Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Natural Cyclic Peptides as Clinical and Future Therapeutics

Author(s): Smritilekha Bera* and Dhananjoy Mondal

Volume 23, Issue 1, 2019

Page: [38 - 75] Pages: 38

DOI: 10.2174/1385272823666190110103558

Price: $65

Open Access Journals Promotions 2
Abstract

Natural cyclic peptides are conformationally constrained notable biomolecules and reveal several drug-like properties such as high binding affinity, metabolic stability, target selectivity, bioavailability, low toxicity and flexibility. They have attracted a lot of attention as alternative sources of new drugs to traditional small molecules in drug discovery. Compared to classical medicines, cyclic peptides with a novel mechanism of action are attractive for their potential therapeutic applications particularly for cancer therapy and several diseases caused by resistant and non-resistant bacteria, virus, and fungi. Herein, we provide an overview of the naturally occurring biologically active cyclic peptide therapeutic landscape, including promising candidates, which are under trial in different stages for future and/or clinically used drugs against different diseases. This will certainly be an essential resource for upcoming and existing researchers and scientists within industry and academia in medicinal, bioorganic, and natural product chemistry.

Keywords: Natural products, cyclic peptides, clinical drugs, antifungal, antibacterial, anticancer, anti-HIV.

Graphical Abstract
[1]
(a)Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the period 1981-2002. J. Nat. Prod., 2003, 66(7), 1022-1037.
(b)Grabley, S.; Thiericke, R. Drug discovery from nature; Springer-Verlag: Heidelberg, 1999.
(c)Cragg, G.M.; Newman, D.J.; Snader, K.M. Natural products in drug discovery and development. J. Nat. Prod., 1997, 60(1), 52-60.
(d)Atanasov, A.G. Waltenberger, B.; Pferschy-Wenzig, E-M.; Linder T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, JM.; Bochkov V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33(8), 1582-1614.
[2]
(a)Sarkar, S.D.; Latif, Z.; Gray, A.I. Natural Products Isolation; 2nd ed., Humana Press, Totowa, New Jersy, 2006, 1, .
(b)Dias, D.A.; Urban, S., and ; Roessner, U. A historical overview of natural products in drug discovery. Metabolites, 2012, 2(2), 303-336.
[3]
Li, J.W.H., and ; Vederas, J.C. Drug discovery and natural products: end of an era or an endless frontier? Science, 2009, 325(5937), 161-165.
[4]
Newman, D.J., and ; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod., 2007, 70(3), 461-477.
[5]
Harvey, A.L. Natural products in drug discovery. Drug Discov. Today, 2008, 13(19-20), 894-901.
[6]
Chin, Y.W.; Balunas, M.; Chai, H.; Kinghorn, A. Drug discovery from natural sources. AAPS J., 2006, 8(2), E239-E253.
[7]
Harvey, A. Strategies for discovering drugs from previously unexplored natural products. Drug Discov. Today, 2000, 5(7), 294-300.
[8]
(a)Gallo, R.L.; Murakami, M.; Ohtake, T.; Zaiou, M. Biology and clinical relevance of naturally occurring antimicrobial peptides. J. Allergy Clin. Immunol., 2002, 110(6), 823-831.
(b)Zorzi, A.; Deyle, K.; Heinis, C. Cyclic peptide therapeutics: past, present and future. Current Opinion in Chemical Biology., 2017, 38, 24-29.
(c)Thapa, P.; Espiritu, M.J.; Cabalteja, C.; Bingham, J.P. The emergence of cyclic peptides: The potential of bioengineered peptide drugs. Med. Chem., 2014, 4, 451-468.
(d)Joo, S.H. Cyclic peptides as therapeutic agents and biochemical tools. Biomol. Ther. (Seoul), 2012, 20(1), 19-26.
(e)Fang, W.Y.; Dahiya, R.; Li, H.; Mourya, Q.R., and; Maharaj, S. Natural proline-rich cyclopolypeptides from marine organisms: chemistry, synthetic methodologies and biological status. Mar. Drugs, 2016, 14(11), 194-216.
[9]
Adessi, C., and; Soto, C. Converting a peptide into a drug: strategies to improve stability and bioavailability. Curr. Med. Chem.,2002, 9(9), 963-78; (b) Fosgerau, K. Hoffmann, T. Peptide therapeutics: current status and future directions. Drug Discov. Today, 2015, 20(1), 122-128.
[10]
Sewald, N.; Jakubke, H.D. Peptides: Chemistry and Biology, 2nd ed; Wiley-VCH Verlag GmbH&Co: Weinheim, 2009.
[11]
(a)Kessler, H.; Gratias, R.; Hessler, G.; Gurrath, M.; Miller, G.; Giannis, A.; Kolter, T. Peptidomimetics for Receptor Ligands—Discovery, Development, and Medical Perspectives. Angew. Chem. Int. Ed. Engl., 1993, 32(9), 1244-1267.
(b)Karle, I.L.; Karle, J. Conformation of cyclo(Gly-L-Pro-L-Pro-Gly-L-Pro-L-Pro)2Mg2+ complex crystallized from C2H3CN solution. Proc. Natl. Acad. Sci. USA, 1981, 78, 681-685.
(c)Karle, I.L. (1981a) in Peptides (eds E. Gross and J. Meinhofer) (New York: Academic Press) Vol 4, p. 1. Kessler, Η. Angew. Chem. Int. Ed. Engl., 1982, 21, 512-23. QSPR-QSAR Studies on Desired Properties for Drug Design, 2010: 1-34 ISBN: 978-81-308-0404-0. Editor: Eduardo A. Castro. Quantitative structure-activity relationship (QSAR) studies on bioactive cyclopeptides. Alicia B. Pomilio1, Stella M. Battista and Arturo A. Vitale.
[12]
(a)Davies, J.S. The cyclization of peptides and depsipeptides. J. Pept. Sci., 2003, 9(8), 471-501.
(b)Lambert, J.N.; Mitchell, J.P., and; Roberts, K.D. The synthesis of cyclic peptides. J. Chem. Soc.Perkin. Trans., 2001, 1, 471-484.
(c)Peng, L., and; Roller, P.P. Cyclization strategies in peptide derived drug design. Curr. Top. Med. Chem., 2002, 2(3), 325-341.
(d)Kates, S.A.; Sole, N.A.; Albericio, F., and; Barany, G. Solid-phase synthesis of cyclic peptides.Peptides: Design, synthesis and biological activity; Basava, C.; Anantharamaiah, G.N., Eds.; (Eds): Peptides: Design, synthesis and biological activity Brikhauser: Boston, 1994, p. 39.
[13]
Rizo, J., and; Gierasch, L.M. Constrained peptides: models of bioactive peptides and protein substructures. Annu. Rev. Biochem., 1992, 61, 387-418.
[14]
(a)Bramson, N.H.; Thomas, N.E.; Kaiser, E.T. The use of N-methylated peptides and depsipeptides to probe the binding of heptapeptide substrates to cAMP-dependent protein kinase. J. Biol. Chem., 1985, 260(29), 15452-15457.
(b)Arad, O., and; Goodman, M. Depsipeptide analogs of elastin repeating sequences: Synthesis. Biopolymers, 1990, 29, 1633-1649.
(c)Coombs, G.S.; Rao, M.S.; Olson, A.J.; Dawson, P.E., and; Madison, E.L. Revisiting Catalysis by Chymotrypsin Family Serine Proteases Using Peptide Substrates and Inhibitors with Unnatural Main Chains. J. Biol. Chem., 1999, 274, 24074-24079.
(d)Sarabia, F.; Chammaa, S.; Ruiz, A.S.; Ortiz, L.M.; Herrera, F.J. Chemistry and biology of cyclic depsipeptides of medicinal and biological interest. Curr. Med. Chem., 2004, 11, 1309-1332.
[15]
Rinehart, Jr , K.L.; Gloer, J.B.; Wilson, G.R.; Hughes, Jr , R.G.; Li, L.H.; Renis, H.E.; McGovren, J.P. Antiviral and antitumor compounds from tunicates. Fed. Proc., 1983, 87-90.
[16]
(a)Kantlehner, M.; Schaffner, P.; Finsinger, D.; Meyer, J.; Diefenbach, A.B.; Nies, B.; Hozemann, G.; Goodman, S.L.; Kessler, H. Surface coating with cyclic RGD peptides stimulates osteoblast adhesion and proliferation as well as bone formation. ChemBioChem, 2000, 1(2), 107-114.
(b)Dubey, P.K.; Mishra, V.; Jain, S.; Mahor, S.; Vyas, S.P. Liposomes modified with cyclic RGD peptide for tumor targeting.J. Drug. Target.,2004, 12(5), 257-64; (d) Dolce, C.; Vakani, A.; Archer, L.; Morris-Wiman, J.A.; Holliday, L.S. Effects of echistatin and an RGD peptide on orthodontic tooth movement. J. Dent. Res.,2003, 82(9), 682-6; (e) Kok, R.J.; Schraa, A.J.; Bos, E.J.; Moorlag, H.E.; Asgeirsdottir, S.A.; Everts, M.; Meijer, D.K.F.; Molema, G. Preparation and functional evaluation of RGD-modified proteins as alpha(v)beta(3) integrin directed therapeutics. Bioconjug. Chem., 2002, 13(1), 128-35; (f) Schiffelers, R.M.; Koning, G.A.; ten Hagen, T.L.M.; Fens, M.H. A.M.; Schraa, A.J.; Janssen, A.P.C.A.; Kok, R.J.; Molema, G.; Storm, G. VIP grafted sterically stabilized liposomes for targeted imaging of breast cancer: in vivo studies. J. Controlled Release., 2003, 91, 115; (g) Janssen, M.L.; Oyen, W.J.; Dijkgraaf, I.; Massuger, L.F.; Frielink C.; Edwards DS.; Rajopadhye M.; Boonstra H.; Corstens FH.; Boerman OC.;Tumor targeting with radiolabeled alpha(v)beta(3) integrin binding peptides in a nude mouse model. Cancer. Res.,2002,62, 6146-51; (h) Chen, X.; Liu, S.; Hou, Y.; Tohme, M.; Park, R.; Bading, J.R.; Conti, P.S. MicroPET imaging of breast cancer αv-integrin expression with 64Cu-labeled dimeric RGD peptides. Mol. Imaging Biol., 2004, 6, 350-9; (i) Haubner, R.; Wester, H.J.; Burkhart, F.; Senekowitsch-Schmidtky, R.; Weber, W.; Goodman, S.L.; Kessler, H.; Schwaiger, M. Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J. Nucl. Med., 2001, 42(2), 326-36; (j) Chen, X.; Park. R.; Shahinian, A.H.; Tohme, Khankaldyyan, M.V.; Bozorgzdeh, M.H.; Bading J.R.; Moats R.; Laug WE.; Conti PS.; 18F-labeled RGD peptide: initial evaluation for imaging brain tumor angiogenesis. Nucl. Med. Biol.,2004,31, 179-89; (k) Chen, X.; Plasencia, C.; Hou, Y.; and Neamati, N. Synthesis and Biological Evaluation of Dimeric RGD Peptide−Paclitaxel Conjugate as a Model for Integrin-Targeted Drug Delivery. J. Med. Chem., 2005, 48(4), 1098-1106.
[17]
(a)Lorenz, T.J.; Macdonald, F.; Kitt, M.M. Nonimmunogenicity of eptifibatide, a cyclic heptapeptide inhibitor of platelet glycoprotein IIb-IIIa. Clin. Ther., 1999, 21(1), 128-137.
(b)Heras, M.; Escolar, G. Eptifibatide: a cyclic peptide that selectively inhibits platelet glycoprotein IIb/IIIa. Drugs Today, 2000,36(5), 295-311; (b) Pierschbacher, M.D. & Ruoslahti, E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature, 1984, 309, 30-33.
[18]
Lee, H.J.; Macbeth, A.H.; Pagani, J.H.; Young, W.S. Oxytocin: the great facilitator of life. Prog. Neurobiol., 2009, 88(2), 127-151.
[19]
Pomilio, A.B.; Battista, M.E., and; Vitale, A.A. Naturally-Occurring Cyclopeptides: Structures and Bioactivity. Curr. Org. Chem., 2006, 10, 2075-2121.
[20]
De Vries, D.J.; Beart, P.M. Fishing for drugs from the sea: status and strategies. Trends Pharmacol. Sci., 1995, 16(8), 275-279.
[21]
W.H., Gerwick Drugs from the sea: the search continues. J. Pharm. Technol., 1987, 136-141.
[22]
Craik, D.J.; Daly, N.L.; Mulvenna, J.; Plan, M.R.; Trabi, M. discovery, structure and biological activities of the cyclotides. Curr. Protein Pept. Sci., 2004, 5, 297-315.
[23]
(a)Fusetani, N.; Matsunaga, S. Bioactive sponge peptides. Chem. Rev., 1993, 93(5), 1793-1806.
(b)Itokawa, H.; Takeya, K.; Hitotsuyanagi, Y.; Morita, H. The Alkaloids; Vol. 49, ed. by Cordell G.A., Academic Press, New York, 1997, pp. 301-387.
cAndavan, G.S.B.; Gruber, R.L. Cyclodepsipeptides from Marine Sponges: Natural Agents for Drug Research. Mar. Drugs, 2010, 8(3), 810-834.
[24]
Costantino, H.R.; Langer, R.; Klibanov, A.M. Solid-phase aggregation of proteins under pharmaceutically relevant conditions. J. Pharm. Sci., 1994, 83(12), 1662-1669.
[25]
(a) Oman, T.J.; van der Donk, W.A.; Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat. Chem. Biol., 2010, 6(1), 9-18; (a) Lee, J.; McIntosh, J.; Hathaway, B.J.; and Schmidt, E.W.; Using marine natural products to discover a protease that catalyzes peptide macrocyclization of diverse substrates. J. Am. Chem. Soc., 2009, 131(6), 2122-2124.
[26]
Hur, G.H.; Vickery, C.R.; Burkart, M.D. Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Nat.Prod.Rep.,2012, 29(10), 1074-98; (b) Grunewald, J.; M. A. Marahiel, Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides. Microbiol. Mol. Biol. Rev., 2006, 70(1), 121-146.
[27]
(a)Laport, M.S.; Santos, O.C.S.; Muricy, G. Marine Sponges: Potential Sources of New Antimicrobial Drugs. Curr. Pharm. Biotechnol., 2009, 10(1), 86-105.
(b)Sieber, S.A.; Marahiel, M.A. Learning from Nature’s Drug Factories: Nonribosomal Synthesis of Macrocyclic Peptides. J. Bacteriol., 2003, 185, 7036-7043.
(c)Bockus, A.T.; McEwen, C.M. R, Scott Lokey. Form and Function in Cyclic Peptide Natural Products: A Pharmacokinetic Perspective. Curr. Top. Med. Chem., 2013, 13, 821-836.
(d)Degenkol, T.; Gams, W.; Bruckner, H. Natural cyclopeptaibiotics and related cyclic tetrapeptides: structural diversity and future prospects. Chem. Biodivers., 2008, 5(5), 693-706.
(e)Zheng, L.H.; Wang, Y.J.; Sheng, J.; Wang, F.; Zheng, Y.; Lin, X.K.; Sun, M. Antitumor peptides from marine organisms. Mar. Drugs, 2011, 9(10), 1840-1859.
(f)Tan, N.H. Zhou. J. Plant cyclopeptides. Chem. Rev., 2006, 106(3), 840-895.
[28]
Mor, A. Peptide‐based antibiotics: A potential answer to raging antimicrobial resistance. Drug Develop. Res., 2000, 50, 440-447.
[29]
Andreu, D.; Rivas, L. Animal antimicrobial peptides: an overview. Biopolymers, 1998, 47(6), 415-433.
[30]
Boman, H.G. Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol., 1995, 13, 61-92.
[31]
Rezai, T.; Yu, B.; Millhauser, G.L.; Jacobson, M.P.; Lokey, R.S. Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers. J. Am. Chem. Soc., 2006, 128, 2510-2511.
[32]
Conti, E.; Stachelhaus, T.; Marahiel, M.A.; Brick, P. Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J., 1997, 16, 4174-4183.
[33]
Gause, G.F.; Brazhnikova, M.G. Gramicidin s and its use in the treatment of infected wounds. Nature, 1944, 154, 703.
[34]
(a)Youmans, G.P.; Youmans, A.S. The effect of viomycin in vitro and in vivo on mycobacterium tuberculosis. Am. Rev. Tuberc., 1951, 63(1), 25-29.
(b)Bartz, Q.R.; Ehrlich, J.; Mold, J.D.; Penner, M.A.; Smith, R.M. Viomycin, a new tuberculostatic antibiotic. Am. Rev. Tuberc., 1951, 63(1), 4-6.
(c)Bycroft, B.W. Chem. Commun., 1972, 660.
(d)Tsukamura, M.J. Biochem., 1960, 47, 685.
(e)Kitagawa, T.; Miura, T.; Fujiwara, K.; Taniyama, H. The total structure of viomycin by sequential analysis. Chem. Pharm. Bull., 1972, 20, 2215.
[35]
Bloudoff, K.; Schmeing, T.M. Crystallization and preliminary crystallographic analysis of the first condensation domain of viomycin synthetase. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2013, 69, 412-415.
[36]
(a)Levine, D. Vancomycin: A History. Clin. Infect. Dis., 2006, 42, S5-S12.
(b)Solenberg, P.J.; Matsushima, P.; Stack, D.R.; Wilkie, S.C.; Thompson, R.C.; Baltz, R.H. Production of hybrid glycopeptide antibiotics in vitro and in Streptomyces toyocaensis. Chem. Biol., 1997, 4, 195-202.
[37]
Bischoff, D.; Pelzer, S.; Höltzel, A.; Nicholson, G.; Stockert, S.; Wohlleben, W.; Jung, G.; Süßmuth, R. The biosynthesis of vancomycin‐type glycopeptide antibiotics—new insights into the cyclization steps. Angew. Chem. Int. Ed., 2001, 40, 1693-1696.
[38]
(a)Waksman, S.A.; Woodruff, H.B. Bacteriostatic and bacteriocidal substances produced by soil actinomycetes. Proc. Soc. Exper. Biol., 1940, 45, 609-614.
(b)Sobell, H. Actinomycin and DNA transcription. Proc. Natl. Acad. Sci.The USA, 1985, 82, 5328-5331.
[39]
Stindl, A.; Keller, U. The initiation of peptide formation in the biosynthesis of actinomycin. J. Biol. Chem., 1993, 268(4), 10612-10620.
[40]
(a)Johnson, B.A.; Anker, H.; Meleney, F.L. Bacitracin: a new antibiotic produced by a member of the B. subtilis group. Science, 1945, 102, 376-377.
(b)Stone, K.J.; Strominger, J.L. Mechanism of action of bacitracin: complexation with metal ion and C55-isoprenyl pyrophosphate. PNAS, 1971, 68, 3223-3227.
[41]
Murphy, T.; Roy, I.; Harrop, A.; Dixon, K.; Keshavarz, T. Effect of oligosaccharide elicitors on bacitracin a production and evidence of transcriptional level control. J. Biotechnol., 2007, 131, 397-403.
[42]
(a)Dixon, R.A. Chopra, I. Polymyxin B and polymyxin B nonapeptide alter cytoplasmic membrane permeability in Escherichia coli. J. Antimicrob. Chemother., 1986, 18, 557-563.
(b)Martin, N.I.; Hu, H.J.; Moake, M.M.; Churey, J.J.; Whittal, R.; Worobo, R.W.; Vederas, J.C. Isolation, structural characterization, and properties of mattacin (polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis M. J. Biol. Chem., 2003, 278, 13124-13132.
(c)Cardoso, L.S.; Araujo, M.I.; Góes, A.M.; Pacífico, L.G.; Oliveira, R.R.; Oliveira, S.C. Polymyxin B as inhibitor of LPS contamination of Schistosoma mansoni recombinant proteins in human cytokine analysis. Microb. Cell Fact., 2007, 6, 1.
[43]
(a)Koyama, Y.; Kurosawa, A.; Tuchiya, A., and; Takahisada, K.A. A new antibiotic ‘colistin’ produced by spore-forming soil bacteria. J. Antibiotics., 1950, 3, 457-458.
(b)Motaouakkil, S.; Charra, B.; Hachimi, A.; Nejmi, H.; Benslama, A.; Elmdaghri, N.; Belabbes, H.; Benbachir, M. Colistin and rifampicin in the treatment of nosocomial infections from multiresistant Acinetobacter baumannii. J. Infect., 2006, 53, 274-278.
(c)Falagas, M.E.; Kasiakou, S.K. Combined colistin and rifampicin therapy for carbapenem-resistant Acinetobacter baumannii infections: clinical outcome and adverse events. Clin. Microbiol. Infect., 2005, 11, 682-683.
(d)Li, J.; Coulthard, K.; Milne, R.; Nation, R.L.; Conway, S.; Peckham, D.; Etherington, C.; Turnidge, J. Steady-state pharmacokinetics of intravenous colistin methanesulphonate in patients with cystic fibrosis. J. Antimicrob. Chemother., 2003, 52, 987-992.
[44]
(a)Hamilton-Miller, J. From foreign pharmacopoeias: ‘new’ antibiotics from old? J. Antimicrob. Chemother., 1991, 27, 702-705.
(b)Mast, Y.; Weber, T. Gölz, M.; Ort-Winklbauer, R.; Gondran, A.; Wohlleben, W.; Schinko E. Characterization of the ‘pristinamycin supercluster’ of Streptomyces pristinaespiralis. Microb. Biotechnol., 2011, 4, 192-206.
[45]
De Crécy-Lagard, V.; Saurin, W.; Thibaut, D.; Gil, P.; Naudin, L.; Crouzet, J.; Blanc, V. Streptogramin b biosynthesis in streptomyces pristinaespiralis and streptomyces virginiae: molecular characterization of the last structural peptide synthetase gene. Antimicrob. Agents Chemother., 1997, 41, 1904-1909.
[46]
Li, J.; Jaitzig, J.; Hillig, F.; Süssmuth, R.; Neubauer, P. Enhanced production of the nonribosomal peptide antibiotic valinomycin in Escherichia coli through small-scale high cell density fed-batch cultivation. Appl. Microbiol. Biotechnol., 2014, 98, 591-601.
[47]
(a)Rose, M.C.; Henkens, R.W. Stability of sodium and potassium complexes of valinomycin. BBA, 1974, 372, 426-435.
(b)Safiulina, V. Veksler, A. Zharkovsky, and A. Kaasik, Loss of mitochondrial membrane potential is associated with increase in mitochondrial volume: physiological role in neurones. J. Cell. Physiol., 2006, 206(2), 347-353.
[48]
Thibaut, D.; Ratet, N.; Bisch, D.; Faucher, D.; Debussche, L.; Blanche, F. Purification of the two-enzyme system catalyzing the oxidation of the D-proline residue of pristinamycin IIB during the last step of pristinamycin IIA biosynthesis. J. Bacteriol., 1995, 177, 5199-5205.
[49]
(a)Woodworth, J.R.; Nyhart, E.H.; Brier, G.L.; Wolny, J.D.; Black, H.R. Single-dose pharmacokinetics and antibacterial activity of daptomycin, a new lipopeptide antibiotic, in healthy volunteers. Antimicrob. Agents Chemother., 1992, 36, 318-325.
(b)Charles, P.G.; Grayson, M.L. The dearth of new antibiotic development: why we should be worried and what we can do about it. Med. J. Aust., 2004, 181(10), 549-553.
(c)Baltz, R.H. Daptomycin: mechanisms of action and resistance, and biosynthetic engineering. Curr. Opin. Chem. Biol., 2009, 13(2), 144-151.
(d)Henken, S.; Bohling, J.; Martens-Lobenhoffer, J.; Paton, J.C.; Ogunniyi, A.D.; Briles, D.E.; Salisbury, V.C.; Wedekind, D.; Bode-Böger, S.M.; Welsh, T.; Bange, F.C.; Welte, T.; Maus, U.A. Efficacy profiles of daptomycin for treatment of invasive and noninvasive pulmonary infections with streptococcus pneumoniae. Antimicrob. Agents Chemother., 2010, 54(2), 707-717.
(e)Fowler, V.G. Boucher, H.W. Corey, G.R. Daptomycin versus Standard Therapy for Bacteremia and Endocarditis Caused by Staphylococcus aureus. N. Engl. J. Med., 2006, 355, 653-665.
(f)Davis, S.L.; McKinnon, P.S.; Hall, L.M. Daptomycin versus vancomycin for complicated skin and skin structure infections: clinical and economic outcomes. Pharmacotherapy, 2007, 27(12), 1611-1618.
(g)Robbel, L.; Marahiel, M.A. Daptomycin, a bacterial lipopeptide synthesized by a nonribosomal machinery. J. Biol. Chem., 2010, 285(36), 27501-27508.
[50]
(a) Fang, X.; Tiyanont, K.; Zhang, Y.; Wanner, J.; Boger, D.; Walker, S. The mechanism of action of ramoplanin and enduracidin. Mol Biosys.,2006, 2, 69-76; (c) Fulco, P.; Wenzel, R.P. Ramoplanin: a topical lipoglycodepsipeptide antibacterial agent. Expert. Rev. Anti. Infect. Ther., 2006, 4, 939-45; (d) Balagopal, A.; Sears, C.L. Clostridium difficile: new therapeutic options. Current Opinion in Pharmacology2007, 7, 455-58; (e) Gerding, D.N.; Muto, C.A.; Jr. Owens, R.C. Treatment of Clostridium difficile infection. Clinic. Infect. Diseases.,2008, 46, S32-42. (h) Hoertz, A.J, Hamburger, J.B, Gooden, D.M, Bednar, M.M, McCafferty, D.G. Studies on the biosynthesis of the lipodepsipeptide antibiotic Ramoplanin A2. Bioorg. Med. Chem., 2012, 20(2), 859-865.
[51]
(a) Mulders, J.W.M.; Boerrigter, I.J.; Rollema, H.S.; Siezen, R.J.; de Vos, W.M. Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. Eur. J. Biochem., 1991, 201(3), 581-584.
(b) Zendo, T.; Fukao, M.; Ueda, K.; Higuchi, T.; Nakayama, J.; Sonomoto, K. Identification of the lantibiotic nisin Q, a new natural nisin variant produced by Lactococcus lactis 61-14 isolated from a river in Japan. Biosci. Biotechnol. Biochem., 2003, 67(7), 1616-1619.
(c) Wirawan, R.E.; Klesse, N.A.; Jack, R.W.; Tagg, J.R. Molecular and Genetic Characterization of a Novel Nisin Variant Produced by Streptococcus uberis. Appl. Environ. Microbiol., 2006, 72(2), 1148-1156.
[52]
(a) Johansen, S.K.; Maus, C.E.; Plikaytis, B.B.; Douthwaite, S. Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2′-O-methylations in 16S and 23S rRNAs. Mol. Cell, 2006, 23(2), 173-182.
(b) Frieden, T.R.; Sherman, L.F.; Maw, K.L.; Fujiwara, P.I.; Crawford, J.T.; Nivin, B.; Sharp, V.; Hewlett, D., Jr; Brudney, K.; Alland, D.; Kreisworth, B.N. A multi-institutional outbreak of highly drug-resistant tuberculosis; epidemiology and clinical outcomes. J. Am. Med. Assoc., 1996, 276(15), 1229-1235.
(c) Kleinkauf, H. Von, Döhren, H. A nonribosomal system of peptide biosynthesis. Eur. J. Biochem., 1996, 236(2), 335-351.
[53]
(a) Rang, , H.P.; Dale, , M.M; Ritter, , J.M..; Moore, , P.K. Pharmacology, 2007. 6th Ed , 2007, 0443069115.
(b) Cantor, A.J. Tyrothricin in proctology. . Am. J. Digestive Diseases., 1946, 13, 247-48.
(d) Mogi , T.. Kita, K. Gramicidin S and polymyxins: the revival of cationic cyclic peptide antibiotics. . Cell. Mol. Life Sci., 2009, 66(23), 3821-6.
(e) Kamysz, E.; Mickiewicz, B.; Kamysz, W.; Bielinska, S.; Rodziewicz-Motowidlo, S.; Ciarkowski, J. Synthesis, biological activity and solution structure of new analogues of theantimicrobial Gramicidin S. J. Pept. Sci., 2011, 17(23), 211-7.
(f) Knijnenburg, A.D.; Kapoerchan, V.V.; Grotenbreg, G.M.; Spalburg, E.; De Neeling, AJ.; Mars- Groenendijk, R.H.; Noort, D.; Otero, J.M.; Llamas-Saiz, A.L.; Van Raaij, M.J.; Ravensbergen, B. Synthesis and evaluation of strand and turn modified ring-extended gramicidin S derivatives. Bioorg. Med. Chem.., 2011, 19, 3402.
(g) Hancock, R.E.W. Cationic peptides. Effectors in innate immunity and novel antimicrobials. Lancet Infectious Diseases., 2001, 1, 156-64.
(h) Frantz, M.C.; Wipf, P. Mitochondria as a target I treatment. Environ. Molecular Mutagenesis., 2010, 51, 462-75.
[54]
(a) German-Fattal, M. Fusafungine, an antimicrobial with anti-inflammatory properties in respiratory tract infections. Review and recent advances in cellular and molecular activity. Clin. Drug Invest.,2001, 21, 653-70; (c) Gonzales, R.; Bartlett, J.G.; Besser, R.E.; Hickner, J.M.; Hoffman J.R., Sande, M.A. Principles of appropriate antibiotics use for treatment of non specific upper respiratory tract infections in adults. Background. Ann. Intern. Med.,2001, 134, 490-94; (e) Gosset, P.; Wallaert, B.; Crambes, O.; Girard, V.; Malbezin, M.; Tonnel, A.B. Fusafungine inhibits the production of anion Superoxide and cytokines by human alveolar macrophages. Eur. Respir. J. Suppl., 1996, 9, 2860.
[55]
(a) Mor, A. Peptide-based antibiotics: A potential answer to raging antimicrobial resistance. Drug Develop. Res., 2000, 50, 440-447.
(b) Peypoux, F.; Bonmatin, J.M.; Wallach, J. Recent trends in the biochemistry of Surfactin. Applied Microbiol. Biotechnol.,1999, 51, 553-63; (d) Jung, M.; Lee, S.; Kim, H.; Kim, H. Antifungal metabolites from marine sponges. Current Med.Chem.,2000, 7, 649-82; (e) Mulligan, C.N. Env. Pol., 2005, 133, 183; (f) Hoornstra, D.; Andersson, M.A.; Mikkola, R.; Salkinoja-Salonen, M.S. A new method for in vitro detection of microbially produced mitochondrial toxins. Tox. in Vit., 2003, 17, 745-51; (g) Kim, K.; Jung, S.Y.; Lee, D.K.; Jung, J.K.; Park, J.K.; Kim, D.K.; Lee, C.H. Suppression of inflammatory response by surfactin, a selective inhibitor of platelet cytosolic phospholipase A2.Biochem. Pharmacol., 1998, 55, 975-85; (h) Singh, P.; and Cameotra, S. Potential applications of microbial surfactants in biomedical sciences. Trends Biotechol., 2004, 22, 142-146.
[56]
(a) Ve’rtesy, L.; Ehlers, E.; Kogler, H.; Kurz, M.; Meiwes, J.; Seibert, G.; Vogel, M.; Hammann, P. Friulimicins: novel lipopeptide antibiotics with peptidoglycan synthesis inhibiting activity from Actinoplanes friuliensis sp. J. Antibiot., 2000, 53, 816-827.
(b) Wecke, T.; Zuhlke, D.; Mader, U.; Jordan, S.; Voigt, B.; Pelzer, S.; Labischinski, H.; Homuth, G.; Hecker, M.; Mascher, T. Daptomycin versus friulimicin B: In-depth profiling of Bacillus subtilis cell envelope stress responses. Antimicrob. Agents Chemother., 2009, 53, 1619-1623.
(c) Aretz, W.; Meiwes, J.; Seibert, G.; Vobis, G.; Wink, J. Friulimicins: novel lipopeptide antibiotics with peptidoglycan synthesis inhibiting activity from Actinoplanes Friuliensis sp. J. Antibiot., 2000, 53, 807-815.
(d) K., Thell; R., Hellinger; Schabbauer, G.; C.W., Gruber Immunosuppressive peptides and their therapeutic applications. Drug Discov. Today, 2014, 19(5), 645-653.
[57]
Kumar, E.K.V.; Kenia, J.; Mukhopadhyay, T.; Nadkarni, S.R. Methylsulfomycin I, a new cyclic peptide antibiotic from a Streptomyces sp. HIL Y-9420704. J. Nat. Prod., 1999, 62, 1562-1564.
[58]
Zou, X.; Niu, S.; Ren, J.; Li, E. Liu, X.; Che. Y. Verrucamides A–D, Antibacterial Cyclopeptides from Myrothecium verrucaria. J. Nat. Prod., 2011, 74, 1111-1116.
[59]
Oh, D.C.; Kauffman, C.A.; Jensen, P.R.; Fenical, W. Induced production of emericellamides A and B from the marine-derived fungus Emericella sp. in competing co-culture. J. Nat. Prod., 2007, 70(20), 515-520.
[60]
(a) Ji, Z.; Wei, S.; Fan, L.; Wu, W. Three novel cyclic hexapeptides from Streptomyces alboflavus 313 and their antibacterial activity. Eur. J. Med. Chem., 2012, 50, 296-303.
(b) Guo, Z.; Shen, L.; Ji, Z.; Zhang, J.; Huang, L.; Wu, W. NW-G01, a novel cyclic hexadepsipeptide antibiotic, produced by Streptomyces alboflavus 313: I. Taxonomy, fermentation, isolation, physicochemical properties and antibacterial activities. J. Antibiot., 2009, 62(4), 201-205.
[61]
Ishida, K.; Matsuda, H.; Murakami, M.; Yamaguchi, K. Theonellapeptolide IIIe, a new cyclic peptolide from the New Zealand deep water sponge, Lamellomorpha strongylata. J. Nat. Prod., 1997, 60, 724-728.
[62]
Singh, M.P.; Petersen, P.J.; Weiss, W.J.; Janso, J.E.; Luckman, S.W.; Lenoy, E.B.; Bradford, P.A.; Testa, R.T.; Greenstein, M. Mannopeptimycins, New Cyclic Glycopeptide Antibiotics Produced by Streptomyces hygroscopicus LL-AC98: Antibacterial and Mechanistic Activities. Antimicrob. Agents Chemother., 2003, 47(1), 62-69.
[63]
Okada, Y.; Matsunaga, S.; van Soest, R.W.M.; Fusetani, N. Nagahamide A, an antibacterial depsipeptide from the marine sponge theonella swinhoei. Org. Lett., 2002, 4(18), 3039-3042.
[64]
Zhang, H.; Tomoda, H.; Tabata, N.; Oohori, M.; Shinose, M.; Takahashi, Y.; Omura, S. Zelkovamycin, a new cyclic peptide antibiotic from streptomyces sp. K96-0670. I. Production, isolation and biological properties. J. Antibiot., 1999, 52(1), 29-33.
[65]
Gerard, J.M.; Haden, P.; Kelly, M.T.; Andersen, R.J. Loloatins A-D, cyclic decapeptide antibiotics produced in culture by a tropical marine bacterium. J. Nat. Prod., 1999, 62(1), 80-85.
[66]
Matsumoto, M.; Kawamura, Y.; Yasuda, Y.; Tanimoto, T.; Matsumoto, K.; Yoshida, T.; Shoji, J. Isolation and characterization of thioxamycin. J. Antibiot. , 1989, 42, 1465-1469.
[67]
(a) Abe, H.; Kushida, K.; Shiobara, Y.; Kodama, M. The Structures of Sulfomycin I and Berninamycin A. Tetrahedron Lett., 1988, 29(12), 1401-1404.
(b) Debono, M.; Molloy, R.M.; Occolowitz, J.L.; Paschal, J.W.; Hunt, A.H.; Michel, K.H.; Martin, J.W. The structures of A10255 B, -G and -J: new thiopeptide antibiotics produced by Streptomyces gardneri. J. Org. Chem., 1992, 57(9), 5200-5208.
[68]
(a) P., Zhang Liu, R.; Cook, J.M. Regiospecific bromination of 3-methylindoles with N-bromosuccinimide. Tetrahedron Lett., 1995, 36(18), 3103-3106.
(b) P., Zhang; Liu, R.; Cook, J.M. An enantiospecific synthesis of L(-)- and D(+)-6-Chloro-5-hydroxytryptophan: an unusual amino acid residue from the cyclic hexapeptide keramamide a. Tetrahedron Lett., 1995, 36(41), 7411.
[69]
Walcott, S.Q.; Maxwell, A.R.; Reynolds, W.F. Crotogossamide, a Cyclic Nonapeptide from the Latex of Croton gossypifolius. J. Nat. Prod., 2007, 70(8), 1374-1376.
[70]
(a) Naganawa, H.; Hamada, M.; Maeda, K.; Okami, Y.; Takeuchi, T.; Umezawa, H. Laspartomycin, a new anti-staphylococcal peptide. J. Antibiot., 1968, 21, 55-62.
(b) Naganawa, H.; Takita, T.; Maeda, K.; Umezawa, H. A novel fatty acid from laspartomycin. J. Antibiot., 1970, 23, 423-424.
[71]
(a) Logrieco, A.; Moretti, A.; Castella, G.; Kostecki, M.; Golinski, P.; Ritieni, A.; Chelkowski, J. Beauvericin Production by Fusarium Species. Appl. Environ. Microbiol., 1998, 64(8), 3084-3088.
(b) Wang, Q.; Xu, L. Beauvericin, a Bioactive Compound Produced by Fungi: A Short Review. Molecules, 2012, 17(3), 2367-2377.
[72]
(a) Miao, S.; Anstee, M.R.; LaMarco, K.; Matthew, J.; Huang, L.H.T.; Brasseur, M.M. Nhibition of bacterial rna polymerases. Peptide metabolites from the cultures of streptomyces sp. J. Nat. Prod., 1997, 60(8), 858-861.
(b) H.M., Hassan; D., Degen; K.H., Jang; R.H., Ebright; W., Fenical Salinamide. F, new depsipeptide antibiotic and inhibitor of bacterial RNA polymerase from a marine-derived Streptomyces sp. J. Antibiot. (Tokyo), 2015, 68(3), 206-209.
[73]
Gerard, J.; Lloyd, R.; Barsby, T.; Haden, P.; Kelly, M.T.; Andersen, R.J. Massetolides A-H, antimycobacterial cyclic depsipeptides produced by two pseudomonads isolated from marine habitats. J. Nat. Prod., 1997, 60(3), 223-229.
[74]
Zainuddin, E.N.; Jansen, R.; Nimtz, M.; Wray, V.; Preisitsch, M.; Lalk, M.; Mundt, S. Cyclic depsipeptides, ichthyopeptins A and B, from Microcystis ichthyoblabe. J. Nat. Prod., 2009, 72(7), 1373-1378.
[75]
Furunaka, H.; Miyata, T.; Tokunaga, F.; Muta, T.; Iwanaga, S.; Niwa, M.; Takao, T.; Shimonishi, Y. Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure. J. Biol. Chem., 1988, 263(32), 16709-16713.
[76]
Wu, M.; Hancock, R.E.W. Interaction of the cyclic antimicrobial cationic peptide bactenecin with the outer and cytoplasmic membrane. J. Biol. Chem., 1999, 274(1), 29-35.
[77]
Steinberg, C.D.A.; Hurst, M.A.; Fujii, C.A.; Kung, A.H.; Ho, J.F.; Cheng, F.C.; Loury, D.J.; Fiddes, J.C. Protegrin-1: a broad-spectrum, rapidly microbicidal peptide with in vivo activity. Antimicrob. Agents Chemother., 1997, 41(8), 1738-1742.
[78]
(a) Mohammed, R. Peng, J. Kelly, M. Hamann, M.T. Cyclic Heptapeptides from the Jamaican Sponge Stylissa caribica. J. Nat. Prod., 2006, 69, 1739-1744.
(b) Dahiya, R.; Gautam, H. Total Synthesis and Antimicrobial Activity of a Natural Cycloheptapeptide of Marine Origin. Mar. Drugs, 2010, 8(8), 2384-2394.
[79]
Müller, D.; Krick, A.; Kehraus, S.; Mehner, C.; Hart, M.; Küpper, F.C.; Saxena, K.; Prinz, H.; Schwalbe, H.; Janning, P.; Waldmann, H.; König, G.M. Brunsvicamides A−C: Sponge-Related Cyanobacterial Peptides with Mycobacterium tuberculosis Protein Tyrosine Phosphatase Inhibitory Activity. J. Med. Chem.,2006, 49(16), 4871-78. (b) An, T.; Kumar, T.K.; Wang, M.; Liu, L.; Lay, J.O., Jr.; Liyanage, R.; Berry, J.; Gantar, M.; Marks, V.; Gawley, R.E.; Rein KS. Structures of pahayokolides A and B, cyclic peptides from a Lyngbya sp. J. Nat. Prod., 2007, 70(5), 730-735.
[80]
Stella, S.; Montanini, N.; Le Monnier, F.; Ferrari, P.; Colombo, L.; Marinelli, F.; Landini, P.; Ciciliato, I.; Goldstein, B.P.; Selva, E. Antibiotic GE37468 A: a new inhibitor of bacterial protein synthesis. I. Isolation and characterization. J. Antibiot., 1995, 48(8), 780-786.
[81]
(a) Ogino, J.; Moore, R.E.; Patterson, G.M.; Smith, C.D. Identifi cation and characterization of the lantibiotic nisin Z, a natural nisin variant. J. Nat. Prod., 1996, 59, 581-584.
(b) Gulavita, N.K.; Gunasekela, S.P.; Pomponi, S.A.; Robinson, E.V. Polydiscamide A: a new bioactive depsipeptide from the marine sponge Discodermia sp. J. Org. Chem., 1992, 57, 1767-1772.
[82]
(a) Denning, D.W. Invasive aspergillosis. Clin. Infect. Dis., 1998, 26, 781-805.
(b) Moore, C.B.; Sayers, N.; Mosquero, J.; Slaven, J.; Denning, D.W. Antifungal drug resistance in Aspergillus. J. Infect., 2000, 41, 203-220.
(c) Sanglard, D.; Odds, F.C. Lancet Infect. Dis., 2002, 2, 73.
(d) Nyfeler, R.; Keller, S.W. Metabolites of microorganisms, 143: echinocandin B, a novel polypeptide-antibiotic from Aspergillus nidulans var echinulatus—isolation and structural components. Helv. Chim. Acta, 1974, 57, 2459-2477.
(e) Kurtz, M.B.; Rex, J.H. Glucan synthase inhibitors as antifungal agents. Adv. Protein Chem., 2001, 56, 423-475.
(f) Douglas, C. Fungal beta (1,3)-D-glucan synthesis. Med. Mycol., 2001, 39, 55-66.
(g) Klis, F.M.; De Groot, P.; Hellingwerf, K. Molecular organization of the cell wall of Candida albicans. Med. Mycol., 2001, 39, 1-8.
[83]
(a) Bal, A.M. The echinocandins: three useful choices or three too many? Int. J. Antimicrob. Agents, 2010, 35, 13-18.
(b) Reese, A.J.A.; Yoneda, J.A.; Breger, A.; Beauvais, H.; Liu, C.L.; Griffith, C.L.; Bose, I.; Kim, M.J.; Skau, C.; Yang, S.; Sefko, J.A.; Osumi, M.; Latge, J.P.; Mylonakis, E.; Doering, T.L. Loss of cell wall alpha (1-3) glucan affects Cryptococcus neoformans from ultrastructure to virulence. Mol. Microbiol., 2007, 63, 1385-1398.
(c) Denning, D.W. Echinocandin antifungal drugs. Lancet, 2003, 362, 1142.
(d) Maertens, J.; Boogaerts, M. Caspofungin in the treatment of candidosis and aspergillosis. Int. J. Infect. Dis.,2003, 7, 94-101; (f) Bowman, J.C.; Hicks, P.S.; Kurtz, M.B.; Rosen, H.; Schmatz, D.M.; Liberator, P.A.; Douglas, C.M. The antifungal echinocandin caspofungin acetate kills growing cells of Aspergillus fumigatus in vitro. Antimicrob. Agents Chemother., 2002, 46, 3001-3012.
(e) Muñoz, P.; Singh, N.; Bouza, E. Treatment of solid organ transplant patients with invasive fungal infections: should a combination of antifungal drugs be used? Curr. Opin. Infect. Dis., 2006, 19, 365-370.
[84]
(a) Deresinski, S. C Stevens, D.A. Caspofungin. Clin. Infect. Dis., 2003, 36, 1445-1457.
(b) Baixench, M.T.; Aoun, N.; Desnos-Ollivier, M.; Garcia-Hermoso, D.; Bretagne, S.; Ramires, S.; Piketty, C.; Dannaoui, E. Acquired resistance to echinocandins in Candida albicans: case report and review. J. Antimicrob. Chemother., 2007, 59, 1076-1083.
(c) Cabello, M.A.; Platas, G.; Collado, J.; Díez, M.T.; Martín, I.; Vicente, F.; Meinz, M.; Onishi, J.C.; Douglas, C.; Thompson, J.; Kurtz, M.B.; Schwartz, R.E.; Bills, G.F.; Giacobbe, R.A.; Abruzzo, G.K.; Flattery, A.M.; Kong, L.; Peláez, F. Arundifungin, a novel antifungal compound produced by fungi: biological activity and taxonomy of the producing organisms. Int. Microbiol., 2001, 4, 93-102.
[85]
(a) Heidler, S.A.; Radding, J.A. Inositol phosphoryl transferases from human pathogenic fungi. Biochim. Biophys. Acta, 2000, 1500(1), 147-152.
(b) Takesako, K.; Kuroda, H.; Inoue, T.; Haruna, F.; Yoshikawa, Y.; Kato, I.; Uchida, K.; Hiratani, T.; Yamaguchi, H. Biological properties of aureobasidin A, a cyclic depsipeptide antifungal antibiotic. J. Antibiot., 1993, 46(9), 1414-1420.
(c) Ikai, K.; Takesako, K.; Shiomi, K.; Moriguchi, M.; Umeda, Y.; Yamamoto, J.; Kato, I.; Naganawa, H. Structure of aureobasidin A. J. Antibiot., 1991, 44(9), 925-933.
[86]
(a) Scott, V.R.; Boehme, R.; Matthews, T.S. New class of antifungal agents: jasplakinolide, a cyclodepsipeptide from the marine sponge, Jaspis species. Antimicrob. Agents Chemother., 1988, 32, 1154-1157.
(b) Molinski, T.F. Antifungal compounds from marine organisms. Antiinfect. Agents Med. Chem., 2004, 3, 197-220.
(c) Braekman, J.C.; Daloze, D.; Moussiaux, B.; Riccio, R. Jaspamide from the marine sponge Jaspis johnstoni. J. Nat. Prod., 1987, 50, 994-995.
(d) Odaka, C.; Sanders, M.L.; Crews, P. Jasplakinolide induces apoptosis in various transformed cell lines by a caspase-3-like protease-dependent pathway. Clin. Diagn. Lab. Immunol., 2000, 7(6), 947-952.
(e) Cioca, D.P.; Kitano, K. Induction of apoptosis and CD10/neutral endopeptidase expression by jaspamide in HL-60 line cells. Cell. Mol. Life Sci., 2002, 59, 1377-1387.
[87]
Matsunaga, S.; Fusetani, N.; Hashimoto, K.; Walchli, M. Theonellamide F. A novel antifungal bicyclic peptide from a marine sponge Theonella sp. J. Am. Chem. Soc., 1989, 111, 2582-2588.
[88]
Bewley, C.A.; Faulkner, D.J. Theonegramide, an antifungal glycopeptide from the Philippine lithistid sponge Theonella swinhoei. J. Org. Chem., 1994, 59, 4849-4852.
[89]
Clark, D.P.; Carroll, J.; Naylor, S.; Crews, P. An antifungal cyclodepsipeptide, cyclolithistide A, from the sponge Theonella swinhoei. J. Org. Chem., 1998, 63, 8757-8764.
[90]
Bewley, C.A.; Debitus, C.; Faulkner, D.J. Microsclerodermins A and B. Antifungal cyclic peptides from the lithistid sponge Microscleroderma sp. J. Am. Chem. Soc., 1994, 116, 7631-7636.
[91]
(a) Kobayashi, J.; Tsuda, M.; Nakamura, T.; Mikami, Y.; Shigemori, H. Hymenamides a and b, new proline-rich cyclic heptapeptides from the okinawan marine sponge hymeniacidon sp. Tetrahedron, 1993, 49, 2391-2402.
(b) Tsuda, M.; Shigemori, H.; Mikami, Y.; Kobayashi, J. Hymenamides C-E, new cyclic heptapeptides with two proline residues from the okinawan marine sponge hymeniacidon sp. Tetrahedron, 1993, 49, 6785-6796.
[92]
Pergament, I.; Carmelli, S. Schizotrin A: a novel antimicrobial cyclic peptide from a cyanobacterium. Tetrahedron Lett., 1994, 35, 8473-76. (b) Anthony J. De Lucca; Thomas J. Walsh, Antifungal peptides: Novel therapeutic compounds against emerging pathogens. Antimicrob. Agents Chemother., 1999, 43, 1-11.
[93]
Bewley, C.A. He, H.; Williams, D H.; Faulkner, D.J. Aciculitins A−C: Cytotoxic and Antifungal Cyclic Peptides from the Lithistid Sponge Aciculites orientalis. J. Am. Chem. Soc., 1996, 118, 4314-4321.
[94]
Nasir, M.N.; Besson, F. Interactions of the antifungal mycosubtilin with ergosterol-containing interfacial monolayers. Biochim. Biophys. Acta, 2012, 1818, 1302-1308.
[95]
(a) Tian, J.M.; Shen, Y.H.; Yang, X.W.; Liang, S.; Tang, J.; Shan, L.; Zhang, W.D. 11. Tunicyclin A, the First Plant Tricyclic Ring Cycloheptapeptide from Psammosilene tunicoides. Org. Lett., 2009, 11, 1131-1133.
(b) Tian, J.M.; Shen, Y.H.; Yang, X.W.; Liang, S.; Shan, L.; Li, H.; Liu, R.; Zhang, W. Antifungal Cyclic Peptides from Psammosilene tunicoides. J. Nat. Prod., 2010, 73, 1987-1992.
[96]
Vanittanakom, N.; Loeffler, W.; Koch, U.; Jung, G. Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J. Antibiot., 1986, 39, 888-901. [Tokyo].
[97]
(a) Lee, C.H.; Kim, S.H.; Hyun, B.C.; Suh, J.W.; Yon, C.; Kim, C.O.; Lim, Y.A.; Kim, C.S. Cepacidine A, a novel antifungal antibiotic produced by Pseudomonas cepacia. I. Taxonomy, production, isolation and biological activity. J. Antibiot. , 1994, 47, 1402-1405.
(b) Lee, S.Y.; Moon, H.J.; Kurata, S.; Natori, S.; Lee, B.L. Purification and cDNA cloning of an antifungal protein from the hemolymph of Holotrichia diomphalia larvae. Biol. Pharm. Bull., 1995, 18(8), 1049-1052.
[98]
Lebbadi, M.; Galvez, A.; Maqueda, M.; Martinez-Bueno, M.; Valdivia, E. Fungicin M4: a narrow spectrum peptide antibiotic from Bacillus licheniformis M-4. J. Appl. Bacteriol., 1994, 77(1), 49-53.
[99]
Schmidt, E.W.; Bewley, C.A.; Faulkner, D.J. Theopalauamide, a Bicyclic Glycopeptide from Filamentous Bacterial Symbionts of the Lithistid Sponge Theonella swinhoei from Palau and Mozambique. J. Org. Chem., 1998, 63(4), 1254-1258.
[100]
Jaki, B.; Zerbe, O.; Heilmann, J.; Sticher, O. Two Novel Cyclic Peptides with Antifungal Activity from the Cyanobacterium Tolypothrix byssoidea (EAWAG 195). J. Nat. Prod., 2001, 64(2), 154-158.
[101]
Wu, W.; Dai, H.; Bao, L.; Ren, B.; Lu, J.; Luo, Y.; Guo, L.; Zhang, L.; Liu, H. Isolation and structural elucidation of proline-containing cyclopentapeptides from an endolichenic Xylaria sp. J. Nat. Prod., 2011, 74, 1303-1308.
[102]
(a) Qureshi, A.; Colin, P.L.; Faulkner, D.J. Microsclerodermins F–I, Antitumor and Antifungal Cyclic Peptides from the Lithistid Sponge Microscleroderma sp. Tetrahedron, 2000, 56, 3679-3685.
(b) Schmidt, E.W.; Faulkner, D.J. Microsclerodermins C-E, antifungal cyclic peptides from the lithistid marine sponges Theonella sp. and Microscleroderma sp. Tetrahedron, 1998, 54, 3043-3056.
[103]
Kajiyama, S.; Kanzaki, H.; Kawazu, K.; Kobayashi, A. Nostofungicidine, an antifungal lipopeptide from the field-grown terrestrial blue-green alga Nostoc commune. Tetrahedron Lett., 1998, 39, 3737-3740.
[104]
Pedras, M.S.; Ismail, N.; Quail, J.W.; Boyetchko, S.M. Structure, chemistry, and biological activity of pseudophomins A and B, new cyclic lipodepsipeptides isolated from the biocontrol bacterium Pseudomonas fluorescens. Phytochemistry, 2003, 62, 1105-1114.
[105]
Yang, L.; Tan, R.; Wang, Q.; Huang, W.; Yin, Y. Antifungal cyclopeptides from Halobacillus litoralis YS3106 of marine origin. Tetrahedron Lett., 2002, 43, 6545-6548.
[106]
(a) Kobayashi, J.; Nakamura, T.; Tsuda, M. Hymenamide F, new cyclic heptapeptide from marine sponge Hymeniacidon sp. Tetrahedron, 1996, 52, 6355-6360.
(b) Stock, S.D.; Hama, H.; Radding, J.A.; Young, D.A.; Takemoto, J.Y. Syringomycin E inhibition of Saccharomyces cerevisiae: requirement for biosynthesis of sphingolipids with very-long-chain fatty acids and mannose- and phosphoinositol-containing head groups. Antimicrob. Agents Chemother., 2000, 44, 1174-1180.
(c) Sorensen, K.N.; Kim, K.; Takemoto, J. In vitro antifungal and fungicidal activities and erythrocyte toxicities of cyclic lipodepsinonapeptides produced by Pseudomonas syringae pv. syringae. Antimicrob. Agents Chemother., 1996, 2710-2713.
[107]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61, 69-90.
[108]
Vogelstein, B.; Kinzler, K.W. Cancer genes and the pathways they control. Nat. Med., 2004, 10, 789-799.
[109]
(a) Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med., 1995, 1, 27-31.
(b) Kakde, D.; Jain, D.; Shrivastava, V.; Kakde, R., and; Patil, A.T. Cancer therapeutics—opportunities, challenges and advances in drug delivery. Applied Pharmaceutical Science., 2011, 1, 1-10.
[110]
(a) Enbäck, J.; Laakkonen, P. Tumour-homing peptides: tools for targeting, imaging and destruction. Biochemical Society Transactions., 2007, 35, 780-783.
(b) Dorsam, R.T.; Gutkind, J.S. G-protein-coupled receptors and cancer. Nat. Rev. Cancer, 2007, 7, 79-94.
(c) Aina, O.H.; Sroka, T.C.; Chen, M.L., and; Lam, K.S. Therapeutic cancer targeting peptides. Biopolymers, 2002, 66, 184-199.
(d) Meng, L.; Yang, L.; Zhao, X.; Zhang, L.; Zhu, H.; Liu, C.; Tan, W. Targeted delivery of chemotherapy agents using a liver cancer-specific aptamer. PLoS One, 2012, 7, Article ID e33434.
(e) Zhang, X.; Eden, H.S.; Chen, X. Peptides in cancer nanomedicine: drug carriers, targeting ligands and protease substrates. J. Controlled . Release, 2012, 159, 2-13.
[111]
Craigg, G.M.; Newman, D.J.; Weiss, R.B. Coral reefs, forests and thermal vents: The worldwide exploration of nature for novel antitumor agents. Semin. Oncol., 1997, 24, 156-163.
[112]
(a) Masuoka, Y.; Shindoh, N.; Inamura, N. Histone deacetylase inhibitors from microorganisms: the Astellas experience. In: Petersen F, Amstutz R, editors. Progress in Drug Research Vol. 66, Natural Compounds as Drugs; Vol. II. Basel: Birkhäuser Verlag A.G;, 2008; p. 335.
(b) Ueda, H.; Nakajima, H.; Hori, Y.; Goto, T.; Okuhara, M. FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. I. Taxonomy, fermentation, isolation, physico-chemical and biological properties, and antitumor activity. J. Antibiotics., 1994, 47, 301-310.
(c) Nakajima, H.; Kim, Y.B.; Terano, H.; Yoshida, M.; Horinouchi, S. FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp. Cell Res., 1998, 241, 126-133.
[113]
Malaker, A.; Ahmad, S.A.I. Therapeutic potency of anticancer peptides derived from marine organism. Int. J. Eng. Appl. Sci., 2013, 2, 53-65.
[114]
(a) Shilabin, A.G.; Kasanah, N.; Wedge, D.E.; Hamann, M.T. Lysosome and HER3 (ErbB3) selective anticancer agent kahalalide F: semisynthetic modifications and antifungal lead-exploration studies. J. Med. Chem., 2007, 50, 4340-4350.
(b) Jimeno, J. López, Martín, J.A; Ruiz, Casado A.; Izquierdo, M.A.; Scheuer, P.; Rinehart, K. Progress in the clinical development of new marine-derived anticancer compounds. Anticancer Drugs, 2004, 15, 321-329.
(c) Suárez, Y.; González, L.; Cuadrado, A.; Berciano, M.; Lafarga, M.; Muñoz, A.; Kahalalide, F. a new marine-derived compound, induces oncosis in human prostate and breast cancer cells. Mol. Cancer Ther., 2003, 2, 863-872.
[115]
(a) Rinehart, K.L. Antitumor compounds from tunicates. Med. Res. Rev., 2000, 20(1), 1-27.
(b) Anthoney, A.; Paz-Ares, L.; Twelves, C.; Cortes-Funes, H.; Kaye, S.; Pronk, L.; Celli, N.; Lopez-Lazaro, L.; Guzman, C.; Jimeno, J. Phase I and pharmacokinetic (PK) study of Aplidine (APL) using 24-h, weekly schedule. J. Clin. Oncol., 2000, 19S, 1-734a.
(c) Erba, E.; Ronzoni, S.; Bergamaschi, D.; Bassano, L.; Desiderio, M.A.; Faircloth, G.T.; Jimeno, J.; D’Incalci, M. Mechanism of anti-leukemic activity of Aplidin. Proc. Am. Assoc. Cancer Res., 1999, 40, 3.
(d) Erba, E.; Serafini, M.; Gaipa, G.; Tognon, G.; Marchini, S.; Celli, C.; Rotilio, D.; Broggini, M.; Jimeno, J.; Faircloth, G.; Biondi, A.; D’Inclaci, M. Effect of Aplidin in acute lymphoblastic leukaemia cells. Br. J. Cancer, 2003, 89, 763-773.
[116]
Coronado, C.; Galmarini, C.M.; Alfaro, V.; Yovine, A. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Drugs Fut, 2010, 35, 287-296.
[117]
(a) Rinehart, K.L.; Gloer, J.B.; Cook, J.C.; Mizsak, S.A.; Scahill, T.A. Structures of the didemnins, antiviral and cytotoxic depsipeptides from a Caribbean tunicate. J. Am. Chem. Soc., 1981, 103, 1857-1859.
(b) Jr. Rinehart, K. Gloer, J.; Jr. Hughes, R.; Renis, H.; McGovren, J.; Swynenberg, E.; Stringfellow, D.; Kuentzel, S.; Li, L. Didemnins: Antiviral and antitumor depsipeptides from a caribbean tunicate. Science, 1981, 212, 933-935.
(c) Schmitz, F.; Bowden, B.; Toth, S. Antitumor and cytotoxic compounds from marine organisms. Mar. Biotechnol., 1993, 1, 197-308.
(d) Blunden, G. Biologically active compounds from marine organisms. Phytother. Res., 2001, 15, 89-94.
(e) Grubb, D.R.; Wolvetang, E.J.; Lawen, A. Didemnin B induces cell death by apoptosis: The fastest induction of apoptosis ever described. Biochem. Biophys. Res. Commun., 1995, 215, 1130-1136.
(f) Johnson, K.L.; Lawen, A. Rapamycin inhibits didemnin B-induced apoptosis in human HL-60 cells: Evidence for the possible involvement of FK506-binding protein. Immunol. Cell Biol., 1999, 77, 242-248.
[118]
(a) Jolad, S.D.; Hoffmann, J.J.; Torrance, S.J.; Wiedhopf, R.M.; Cole, J.R.; Arora, S.K.; Bates, R.B.; Cargiulo, R.L.; Kriek, G.R. Bouvardin and deoxybouvardin, antitumor cyclic hexapeptides from Bouvardia ternifolia (Rubiaceae). J. Am. Chem. Soc., 1977, 99, 8040-8044.
(b) Itokawa, H.; Takeya, K.; Mori, N.; Sonobe, T.; Mihashi, S.; Hamanaka, T. Studies on antitumor cyclic hexapeptides RA obtained from Rubiae radix, Rubiaceae: VI. Minor antitumor constituents. Chem. Pharm. Bull., 1986, 34, 3762-3768.
[119]
(a) Newman, D.J.; Cragg, G.M. Advanced preclinical and clinical trials of natural products and related compounds from marine sources. Current. Med. Chem., 2004, 11, 1693-1713.
(b) Edler, M.C.; Fernandez, A.M.; Lassota, P.; Ireland, C.M.; Barrows, L.R. Efficacy Profiles of Daptomycin for Treatment of Invasive and Noninvasive Pulmonary Infections with Streptococcus pneumonia. Biochem. Pharmacol., 2002, 6, 707-717.
(c) Pettit, G.R.; Srirangam, J.K.; Herald, D.L.; Xu, J.P.; Boyd, M.R.; Cichacz, Z.; Kamano, Y.; Schmidt, J.M.; Erickson, K.L. Isolation and Crystal Structure of Stylopeptide 1, A New Marine Porifera Cycloheptapeptide. J. Org. Chem., 1995, 60, 8257-8261.
(d) Pettit, G.R.; Gao, F.; Cerny, R. Isolation and Structure of Axinastatin 4 from the Western Indian Ocean Marine sponge Axinella cf. carteri. Heterocycles, 1993, 35, 711-718.
[120]
Li, Y.; Koiso, Y.; Kobayashi, H.; Hashimoto, Y.; Iwasaki, S. Ustiloxins, new antimitotic cyclic peptides: Interaction with porcine brain tubulin. Biochemical Pharmacology., 1995, 49, 1367-1372.
[121]
(a) Kobayashi, J.; Suzuki, H.; Shimbo, K.; Takeya, K.; Morita, H. Celogentins A−C, New Antimitotic Bicyclic Peptides from the Seeds of Celosia argentea. J. Org. Chem., 2001, 66, 6626-6633.
(b) Suzuki, H.; Morita, H.; Iwasaki, S.; Kobayashi, J. New antimitotic bicyclic peptides, celogentins D–H, and J, from the seeds of Celosia argentea. Tetrahedron, 2003, 59, 5307-5315.
[122]
(a) Hwang, Y.; Rowley, D.; Rhodes, D.; Gertsch, J.; Fenical, W.; Bushman, F. Mechanism of inhibition of a poxvirus topoisomerase by the marine natural product sansalvamide A. Mol. Pharmacol., 1999, 55, 1049-1053.
(b) Pan, C.M.; Davis, M.R.; Ardi, V.C.; McAlpine, S.R. A comprehensive study of Sansalvamide A derivatives: The structure-activity relationships of 78 derivatives in two pancreatic cancer cell lines. Bioorg. Med. Chem., 2009, 17, 5806-5825.
(c) Heiferman, M.J.; Salabat, M.R.; Ujiki, M.B.; Strouch, M.J.; Cheon, E.C.; Silverman, R.B.; Bentrem, D.J. Sansalvamide Induces Pancreatic Cancer Growth Arrest through Changes in the Cell Cycle. Anticancer Res., 2010, 30, 73-78.
(d) Ujiki, M.B.; Milam, B.; Ding, X.Z.; Roginsky, A.B.; Salabat, M.R.; Talamonti, M.S.; Bell, R.H.; Gu, W.; Silverman, R.B.; Adrian, T.E. A novel peptide sansalvamide analogue inhibits pancreatic cancer cell growth through G0/G1 cell-cycle arrest. Biochem. Biophys. Research. Commun., 2006, 340, 1224-1228.
[123]
Ireland, C.; Durso, A.; Newman, R.; Hacker, D. Antineoplastic cyclic peptides from the marine tunicate Lissoclinum patella. J. Org. Chem., 1982, 47, 1807-1811.
[124]
(a) Morita, H.; Shishido, A.; Kayashita, T.; Shimomura, M.; Takeya, K.; Itokawa, H. Stelladelin D, a new cyclic undecapeptide from Stellaria delavayi. Chem. Lett., 1994, 2415, 237-240.
(b) Morita, H.; Kayashita, T.; Shimomura, M.; Takeya, K.; Itokawa, H. Cyclic Peptides from Higher Plants. 24. Yunnanin C, a Novel Cyclic Heptapeptide from Stellaria yunnanensis. J. Nat. Prod., 1996, 59, 280-282.
(c) Kayashita, T.; Takeya, K.; Itokawa, H.; Shiro, M. Conformation of cyclic heptapeptides: solid and solution state conformation of yunnanin A. Tetrahedron, 1997, 53, 1607-1616.
(d) Napolitano, A.; Rodriquez, M.; Bruno, L.; Marzocco, S.; Autore, G.; Riccio, R.; Gomez-Paloma, L. Synthesis, structural aspects and cytotoxicity of the natural cyclopeptides yunnanins A, C and phakellistatins 1, 10. Tetrahedron, 2003, 59, 10203-10211.
(e) Morita, H.; Kayashita, T.; Shimomura, M.; Takeya, K.; Itokawa, H. Cyclic Peptides from Higher Plants. Part 30. Three Novel Cyclic Peptides, Yunnanins D, E and F from Stellaria yunnanensis. Heterocycles, 1996, 43, 1279-1286.
[125]
(a) Pettit, G.R.; Cichacz, Z.; Barkoczy, J.; Dorsaz, A.C.; Herald, D.L.; Williams, M.D.; Doubek, D.L.; Schmidt, J.M.; Tackett, L.P.; Brune, D.C. Isolation and structure of the marine sponge cell growth inhibitory cyclic peptide phakellistatin 1. J. Nat. Prod., 1993, 56, 260-267.
(b) Pettit, G.R.; Tan, R.; Ichihara, Y.; Williams, M.D.; Doubek, D.L.; Tackett, L.P.; Schmidt, J.M.; Cerny, R.L.; Boyd, M.R.; Hooper, J.N. Antineoplastic agents, 325. Isolation and structure of the human cancer cell growth inhibitory cyclic octapeptides phakellistatin 10 and 11 from Phakellia. sp. J. Nat. Prod., 1995, 58, 961.
(c) Pettit, G.R.; Tan, R. Antineoplastic agents 390. Isolation and structure of phakellistatin 12 from a Chuuk archipelago marine sponge. Bioorg. Med. Chem. Lett.,2003, 13, 685-88. Isolation and structure of phakellistatin 14 from the Western Pacific marine sponge Phakellia sp. J. Nat. Prod., 2005, 68, 60-63.
[126]
(a) Donia, M.S.; Wang, B.; Dunbar, D.C.; Desai, P.V.; Patny, A.; Avery, M.; Hamann, M.T. Mollamides B and C, Cyclic hexapeptides from the indonesian tunicate Didemnum molle. J. Nat. Prod., 2008, 71, 941-945.
(b) Carroll, A.R.; Bowden, B.F.; Coll, J.C.; Hockless, D.C.R.; Skelton, B.W.; White, A.H. Studies of australian ascidians. Iv. Mollamide, a cytotoxic cyclic heptapeptide from the compound ascidian diplosoma virens. Aust. J. Chem., 1994, 47, 61-69.
(c) Sera, Y.; Adachi, K.; Fujii, K.; Shizuri, Y. A new antifouling hexapeptide from a palauan sponge, haliclona sp. J. Nat. Prod., 2003, 66, 719-721.
[127]
(a) Romero, F.; Espliego, F.; Pérez Baz, J.; García de Quesada, T.; Grávalos, D.; de la Calle, F.; Fernández-Puentes, J.L. Thiocoraline, a new depsipeptide with antitumor activity produced by a marine Micromonospora. I. Taxonomy, fermentation, isolation, and biological activities. J. Antibiot., 1997, 50, 734-737.
(b) Erba, E.; Bergamaschi, D.; Ronzoni, S.; Faretta, M.; Taverna, S.; Bonfanti, M.; Catapano, C.V.; Faircloth, G.; Jimeno, J.; D’Incalci, M. Mode of action of thiocoraline, a natural marine compound with anti-tumour activity. Br. J. Cancer, 1999, 80, 971-980.
(c) Luo, S.; Krunic, A.; Kang, H.S.; Chen, W.L.; Woodard, J.L.; Fuchs, J.R.; Swanson, S.M.; Orjala, J. Trichormamides a and b with antiproliferative activity from the cultured freshwater cyanobacterium trichormus sp. UIC 10339. J. Nat. Prod., 2014, 77, 1871-1880.
[128]
Nakao, Y.; Yeung, B.K.S.; Yoshida, W.Y.; Scheuer, P.J.; Kelly-Borges, M. Kapakahine b, a cyclic hexapeptide with an. alpha.-carboline ring system from the marine sponge cribrochalina olemda. J. Am. Chem. Soc., 1995, 117, 8271-8272.
[129]
(a) Zare, R.; Gams, W.; Evans, H.C. A revision of Verticillium section Prostrata. V. The genus Pochonia, with notes on Rotiferophthora. Nova Hedwigia, 2001, 73, 51-86.
(b) Nishino, N.; Jose, B.; Shinta, R.; Kato, T.; Komatsu, Y.; Yoshida, M. Chlamydocin-hydroxamic acid analogues as histone deacetylase inhibitors. Bioorg. Med. Chem., 2004, 12, 5777-5784.
[130]
(a) Itazaki, H.; Nagashima, K.; Sugita, K.; Yoshida, H.; Kawamura, Y.; Yasuda, Y.; Matsumoto, K.; Ishii, K.; Uotani, N.; Nakai, H. Isolation and structural elucidation of new cyclotetrapeptides, trapoxins A and B, having detransformation activities as antitumor agents. J. Antibiot., 1990, 43, 1524-1532.
(b) Nakai, H.; Nagashima, K.; Itazaki, H. Structure of a new cyclotetrapeptide trapoxin A. Acta Crystallogr.Sect C, 1991, 47, 1496-1499.
(c) Kijima, M.; Yoshida, M.; Sugita, K.; Horinouchi, S.; Beppu, T. Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J. Biol. Chem., 1993, 268, 22429-22435.
[131]
(a) Singh, S.B.; Zink, D.L.; Liesch, J.M.; Mosley, R.T.; Dombrowski, A.W.; Bills, G.F.; Darkin-Rattray, S.J.; Schmatz, D.M.; Goetz, M.A. Dinitro and Quinodimethane Derivatives of Terthiophene That Can Be Both Oxidized and Reduced. Crystal Structures, Spectra, and a Method for Analyzing Quinoid Contributions to Structure. J. Org. Chem., 2002, 67, 815-824.
(b) Singh, S.B.; Zink, D.L.; Liesch, J.M.; Dombrowski, A.W.; Schmatz, D.M.; Goetz, M.A. Structure, histone deacetylase, and antiprotozoal activities of apicidins B and C, congeners of apicidin with proline and valine substitutions. Org. Lett., 2001, 3, 2815-2818.
(c) Darkin-Rattray, S.J. Gurnett. A.M.; Myers, R.W.; Dulski, P.M.; Crumley, T.M.; Allocco, J.J.; Cannova, C.; Meinke, P.T.; Colletti, S.L.; Bednarek, M.A.; Singh, S.B.; Goetz, M.A.; Dombrowski. A.W.; Polishook, J.D.; Schmatz, D.M. Apicidin: a novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc. Natl. Acad. Sci. USA, 1996, 93, 13143-13147.
(d) Park, J.S.; Lee, K.R.; Kim, J.C.; Lim, S.H.; Seo, J.A.; Lee, Y.W. A hemorrhagic factor (apicidin) produced by toxic Fusarium isolates from soybean seeds. Appl. Environ. Microbiol., 1999, 65, 126-130.
(e) Singh, S.B.; Zink, D.L.; Polishook, J.D.; Dombrowski, A.W.; Darkin-Rattray, S.J.; Schmatz, D.M.; Goetz, M.A. Apicidins: Novel cyclic tetrapeptides as coccidiostats and antimalarial agents from Fusarium pallidoroseum. Tetrahedron Lett., 1996, 37, 8077-8080.
[132]
Petrella, C.; D’Acunto, W.; Rodriquez, M.; Festa, M.; Tosco, A.; Bruno, I.; Terracciano, S.; Taddei, M.; Paloma, L.G.; Parente, L. Effects of FR235222, a novel HDAC inhibitor, in proliferation and apoptosis of human leukaemia cell lines: Role of Annexin A1. E. J. Cancer, 2008, 44, 740-749.
[133]
(a) Matsuo, Y.; Kanoh, K.; Imagawa, H.; Adachi, K.; Nishizawa, M.; Shizuri, Y. Urukthapelstatin A, a novel cytotoxic substance from marine-derived mechercharimyces asporophorigenens YM11-542. J. Antibiot., 2007, 60, 256-260.
(b) Zhou, X.; Huang, H.; Chen, Y.; Tan, J.; Song, Y.; Zou, J.; Tian, X.; Hua, Y.; Ju, J. Marthiapeptide a, an anti-infective and cytotoxic polythiazole cyclopeptide from a 60 l scale fermentation of the deep sea-derived marinactinospora thermotolerans scsio 00652. J. Nat. Prod., 2012, 75, 2251-2255.
[134]
Tan, N.H.; Zou, J. Plant Cyclopeptides. Chem. Rev., 2006, 106, 840-95; (b) Morita, H.; Yun, Y.S.; Takeya, K.; Itokawa, H.; Shirota, O. A cyclic heptapeptide from Vaccaria segetalis. Phytochemistry, 1996, 42, 439-441.
[135]
(a) Mongkolvisut, W.; Sutthivaiyakit, S.; Leutbecher, H.; Mika, S.; Klaiber, I.; Möller, W.; Rösner, H.; Beifuss, U.; Conrad, J. Integerrimides A and B, cyclic heptapeptides from the latex of Jatropha integerrima. J. Nat. Prod., 2006, 69, 1435-1441.
(b) Han, B.; Goeger, D.; Maier, C.S.; Gerwick, W.H. The Wewakpeptins, The wewakpeptins, cyclic depsipeptides from a Papua New Guinea collection of the marine cyanobacterium Lyngbya semiplena. J. Org. Chem., 2005, 70, 3133-3139.
(c) Randazzo, A.; Piaz, F.D.; Orrù, S.; Debitus, C.; Roussakis, C.; Pucci, P.; Gomez-Paloma, L. Axinellins A and B: New proline-containing antiproliferative cyclopeptides from the Vanuatu sponge Axinella carteri. Eur. J. Org. Chem., 1998, 11, 2659-2665.
(d) Lopez, J.A.V.; Al-Lihaibi, S.S.; Alarif, W.M.; Abdel-Lateff, A.; Nogata, Y.; Washio, K.; Morikawa, M.; Okino, T. Wewakazole B, a Cytotoxic Cyanobactin from the Cyanobacterium Moorea producens Collected in the Red Sea. J. Nat. Prod., 2016, 79, 1213-1218.
[136]
(a) Teruya, T.; Sasaki, H.; Suenaga, K. Hexamollamide, a hexapeptide from an Okinawan ascidian Didemnum molle. Tetrahedron Lett., 2008, 49, 5297-5299.
(b) Zabriskie, T.M.; Foster, M.P.; Stout, T.J.; Clardy, J.; Ireland, C.M. Studies on the solution- and solid-state structure of patellin 2. J. Am. Chem. Soc., 1990, 112, 8080-8084.
(c) Carroll, A.R.; Coll, J.C.; Bourne, D.J.; MacLeod, J.K.; Ireland, C.M.; Bowden, B.F. Patellins 1–6 and trunkamide A: novel cyclic hexa-, hepta- and octa-peptides from colonial ascidians, Lissoclinum sp. Aust. J. Chem., 1996, 49, 659-667.
[137]
Morita, H.; Suzuki, H.; Kobayashi, J. Celogenamide A, a new cyclic peptide from the seeds of Celosia argentea. J. Nat. Prod., 2004, 67, 1628-1630.
[138]
Wele, A.; Zhang, Y.; Ndoye, I.; Brouard, J.P.; Pousset, J.L.; Bodo, B. A cytotoxic cyclic heptapeptide from the seeds of Annona cherimola. J. Nat. Prod., 2004, 67, 1577-1579.
[139]
(a) Hsieh, P.W.; Chang, F.R.; Wu, C.C.; Wu, K.Y.; Li, C.M.; Chen, S.L.; Wu, Y.C. New cytotoxic cyclic peptides and dianthramide from Dianthus superbus. J. Nat. Prod., 2004, 67, 1522-1527.
(b) Tong, Y.; Luo, J.G.; Wang, R.; Wang, X.B.; Kong, L.Y. New cyclicpeptides with osteoblastic proliferative activity from Dianthus superbus. Bioorg. Med. Chem. Lett., 2012, 22, 1908-1911.
[140]
(a) Hitotsuyanagi, Y.; Ishikawa, H.; Hasuda, T.; Takeya, K. Isolation, structural elucidation, and synthesis of RA-XVII, a novel bicyclic hexapetide from Rubia cordifolia, and the effect of side chain at residue 1 upon the conformation and cytotoxic activity. Tetrahedron Lett., 2004, 45, 935-938.
(b) Hsieh, P.; Chang, F.; Wu, C.C.; Chang, F.R.; Wang, T.W.; Wu, Y.C. LongicalycininA, a new cytotoxic cyclic peptide from Dianthus superbus var. longicalycinus (Maxim.) Will. Chem. Pharm. Bull., 2005, 53, 336-338.
[141]
Cozzolino, R.; Palladino, P.; Rossi, F.; Calì, G.; Benedetti, E.; Laccetti, P. Antineoplastic cyclicastin analogues kill tumour cells via caspase-mediated induction of apoptosis. Carcinogenesis, 2005, 26, 733-739.
[142]
(a) Schmitz, F.J.; Bowden, B.F.; Toth, S.I. In: Attaway, D.H.; Zaborsky, O. R. (Eds.), Marine Biotechnology, vol. 1, Pharmaceutical and Bioactive Natural Products; Plenum Press, New York, 1993; p. 277.
(b) Hawkins, C.J.; Lavin, M.F.; Marshall, K.A.; Van den Brenk, A.L.; Watters, D.J. Structure-activity relationships of the lissoclinamides: cytotoxic cyclic peptides from the ascidian Lissoclinum patella. J. Med. Chem., 1990, 33, 1634-1638.
[143]
Wesson, K.J.; Hamann, M.T. A. Keenamide A, a bioactive cyclic peptide from the marine mollusk Pleurobranchus forskalii. J. Nat. Prod., 1996, 59(6), 629-631.
[144]
Kobayashi, A.M.; Aoki, S.; Ohyabu, N.; Kurosu, M.; Wang, W.; Kitagawa, I. Arenastatin A, a potent cytotoxic depsipeptide from the okinawan marine sponge Dysidea arenaria. Tetrahedron Lett., 1994, 35, 7969-7972.
[145]
(a) Ibrahim, S.R.M.; Min, C.C.; Teuscher, F.; Ebel, R.; Kakoschke, C.; Lin, W.; Wray, V. Angelie E-Ebel, R.; Proksch, P. Callyaerins A–F and H, newcytotoxiccyclicpeptides from the Indonesian marinesponge Callyspongiaaerizusa. Bioorg. &Med. Chem., 2010, 18, 4947-4956.
(b) Ciasullo, L.; Casapullo, A.; Cutignano, A.; Bifulco, G.; Debitus, C.; Hooper, J.; Gomez-Paloma, L.R. Renieramide, a cyclic tripeptide from the Vanuatu sponge Renieran. sp. J. Nat. Prod., 2002, 65, 407-410.
[146]
Williams, D.E.; Yu, K.; Behrisch, H.W.; Soest, R.V.; Andersen, R.J. Two cyclic heptapeptides, rolloamides A and B, Rolloamides A and B, cytotoxic cyclic heptapeptides isolated from the caribbean marine sponge eurypon laughlini. J. Nat. Prod., 2009, 72, 1253-1257.
[147]
Kimura, M.; Wakimoto, T.; Egami, Y.; Tan, K.C.; Ise, Y.; Abe, I. Calyxamides A and B, Calyxamides A and B, cytotoxic cyclic peptides from the marine sponge discodermia calyx. J. Nat. Prod., 2012, 75, 290-294.
[148]
Ratnayake, A.S.T.; Bugni, S.; Feng, X.; Harper, M.K.; Skalicky, J.J.; Mohammed, K.A.; Andjelic, C.D.; Barrows, L.R.; Ireland, C.M. Theopapuamide, theopapuamide, a cyclic depsipeptide from a papua new guinea lithistid sponge theonella swinhoei. J. Nat. Prod., 2006, 69, 1582-1586.
[149]
Tan, L.T.; Sitachitta, N.; Gerwick, W.H. The guineamides (A-F) the guineamides, novel cyclic depsipeptides from a papua new guinea collection of the marine cyanobacterium lyngbya majuscula. J. Nat. Prod., 2003, 66, 764-771.
[150]
(a) Salvador, L.A.; Biggs, J.S.; Paul, V.J.; Luesch, H. New cyclic depsipeptides, veraguamides A−G Veraguamides A-G, cyclic hexadepsipeptides from a dolastatin 16-producing cyanobacterium Symploca cf. hydnoides from Guam. J. Nat. Prod., 2011, 74, 917-927.
(b) Mevers, E.; Liu, W.T.; Engene, N.; Mohimani, H.; Byrum, T.; Pevzner, P.A.; Dorrestein, P.C.; Spadafora, C.; Gerwick, W.H. Cytotoxic veraguamides, alkynyl bromide-containing cyclic depsipeptides from the marine cyanobacterium cf. Oscillatoria margaritifera. J. Nat. Prod., 2011, 74, 928-936.
[151]
Luesch, H.; Yoshida, W.Y.; Moore, R.E.; Paul, V.J.; Corbett, T.H. Total structure determination of apratoxin a, a potent novel cytotoxin from the marine cyanobacterium lyngbya majuscule. J. Am. Chem. Soc.,2001, 123(23), 5418-23; (b) Luesch, H.; Yoshida, W.Y.; Moore, R.E.; Paul, V.J. New apratoxins of marine cyanobacterial origin from Guam and Palau. Bioorg. Med. Chem., 2002, 10(6), 1973-1978.
[152]
Ashour, M.; Edrada, R.; Ebel, R.; Wray, V.; Wätjen, W.; Padmakumar, K.; Müller, W.E.G.; Lin, W.H.; Proksch, P. Two new cyclic depsipeptide derivatives, kahalalides R and S Kahalalide Derivatives from the Indian Sacoglossan Mollusk Elysia grandifolia. J. Nat. Prod., 2006, 69, 1547-1553.
[153]
Taori, K.; Paul, V.J.; Luesch, H. Structure and activity of largazole, a potent antiproliferative agent from the floridian marine cyanobacterium symploca sp. J. Am. Chem. Soc., 2008, 130, 1806-1807.
[154]
Yu, Z.; Lang, G.; Kajahn, I.; Schmaljohann, R.; Imhoff, J.F. Scopularides A and B, cyclodepsipeptides from a marine sponge-derived fungus, Scopulariopsis brevicaulis. J. Nat. Prod., 2008, 71, 1052-1054.
[155]
Linington, R.G.; Edwards, D.J.; Shuman, C.F.; McPhail, K.L.; Matainaho, T.; Gerwick, W.H. Symplocamide A, a potent cytotoxin and chymotrypsin inhibitor from the marine. Cyanobacterium Symploca sp. J. Nat. Prod., 2008, 71, 22-27.
[156]
(a) Thornburg, C.C.; Thimmaiah, M.; Shaala, L.A.; Hau, A.M.; Malmo, J.M.; Ishmael, J.E.; Youssef, D.T.A.; McPhail, K.L. grassypeptolides a-c cyclic depsipeptides, grassypeptolides D and E and ibu-epidemethoxylyngbyastatin 3, from a red sea leptolyngbya cyanobacterium. J. Nat. Prod., 2011, 74, 1677-1685.
(b) Popplewell, W.L.; Ratnayake, R.; Wilson, J.A.; Beutler, J.A.; Colburn, N.H.; Henrich, C.J.; McMahon, J.B.; McKee, T.C. Grassypeptolides F and G, Cyanobacterial Peptides from Lyngbya majuscule. J. Nat. Prod., 2011, 74(8), 1686-1691.
[157]
H., Morita S.; Nagashima, K.; Takeya, H. Itokawa, Astins A and B, antitumor cyclic pentapeptides from Aster Tataricus. Chem. Pharm. Bull.,1993, 41(5), 992-3; (b) H. Morita, S.; Nagashima, K.; Takeya, H.; Itokawa, Thionation of an antitumour cyclic pentapeptide, astin B, from Aster tataricus. Bioorg. Med. Chem. Lett., 1995, 5, 677-680.
[158]
(a) Morita, H.; Nagashima, S.; Takeya, K.; Itokawa, H.; Iitaka, Y. Structures and conformation of antitumour cyclic pentapeptides, astins A, B and C, from Aster tataricus. J. Chem. Soc., Perkin Trans 1, 1995, 2327.
(b) Y., Shen; Q., Luo; H., Xu; F., Gong; X., Zhou; Y., Sun; Wu, X.; W., Liu; G., Zeng; Tan, N.; Q., Xu Mitochondria-dependent apoptosis of activated T lymphocytes induced by astin C, a plant cyclopeptide, for preventing murine experimental colitis. Biochem. Pharmacol., 2011, 82, 260-268.
[159]
Pereira, A.; Cao, Z.; Murray, T.F.; Gerwick, W.H. Hoiamide A, a sodium channel activator of unusual architecture from a consortium of two papua new guinea cyanobacteria. Chem Biol., 2009, 16, 893-906. i.b.d. Hoiamide A, a sodium channel activator of unusual architecture from a consortium of two papua new guinea cyanobacteria. Chem. Biol., 2009, 16, 1208.
[160]
(a) Wang, C.L.; Ng, T.B.; Yuan, F.; Liu, Z.K.; Liu, F. Induction of apoptosis in human leukemia K562 cells by cyclic lipopeptide from Bacillus subtilis natto T-2. Peptides, 2007, 28, 1344-1350.
(b) Gu, W.; Cueto, M.; Jensen, P.R.; Fenical, W.; Silverman, R.B. Microsporins a and b: new histone deacetylase inhibitors from the marine-derived fungus microsporum cf. Gypseum and the solid-phase synthesis of microsporin a. Tetrahedron, 2007, 63, 6535-6541.
[161]
(a) Matthew, S.; Paul, V.J.; Luesch, H. Tiglicamides A–C, cyclodepsipeptides from the marine cyanobacterium Lyngbya confervoides. Phytochemistry, 2009, 70, 2058-2063.
(b) Matthew, S.; Paul, V.J.; Luesch, H. Largamides A-C, tiglic acid-containing cyclodepsipeptides with elastase-inhibitory activity from the marine cyanobacterium Lyngbya confervoides. Planta Med., 2009, 75, 528-533.
(c) A., Plaza, and; C.A., Bewley J. Org. Chem., 2006, 71, 6898.
[162]
Matern, U.; Oberer, L.; Falchetto, R.A.; Erhard, M.; König, W.A.; Herdman, M.; Weckesser, J. Scyptolin A and B, cyclic depsipeptides from axenic cultures of Scytonema hofmanni PCC 7110. Phytochemistry, 2001, 58, 1087-1095.
[163]
(a) C., Ireland; P.J., Scheuer; B., Ulithiacyclamide Ulicyclamide and ulithiacyclamide, two new small peptides from a marine tunicate. J. Am. Chem. Soc., 1980, 102, 5688-5691.
(b) Williams, D.E.; Moore, R.E.; Paul, V.J. The structure of ulithiacyclamide B. Antitumor evaluation of cyclic peptides and macrolides from Lissoclinum patella. J. Nat. Prod., 1989, 52, 732-739.
[164]
(a) Hambley, T.W.; Hawkins, C.J.; Lavin, M.F.; Van den Brenk, A.; Watters, D.J. Cycloxazoline: A cytotoxic cyclic hexapeptide from the ascidian lissoclinum bistratum. Tetrahedron, 1992, 48, 341-348.
(b) Watters, D.J.; Beamish, H.J.; Marshall, K.A.; Gardiner, R.A. Seymour, G.J.; Lavin, M.F. Accumulation of HL-60 leukemia cells in G2/M and inhibition of cytokinesis caused by two marine compounds, bistratene A and cycloxazoline. Cancer Chemother. Pharmacol., 1994, 33, 399-409.
[165]
Fernández, R.; Martín, M.J.; Rodríguez-Acebes, R.; Reyes, F.; Francesch, A.; Cuevas, C.; Diazonamides, C-E. new cytotoxic metabolites from the ascidian Diazona sp. Tetrahedron Lett., 2008, 49, 2283-2285.
[166]
(a) Richon, V.M.; O’Brien, J.P. Histone Deacetylase Inhibitors: A New Class of Potential Therapeutic Agents for Cancer Treatment. Clin. Cancer Res., 2002, 8, 718-728.
(b) Song, P.; Wei, J.; Wang, H.C.R. Distinct roles of the ERK pathway in modulating apoptosis of Ras-transformed and non-transformed cells induced by anticancer agent FR901228. FEBS Lett., 2005, 579, 90-94.
[167]
Hamamoto, Y.; Endo, M.; Nakagawa, M.; Nakanishi, T.; Mizukawa, K. A new cyclic peptide, ascidiacyclamide, isolated from ascidian. J. Chem. Soc. Chem. Commun., 1983, 323-324.
[168]
(a) Nakao, Y.; Yoshida, S.; Matsunaga, S.; Shindoh, N.; Terada, Y.; Nagai, K.; Yamashita, J.K.; Ganesan, A.; van Soest, R.W.; Fusetani, N. Azumamides A-E: histone deacetylase inhibitory cyclic tetrapeptides from the marine sponge Mycale izuensis. Angew. Chem. Int. Ed. Engl., 2006, 45, 7553-7557.
(b) Villadsen, J.S.; Stephansen, H.M.; Maolanon, A.R.; Harris, P.; Olsen, C.A. total synthesis and full histone deacetylase inhibitory profiling of azumamides a–e as well as β2- epi-azumamide e and β3-epi-azumamide e. J. Med. Chem., 2013, 56, 6512-6520.
[169]
Jones, A.C.; Monroe, E.A.; Eisman, E.B.; Gerwick, L.; Sherman, D.H.; Gerwick, W.H. The unique mechanistic transformations involved in the biosynthesis of modular natural products from marine cyanobacteria. Nat. Prod. Rep., 2010, 27, 1048-1065.
[170]
Chen, X.Q.; Zhao, S.M.; Wang, Z.; Zeng, G-Z.; Huang, M.B.; Tan, N.H. Rubicordins A–C, new cyclopeptides from Rubia cordifolia with cytotoxicity and inhibiting NF-κB signaling pathway. Tetrahedron, 2015, 71, 9673-9678.
[171]
Hsieh, P.W.; Chang, F.R.; Wu, C.C.; Wu, K.Y.; Li, C.M. Ya.W., Selective Inhibition of Collagen‐Induced Platelet Aggregation by a Cyclic Peptide from Drymaria diandra. Helv. Chim. Acta, 2004, 87, 57-66.
[172]
(a) Laird, D.W.; LaBarbera, D.V.; Feng, X.; Bugni, T.S.; Harper, M.K.; Ireland, C.M. Halogenated cyclic peptides isolated from the sponge Corticium sp. J. Nat. Prod., 2007, 70, 741-746.
(b) Sun, J.; Cheng, W.; De Voogd, N.J.; Proksch, P.; Lin, W.H. Stylissatins B–D, cycloheptapeptides from the marine sponge Stylissa massa. Tetrahedron Lett., 2016, 57(38), 4288-4292.
[173]
McDonald, L.A.; Foster, M.P.; Phillips, D.R.; Ireland, C.M.; Lee, A.Y.; Clardy, J. Tawicyclamides A and B, new cyclic peptides from the Ascidian Lissoclinum patella: studies on the solution- and solid-state conformations. J. Org. Chem., 1992, 57(17), 4616-4624.
[174]
Banker, R.; Carmeli, S. Tenuecyclamides a−d, cyclic hexapeptides from the cyanobacterium nostoc spongiaeforme var. Tenue. J. Nat. Prod., 1998, 61, 1248-1251.
[175]
Zampella, A.; Sepe, V.; Bellotta, F.; Luciano, P.; D’Auria, M.V.; Cresteil, T.; Debitus, C.; Petek, S.; Poupat, C.; Ahond, A. Homophymines B-E and A1-E1, a family of bioactive cyclodepsipeptides from the sponge Homophymia sp. Org. Biomol. Chem., 2009, 7, 4037-4044.
[176]
Araki, T.; Matsunaga, S.; Nakao, Y.; Furihata, K.; West, L.; Faulkner, D.J.; Fusetani, N. Koshikamide B, a cytotoxic peptide lactone from a marine sponge Theonella sp. J. Org. Chem., 2008, 73, 7889-7894.
[177]
(a) Watanabe, K.; Oguri, H.; Oikawa, H. Diversification of echinomycin molecular structure by way of chemoenzymatic synthesis and heterologous expression of the engineered echinomycin biosynthetic pathway. Curr. Opin. Chem. Biol., 2009, 13, 189-196.
(b) Watanabe, K.; Hotta, K.; Praseuth, A.P.; Koketsu, K.; Migita, A.; Boddy, C.N.; Wang, C.C.C.; Oguri, H.; Oikawa, H. Total biosynthesis of antitumor nonribosomal peptides in Escherichia coli. Nat. Chem. Biol., 2006, 2, 423-428.
(c) Formica, J.V.; Waring, M.J. Effect of phosphate and amino acids on echinomycin biosynthesis by Streptomyces echinatus. Antimicrob. Agents Chemother., 1983, 24, 735-741.
(d) Foster, B.J.; Clagett-Carr, K.; Shoemaker, D.D.; Suffness, M.; Plowman, J.; Trissel, L.A.; Grieshaber, C.K.; Leyland-Jones, B. Echinomycin: the first bifunctional intercalating agent in clinical trials. Invest. New Drugs, 1985, 3, 403-410.
[178]
Yang, Y.L.; Hua, K.F.; Chuang, P.H.; Wu, S.H.; Wu, K.Y.; Chang, F.R.; Wu, Y.C. New cyclic peptides from the seeds of Annona squamosa L. and their anti-inflammatory activities. J. Agric. Food Chem., 2008, 56, 386-392.
[179]
Prinsep, M.R.; Moore, R.E.; Levine, I.A.; Patterson, G.M.L. Westiellamide, a bistratamide-related cyclic peptide from the blue-green alga westiellopsis prolifica. J. Nat. Prod., 1992, 55, 140-142.
[180]
(a) Schmidt, E.W.; Raventos-Suarez, C.; Bifano, M.; Menendez, A.T.; Fairchild, C.R.; Faulkner, D.J. Scleritodermin A, a cytotoxic cyclic peptide from the lithistid sponge Scleritoderma nodosum. J. Nat. Prod., 2004, 67, 475-78. Liu, S.; Cui, Y.-M.; Nan, F.-J. Total synthesis of the originally proposed and revised structures of scleritodermin A. Org. Lett., 2008, 10, 3765-3768.
[181]
(a) Chaganty, S.; Golakoti, T.; Heltzel, C.; Moore, R.E. Yoshida. W.Y. Isolation and Structure Determination of Cryptophycins 38, 326, and 327 from the Terrestrial Cyanobacterium Nostoc sp. GSV 224. J. Nat. Prod., 2004, 67, 1403-1406.
(b) Panda, D.; Himes, R.H.; Moore, R.E.; Wilson, L.; Jordan, M.A. Mechanism of action of the unusually potent microtubule inhibitor cryptophycin 1. Biochemistry, 1997, 36, 12948-12953.
[182]
Wieczorek, Z.; Bengtsson, B.; Trojnar, J.; Siemion, I.Z. Immunosuppressive activity of cyclolinopeptide A. Pept. Res., 1991, 4, 275-283.
[183]
Morita, H.; Gonda, A.; Takeya, K.; Itokawa, H.; Cycloleonuripeptides, A. B and C, three new proline-rich cyclic nonapeptides from Leonurus heterophyllus. Bioorg. Med. Chem. Lett., 1996, 6, 767-770.
[184]
(a) Morita, H.; Kayashita, T.; Kobata, H.; Gonda, A.; Takeya, K.; Itokawa, H.; Pseudostellarins, A. C, new tyrosinase inhibitory cyclic peptides from Pseudostellaria heterophylla. Tetrahedron, 1994, 50, 6797-6804.
(b) Pseudostellarins, D-F. new tyrosinase inhibitory cyclic peptides from Pseudostellaria heterophylla. Tetrahedron, 1994, 50, 9975.
[185]
Matsunaga, S.; Fusetani, N.; Hashimoto, K.; Walchli, M. Theonellamide F. A novel antifungal bicyclic peptide from a marine sponge Theonella sp. J. Am. Chem. Soc., 1989, 111, 2582-2588.
[186]
(a) Fusetani, N. Sugawara, T. Matsunaga, S. Orbiculamide A: A novel cytotoxic cyclic peptide from a marine sponge Theonella sp. J. Am. Chem. Soc., 1991, 113, 7811-7812.
[187]
(a) Tavassoli, A.; Lu, Q.; Gam, J.; Pan, H.; Benkovic, S.J.; Cohen, S.N. Inhibition of hiv budding by a genetically selected cyclic peptide targeting the gag−tsg101 interaction. ACS Chem. Biol., 2008, 3, 757-764.
(b) Borel, J.F. History of the discovery of cyclosporin and of its early pharmacological development. Wien. Klin. Wochenschr., 2002, 114, 433-437.
(c) Calne, R.Y.; White, D.J.G.; Thiru, S.; Evans, D.B.; McMaster, P.; Dunn, D.C.; Craddock, G.N.; Pentlow, B.D.; Rolles, K. Cyclosporin A in patients receiving renal allografts from cadaver donors. The Lancet, 1978, II, 1323-1327.
[188]
Tan, K.O.; Wakimoto, T.; Takada, K.; Ohtsuki, T.; Uchiyama, N.; Goda, Y.; Abe, I. Cycloforskamide, a cytotoxic macrocyclic peptide from the sea slug pleurobranchus forskalii. J. Nat. Prod., 2013, 76, 1388-1391.
[189]
Afifi, A.H.; El-Desoky, A.H.; Kato, H.; Mangindaan, R.E.P.; de Voogd, N.J.; Ammar, N.M.; Hifnawy, M.S.; Tsukamoto, S. Carteritins A and B, cyclic heptapeptides from the marine sponge stylissa carteri. Tetrahedron Lett., 2016, 57, 1285-1288.
[190]
(a) Wätjen, W.; Debbab, A.; Hohlfeld, A. Chovolou, Y.; Kampkötter, A.; Edrada, R.A.; Ebel R.; Hakiki, A.; Mosaddak, M.; Totzke, F.; Kubbutat, M.H.; Proksch, P. Enniatins, A.1, B and B1 from an endophytic strain of Fusarium tricinctum induce apoptotic cell death in H4IIE hepatoma cells accompanied by inhibition of ERK phosphorylation. Mol. Nutr. Food Res., 2009, 53, 431-440.
(b) Ovchinnikovmm, Y.A.; Ivanov, V.T.; Evstratov, A.V.; Mikhaleva, I.I.; Bystrovmm, V.F.; Portnovam, S.L.; Balashova, T.A.; Meshcheryakova, E.N.; Tulchinsky, V.M. The enniatin ionophores. Conformation and ion binding properties. Int. J. Peptide &. Protein Res., 1974, 6(6), 465-498.
(c) McKee, T.C.; Bokesch, H.R.; McCormick, J.L.; Rashid, M.A.; Spielvogel, D.; Gustafson, K.R.; Alavanja, M.M. Cardelline JH 2nd.; Boyd MR. Isolation and characterization of new anti-HIV and cytotoxic leads from plants, marine, and microbial organisms. J. Nat. Prod., 1997, 60(5), 431-438.
[191]
Guette, C.A.; Baraguey, C.; Blond, A.; Xavier, H.S.; Pousset, J.L.; Bodo, B.; Pohlianins, A. B and C, cyclic peptides from the laxes of Jatropha pohliana ssp. molissima. Tetrahedron, 1999, 55(38), 11495-11510.
[192]
Zhou, L.; Yu, H.; Chen, K. Relationship between microcystin in drinking water and colorectal cancer. Biomed. Environ. Sci., 2002, 15(2), 166-171.
[193]
Witherup, K.M.; Bogusky, M.J.; Anderson, P.S.; Ramjit, H.; Ransom, R.W.; Wood, T.; Sardana, M. A 31-residue cyclic peptide, designated cyclopsychotride A Cyclopsychotride A, a biologically active, 31-residue cyclic peptide isolated from Psychotria longipes. J. Nat. Prod., 1994, 57(12), 1619-1625.
[194]
Rashid, M.A.; Gustafson, K.R.; Cartner, L.K.; Shigematsu, N.; Pannell, L.K.; Boyd, M.R. Another anti-HIV candidate from the sponge Sidonops microspinosa is the microspinosamide. J. Nat. Prod., 2001, 64, 117-121.
[195]
(a) Coleman, J.E. Geodiamolides A-G. Diss.. Abst. Int. Pt. B: Sci. Eng., 1998.59, 2200.
(b) Coleman, J.E.; van Soest, R.; Andersen, R.J. New geodiamolides from the sponge Cymbastela sp. collected in Papua New Guinea. J. Nat. Prod., 1999, 62, 1137-1141.
(c) Sonnenschein, R.N.; Farias, J.J.; Tenney, K.; Mooberry, S.L.; Lobkovsky, E.; Clardy, J.; Crews, P. A further study of the cytotoxic constituents of a milnamide-producing sponge. Org. Lett., 2004, 6, 779-782.
[196]
Van Soest, R.W.; Ford, P.W.; Gustafson, K.R. Mc, Kee, T.C. Papuamides A-D, HIV-Inhibitory and Cytotoxic Depsipeptides from the Sponges Theonella mirabilis and Theonella swinhoei Collected in Papua New Guinea. J. Am. Chem. Soc., 1999, 121, 5899-5909.
[197]
Oku, N.; Gustafson, K.R.; Cartner, L.K.; Wilson, J.A.; Shigematsu, N.; Hess, S.; Pannell, L.K.; Boyd, M.R.; McMahon, J.B. Neamphamide A, a new HIV-inhibitory depsipeptide from the Papua New Guinea marine sponge Neamphius huxleyi. J. Nat. Prod., 2004, 67, 1407-1411.
[198]
Zampella, A.; D’Auria, M.V.; Paloma, L.G.; Casapullo, A.; Minale, L.; Debitus, C.; Henin, Y. Callipeltin A, an anti-HIV cyclic depsipeptide from the new caledonian litisthida sponge callipelta sp. J. Am. Chem. Soc., 1996, 118, 6202-6209.
[199]
Plaza, A.; Gustchina, E.; Baker, H.L.; Kelly, M.; Bewley, C.A. Mirabamides A-D, depsipeptides from the sponge Siliquariaspongia mirabilis that inhibit HIV-1 fusion. J. Nat. Prod., 2007, 70, 1753-1760.
[200]
Plaza, A.; Bifulco, G.; Masullo, M.; Lloyd, J.R.; Keffer, J.L.; Colin, P.L.; Hooper, J.N.A.; Bell, L.J.; Bewley, C.A. Mutremdamide A and Koshikamides C−H, Peptide Inhibitors of HIV-1 Entry from Different Theonella Species. J. Org. Chem., 2010, 75, 4344-4355.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy