I.; Luchinat, C. Nuclear and electron relaxation: the magnetic nucleus-unpaired electron coupling in solution; VCH: Germany, 1991.
[92]
Taylor, K.M.; Jin, A.; Lin, W. Surfactant-assisted synthesis of nanoscale gadolinium metal-organic frameworks for potential multimodal imaging. Angew. Chem. Int. Ed., 2008, 47, 7722-7725.
[93]
Hatakeyama, W.; Sanchez, T.J.; Rowe, M.D.; Serkova, N.J.; Liberatore, M.W.; Boyes, S.G. Synthesis of gadolinium nanoscale metal-organic framework with hydrotropes: Manipulation of particle size and magnetic resonance imaging capability. ACS Appl. Mater. Interfaces, 2011, 3, 1502-1510.
[94]
Lee, S.; Chen, X. Dual-modality probes for in vivo molecular imaging. Mol. Imaging, 2009, 8, 87-100.
[95]
Thorek, D.L.; Chen, A.K.; Czupryna, J.; Tsourkas, A. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann. Biomed. Eng., 2006, 34, 23-38.
[96]
Pathak, A.P.; Gimi, B.; Glunde, K.; Ackerstaff, E.; Artemov, D.; Bhujwalla, Z.M. Molecular and functional imaging of cancer: Advances in MRI and MRS. Methods Enzymol., 2004, 386, 3-60.
[97]
Moore, A.; Marecos, E.; Bogdanov, A., Jr; Weissleder, R. Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology, 2000, 214, 568-574.