[1]
Bialecka, F.E.; Fabiszewska, A.U.; Krzyczkowska, J.; Kurylowicz, A. Synthetic and natural lipase inhibitors. Mini Rev. Med. Chem., 2018, 18(8), 672-683.
[2]
Winkler, F.K.; D’Arcy, A.; Hunziker, W. Structure of human pancreatic lipase. Nature, 1990, 343(6260), 771-774.
[3]
Stitziel, N.O. Human genetic insights into lipoproteins and risk of cardiometabolic disease. Curr. Opin. Lipidol., 2017, 28(2), 113-119.
[4]
Hauptman, J.B.; Jeunet, F.S.; Hartmann, D. Initial studies in humans with the novel gastrointestinal lipase inhibitor Ro 18-0647 (tetrahydrolipstatin). Am. J. Clin. Nutr., 1992, 55(1), 309S-313S.
[5]
Drent, M.L.; van der Veen, E.A. Lipase inhibition: A novel concept in the treatment of obesity. Int. J. Obes. Relat. Metab. Disord., 1993, 17(4), 241-244.
[6]
Grippa, E.; Valla, R.; Battinelli, L.; Mazzanti, G.; Saso, L.; Silvestrini, B. Inhibition of Candida rugosa lipase by berberine and structurally related alkaloids, evaluated by high-performance liquid chromatography. Biosci. Biotechnol. Biochem., 1999, 63(9), 1557-1562.
[8]
Makunga, N.P.; Jäger, A.K.; van Staden, J. Micropropagation of Thapsia garganica a medicinal plant. Plant Cell Rep., 2003, 21(10), 967-973.
[9]
Casiglia, S.; Riccobono, L.; Bruno, M.; Rosselli, S.; Senatore, F. Chemical composition of the essential oil from Thapsia garganica L. (Apiaceae) grown wild in sicily and its antimicrobial activity. Nat. Prod. Res., 2016, 30(9), 1042-1052.
[10]
Boudghene, S.O.; Amrani, N. Un angioedème de topographie bilatérale suite au contact avec une plante (Thapsia garganica). Rev. Fr. Allergol., 2015, 55(3), 235.
[11]
Jager, A.; Schottlander, B.; Smitt, U.; Nyman, U. Somatic embryogenesis in cell cultures of Thapsia garganica. Plant Cell Rep., 1993, 12(9), 517-520.
[12]
Bouimeja, B.; El Hidan, M.A.; Touloun, O.; Ait Laaradia, M.; Ait Dra, L.; El Khoudri, N.; Chait, A.; Boumezzough, A. Anti-scorpion venom activity of Thapsia garganica methanolic extract: Histopathological and biochemical evidences. J. Ethnopharmacol., 2018, 211, 340-347.
[13]
Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol., 1999, 299(1), 152-178.
[14]
Singleton, V.L.; Joseph, A.R. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagent. Am. J. Enol. Vitic., 1965, 16(3), 144-158.
[15]
Blainski, A.; Lopes, G.C.; De Mello, J.C.P. Application and analysis of the folin ciocalteu method for the determination of the total phenolic content from limonium brasiliense L. Molecules, 2013, 18(6), 6852-6865.
[16]
Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem., 1999, 64(4), 555-559.
[17]
Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem., 2002, 50(10), 3010-3014.
[18]
Benarous, K.; Djeridane, A.; Kameli, A.; Yousfi, M. Inhibition of Candida rugosa lipase by secondary metabolites extracts of three algerian plants and their antioxydant activities. Curr. Enzym. Inhib., 2013, 9(1), 75-82.
[19]
Benarous, K.; Bombarda, I.; Iriepa, I.; Moraleda, I.; Gaetan, H.; Linani, A.; Yousfi, M. Harmaline and hispidin from Peganum harmala and Inonotus hispidus with binding affinity to Candida rugosa lipase: In silico and in vitro studies. Bioorg. Chem., 2015, 62, 1-7.
[20]
Yang, L.; Wen, K.S.; Ruan, X.; Zhao, Y.X.; Wei, F.; Wang, Q. Response of plant secondary metabolites to environmental factors. Molecules, 2018, 23(4), 762.
[21]
Yoshikawa, M.; Shimoda, H.; Nishida, N.; Takada, M.; Matsuda, H. Salacia reticulate and its polyphenolic constituents with lipase inhibitory and lipolytic activities have mild antiobesity effects in rats. J. Nutr., 2002, 132(7), 1819-1824.
[22]
Park, H.J.; Jung, U.J.; Lee, M.K.; Cho, S.J.; Jung, H.K.; Hong, J.H.; Park, Y.B.; Kim, S.R.; Shim, S.; Jung, J.; Choi, M.S. Modulation of lipid metabolism by polyphenol-rich grape skin extract improves liver steatosis and adiposity in high fat fed mice. Mol. Nutr. Food Res., 2012, 57(2), 360-364.
[23]
Sosnowska, D.; Podsędek, A.; Redzynia, M.; Kucharska, A.Z. Inhibitory effect of black chokeberry fruit polyphenols on pancreatic lipase-searching for most active inhibitors. J. Funct. Foods, 2018, 49, 196-204.
[24]
Les, F.; Arbonés-Mainar, J.M.; Valero, M.S.; López, V. Pomegranate polyphenols and urolithin A inhibit α-glucosidase, dipeptidyl peptidase-4, lipase, triglyceride accumulation and adipogenesis related genes in 3T3-L1 adipocyte-like cells. J. Ethnopharmacol., 2018, 220, 67-74.
[25]
Verma, M.; Rai, G.K.; Kaur, D. Effect of extraction solvents on phenolic content and antioxidant activities of Indian gooseberry and guava. Int. Food Res. J., 2018, 2, 762-768.
[26]
Sembiring, E.N.; Elya, B.; Sauriasari, R. Phytochemical screening, total flavonoid and total phenolic content and antioxidant activity of different parts of Caesalpinia bonduc (L.). Roxb. Pharmacogn. J., 2017, 10(1), 123-127.
[27]
Neffati, N.; Aloui, Z.; Karoui, H.; Guizani, I.; Boussaid, M.; Zaouali, Y. Phytochemical composition and antioxidant activity of medicinal plants collected from the Tunisian flora. Nat. Prod. Res., 2017, 31(13), 1583-1588.
[28]
Saleem, F.; Sarkar, D.; Ankolekar, C.; Shetty, K. Phenolic bioactives and associated antioxidant and anti-hyperglycemic functions of select species of Apiaceae family targeting for type 2 diabetes relevant nutraceuticals. Ind. Crops Prod., 2017, 107, 518-525.
[29]
Mekinić, I.G.; Šimat, V.; Ljubenkov, I.; Burčul, F.; Grga, M.; Mihajlovski, M.; Skroza, D. Influence of the vegetation period on sea fennel, Crithmum maritimum L. (Apiaceae), phenolic composition, antioxidant and anticholinesterase activities. Ind. Crops Prod., 2018, 124, 947-953.
[30]
Varga, E.; Schmidt, I.; Szövérfi, B.; Pop, M.D.; Kelemen, H. Phenolic content from medicinal plants and their products used in veterinary medicine. Acta Medica. Marisiensis, 2018, 2, 77-82.
[31]
Christova-Bagdassarian, V.L.; Bagdassarian, K.S.; Atanassova, M.S.; Ahmad, M.A. Comparative analysis of total phenolic and total flavonoid contents, rutin, tannins and antioxidant capacity in apiaceae and lamiaceae families. Indian J. Hortic., 2014, 4(3/4), 131-140.
[32]
Gebhardt, Y.; Witte, S.; Forkmann, G.; Lukačin, R.; Matern, U.; Martens, S. Molecular evolution of flavonoid dioxygenases in the family Apiaceae. Phytochemistry, 2005, 66(11), 1273-1284.
[33]
Belfeki, H.; Mejri, M.; Hassouna, M. Antioxidant and anti-lipases activities in vitro of Mentha viridis and Eucalyptus globulus extracts. Ind. Crops Prod., 2016, 89, 514-521.
[34]
Franco, R.R.; Justino, A.B.; Silva, H.C.G.; Peixoto, L.G.; Espindola, F.S. Antioxidant and anti-glycation capacities of some medicinal plants and their potential inhibitory against digestive enzymes related to type 2 diabetes mellitus. J. Ethnopharmacol., 2016, 215, 140-146.
[35]
Unuofin, J.O.; Otunola, G.A.; Afolayan, A.J. In vitro α-amylase, α-glucosidase, lipase inhibitory and cytotoxic activities of tuber extracts of Kedrostis africana (L.) Cogn. Heliyon, 2018, 4(9)e00810
[36]
Moon, S.H.; Kiim, M.Y. Phytochemical profile, antioxidant, antimicrobial and antipancreatic lipase activities of fermented Camellia japonica L leaf extracts. T.J.N.P.R. 2018, 17(5), 905-912.
[37]
Ercan, P.; El, S.N. Inhibitory effects of chickpea and Tribulus terrestris on lipase, -amylase and -glucosidase. Food Chem., 2016, 205, 163-169.
[38]
Pereira, M.N.; Justino, A.B.; Martins, M.M.; Peixoto, L.G.; Vilela, D.D.; Santos, P.S.; Espindola, F.S. Stephalagine, an alkaloid with pancreatic lipase inhibitory activity isolated from the fruit peel of Annona crassiflora Mart. Ind. Crops Pro., 2017, 97, 324-329.
[39]
Patil, S.G.; Patil, M.P.; Maheshwari, V.L.; Patil, R.H. In vitro lipase inhibitory effect and kinetic properties of di-terpenoid fraction from Calotropis procera (Aiton). Biocatal. Agric. Biotechnol., 2015, 4(4), 579-585.
[40]
Bustanji, Y.; Al-Masri, I.M.; Mohammad, M.; Hudaib, M.; Tawaha, K.; Tarazi, H. AlKhatib, H.S. Pancreatic lipase inhibition activity of trilactone terpenes of Ginkgo biloba. J. Enzyme Inhib. Med. Chem., 2011, 26(4), 453-459.
[41]
Drew, D.P.; Krichau, N.; Reichwald, K.; Simonsen, H.T. Guaianolides in apiaceae: Perspectives on pharmacology and biosynthesis. Phytochem. Rev., 2009, 8(3), 581-599.