[1]
Luo, W-J.; Cheng, T-Y.; Wong, K-I.; Fang, W-h.; Liao, K-M.; Hsieh, Y-T.; Su, K-Y. Novel therapeutic drug identification and gene correlation for fatty liver disease using high-content screening: Proof of concept. Eur. J. Pharm. Sci., 2018, 121, 106-117.
[2]
Attia, M.S.; Youssef, A.O.; Khan, Z.A.; Abou-Omar, M.N. Alpha fetoprotein assessment by using a nano optical sensor thin film binuclear Pt-2-aminobenzimidazole-Bipyridine for early diagnosis of liver cancer. Talanta, 2018, 186, 36-43.
[3]
Hong, S.K.; Yi, N-J.; Chang, H.; Ahn, S-W.; Kim, H-S.; Yoon, K.C.; Kim, H.; Park, S.O.; Jin, U.S.; Minn, K.W.; Lee, K-W.; Suh, K-S. The rate of hepatic artery complications is higher in pediatric liver transplant recipients with metabolic liver diseases than with biliary atresia. J. Pediatr. Surg., 2018, 53(8), 1516-1522.
[4]
Zhu, C.; Liang, Q-L.; Wang, Y-M.; Luo, G-A. Integrated development of metabonomics and its new progress. Chin. J. Anal. Chem., 2010, 38(7), 1060-1068.
[5]
Colet, J-M. Metabonomics in the preclinical and environmental toxicity field. Drug Discov. Today. Technol., 2015, 13, 3-10.
[6]
Li, N.; Song, Y.; Tang, H.; Wang, Y. Recent developments in sample preparation and data pre-treatment in metabonomics research. Arch. Biochem. Biophys., 2016, 589, 4-9.
[7]
Wilson, I.D.; Michopoulos, F.; Theodoridis, G. 3.17 - Sampling and Sample Preparation for LC-MS-Based Metabonomics/Metabolomics of Samples of Mammalian Origin A2 - Pawliszyn, Janusz. InComprehensive Sampling and Sample Preparation; Academic Press: Oxford, 2012, pp. 339-357.
[8]
Warrack, B.M.; Hnatyshyn, S.; Ott, K-H.; Reily, M.D.; Sanders, M.; Zhang, H.; Drexler, D.M. Normalization strategies for metabonomic analysis of urine samples. J. Chromatogr. B, 2009, 877(5), 547-552.
[9]
Xia, J-F.; Liang, Q-L.; Hu, P.; Wang, Y-M.; Luo, G-A. Recent trends in strategies and methodologies for metabonomics. Chin. J. Anal. Chem., 2009, 37(1), 136-143.
[10]
Coen, M. A metabonomic approach for mechanistic exploration of pre-clinical toxicology. Toxicology, 2010, 278(3), 326-340.
[11]
Li, X.; Zhang, F.; Wang, D.; Li, Z.; Qin, X.; Du, G. NMR-based metabonomic and quantitative real-time PCR in the profiling of metabolic changes in carbon tetrachloride-induced rat liver injury. J. Pharm. Biomed. Anal., 2014, 89, 42-49.
[12]
Webb-Robertson, B-J.M.; Lowry, D.F.; Jarman, K.H.; Harbo, S.J.; Meng, Q.R.; Fuciarelli, A.F.; Pounds, J.G.; Lee, K.M. A Study of spectral integration and normalization in NMR-based metabonomic analyses. J. Pharm. Biomed. Anal., 2005, 39(3), 830-836.
[13]
Zhang, M.; Sun, B.; Zhang, Q.; Gao, R.; Liu, Q.; Dong, F.; Fang, H.; Peng, S.; Li, F.; Yan, X. Establishment and optimization of NMR-based cell metabonomics study protocols for neonatal Sprague-Dawley rat cardiomyocytes. Anal., 2017, 517, 50-52.
[14]
Li, Y-Q.; Liu, Y-F.; Song, D-D.; Zhou, Y-P.; Wang, L.; Xu, S.; Cui, Y-F. Particle swarm optimization-based protocol for partial least-squares discriminant analysis: Application to 1H nuclear magnetic resonance analysis of lung cancer metabonomics. Chemom. Intell. Lab. Syst., 2014, 135, 192-200.
[15]
Goodpaster, A.M.; Kennedy, M.A. Quantification and statistical significance analysis of group separation in NMR-based metabonomics studies. Chemom. Intell. Lab. Syst., 2011, 109(2), 162-170.
[16]
Ramadan, Z.; Jacobs, D.; Grigorov, M.; Kochhar, S. Metabolic profiling using principal component analysis, discriminant partial least squares, and genetic algorithms. Talanta, 2006, 68(5), 1683-1691.
[17]
Gou, X.; Tao, Q.; Feng, Q.; Peng, J.; Sun, S.; Cao, H.; Zheng, N.; Zhang, Y.; Hu, Y.; Liu, P. Urinary metabonomics characterization of liver fibrosis induced by CCl4 in rats and intervention effects of Xia Yu Xue Decoction. J. Pharm. Biomed. Anal., 2013, 74, 62-65.
[18]
Su, G.; Wang, H.; Gao, Y.; Chen, G.; Pei, Y.; Bai, J. 1H-NMR-based metabonomics of the protective effect of coptis chinensis and berberine on cinnabar-induced hepatotoxicity and nephrotoxicity in rats. Molecules, 2017, 22(11), 1855.
[19]
Su, G.; Chen, G.; An, X.; Wang, H.; Pei, Y-H. Metabolic profiling analysis of the alleviation effect of treatment with baicalin on cinnabar induced toxicity in rats urine and serum. Front. Pharmacol., 2017, 8, 271.
[20]
Zhao, Y-Y.; Cheng, X-L.; Vaziri, N.D.; Liu, S.; Lin, R-C. UPLC-based metabonomic applications for discovering biomarkers of diseases in clinical chemistry. Clin. Biochem., 2014, 47(15), 16-26.
[21]
Carretero, A.; Lopez-Riera, M.; Saez, E.; Blazquez, T.; Conde, I.; Zaragoza, A.; Jover, R.; Lahoz, A. SAT-425- new circulating metabonomic and mirnomic biomarkers to predict steatosis, inflammation and fibrosis severity in non-alcoholic fatty liver disease. J. Hepatol., 2016, 64(2)(Suppl.), S714-S715.
[22]
Mattes, W.; Davis, K.; Fabian, E.; Greenhaw, J.; Herold, M.; Looser, R.; Mellert, W.; Groeters, S.; Marxfeld, H.; Moeller, N.; Montoya-Parra, G.; Prokoudine, A.; Van Ravenzwaay, B.; Strauss, V.; Walk, T.; Kamp, H. Detection of hepatotoxicity potential with metabolite profiling (metabolomics) of rat plasma. Toxicol. Lett., 2014, 230(3), 467-478.
[23]
Jingshu, C.; Yuan, L.; Yanan, T.; Chang, H.; Defa, L.; Qing, Z.; Xi, M. Interaction between microbes and host intestinal health: Modulation by dietary nutrients and gut-brain-endocrine-immune axis. Curr. Protein Pept. Sci., 2015, 16(7), 592-603.
[24]
Chen, X.; Eslamfam, S.; Fang, L.; Qiao, S.; Ma, X. Maintenance of gastrointestinal glucose homeostasis by the gut-brain axis. Curr. Protein Pept. Sci., 2017, 18(6), 541-547.
[25]
Duan, J.; Chung, H.; Troy, E.; Kasper, D.L. Microbial colonization drives expansion of IL-1 receptor 1-expressing and il-17-producing γ/δ T cells. Cell Host Microbe, 2010, 7(2), 140-150.
[26]
Atarashi, K.; Tanoue, T.; Shima, T.; Imaoka, A.; Kuwahara, T.; Momose, Y.; Cheng, G.; Yamasaki, S.; Saito, T.; Ohba, Y.; Taniguchi, T.; Takeda, K.; Hori, S.; Ivanov, I.I.; Umesaki, Y.; Itoh, K.; Honda, K. Induction of colonic regulatory T cells by indigenous <em>Clostridium</em> species. Science, 2011, 331(6015), 337-341.
[27]
Chu, H.; Williams, B.; Schnabl, B. Gut microbiota, fatty liver disease, and hepatocellular carcinoma. Liver Res., 2018, 2(1), 43-51.
[28]
Haque, T.R.; Barritt, A.S. Intestinal microbiota in liver disease. Best Pract. Res. Clin. Gastroenterol., 2016, 30(1), 133-142.
[29]
Zhang, H-L.; Yu, L-X.; Yang, W.; Tang, L.; Lin, Y.; Wu, H.; Zhai, B.; Tan, Y-X.; Shan, L.; Liu, Q.; Chen, H-Y.; Dai, R-Y.; Qiu, B-J.; He, Y-Q.; Wang, C.; Zheng, L-Y.; Li, Y-Q.; Wu, F-Q.; Li, Z.; Yan, H-X.; Wang, H-Y. Profound impact of gut homeostasis on chemically-induced pro-tumorigenic inflammation and hepatocarcinogenesis in rats. J. Hepatol., 2012, 57(4), 803-812.
[30]
Uronis, J.M.; Mühlbauer, M.; Herfarth, H.H.; Rubinas, T.C.; Jones, G.S.; Jobin, C. Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS One, 2009, 4(6), e6026.
[31]
Ma, N.; Guo, P.; Zhang, J.; He, T.; Kim, S.W.; Zhang, G.; Ma, X. Nutrients mediate intestinal bacteria-mucosal immune crosstalk. Front. Immunol., 2018, 9, 5.
[32]
Corbin, K.D.; Zeisel, S.H. Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression. Curr. Opin. Gastroenterol., 2012, 28(2), 159-165.
[33]
Craciun, S.; Balskus, E.P. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc. Natl. Acad. Sci. USA, 2012, 109(52), 21307-21312.
[34]
Romano, K.A.; Vivas, E.I.; Amador-Noguez, D.; Rey, F.E. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. MBio, 2015, 6(2), e02481.
[35]
Spencer, M.D.; Hamp, T.J.; Reid, R.W.; Fischer, L.M.; Zeisel, S.H.; Fodor, A.A. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology, 2011, 140(3), 976-986.
[36]
Al-Waiz, M.; Mikov, M.; Mitchell, S.C.; Smith, R.L. The exogenous origin of trimethylamine in the mouse. Metabolism, 1992, 41(2), 135-136.
[37]
Hernandez-Alonso, P.; Canueto, D.; Giardina, S.; Salas-Salvado, J.; Canellas, N.; Correig, X.; Bullo, M. Effect of pistachio consumption on the modulation of urinary gut microbiota-related metabolites in prediabetic subjects. J. Nutr. Biochem., 2017, 45, 48-53.
[38]
Awwad, H.M.; Geisel, J.; Obeid, R. Determination of trimethylamine, trimethylamine N-oxide, and taurine in human plasma and urine by UHPLC-MS/MS technique. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1038, 12-18.
[39]
Létoffé, S.; Audrain, B.; Bernier, S.P.; Delepierre, M.; Ghigo, J-M. Aerial exposure to the bacterial volatile compound trimethylamine modifies antibiotic resistance of physically separated bacteria by raising culture medium pH. MBio, 2014, 5(1), e00944.
[40]
Plauth, M.; Schütz, T. Branched-chain amino acids in liver disease: New aspects of long known phenomena. Curr. Opin. Clin. Nutr. Metab. Care, 2011, 14(1), 61-66.
[41]
Les, I.; Doval, E.; García-Martínez, R.; Planas, M.; Cárdenas, G.; Gómez, P.; Flavià, M.; Jacas, C.; Mínguez, B.; Vergara, M.; Soriano, G.; Vila, C.; Esteban, R.; Córdoba, J. Effects of branched-chain amino acids supplementation in patients with cirrhosis and a previous episode of hepatic encephalopathy: a randomized study. Am. J. Gastroenterol., 2011, 106(6), 1081-1088.
[42]
Kawaguchi, T.; Izumi, N.; Charlton, M.R.; Sata, M. Branched-chain amino acids as pharmacological nutrients in chronic liver disease. Hepatology, 2011, 54(3), 1063-1070.
[43]
Bjerring, P.N.; Hauerberg, J.; Frederiksen, H.-J.; Nielsen, H.B.; Clemmesen, J.O.; Larsen, F.S. The effect of fractionated plasma separation and adsorption on cerebral amino acid metabolism and oxidative metabolism during acute liver failure. J. Hepatol., 2012. 57 4), 774-779.
[44]
Rössle, M.; Luft, M.; Herz, R.; Klein, B.; Lehmann, M.; Gerok, W. Amino acid, ammonia and neurotransmitter concentrations in hepatic encephalopathy: serial analysis in plasma and cerebrospinal fluid during treatment with an adapted amino acid solution. Klin. Wochenschr., 1984, 62(18), 867-875.
[45]
Romero-Gómez, M.; Ramos-Guerrero, R.; Grande, L.; De Terán, L.C.; Corpas, R.; Camacho, I.; Bautista, J.D. Intestinal glutaminase activity is increased in liver cirrhosis and correlates with minimal hepatic encephalopathy. J. Hepatol., 2004, 41(1), 49-54.
[46]
Garlick, P.J. The role of leucine in the regulation of protein metabolism. J. Nutr., 2005, 135(6)(Suppl.), 1553S-1556S.
[47]
Nair, K.S.; Short, K.R. Hormonal and signaling role of branched-chain amino acids. J. Nutr., 2005, 135(6)(Suppl.), 1547S-1552S.
[48]
Tomiya, T.; Inoue, Y.; Yanase, M.; Arai, M.; Ikeda, H.; Tejima, K.; Nagashima, K.; Nishikawa, T.; Fujiwara, K. Leucine stimulates the secretion of hepatocyte growth factor by hepatic stellate cells. Biochem. Biophys. Res. Commun., 2002, 297(5), 1108-1111.
[49]
Holecek, M.; Tilser, I.; Skopec, F.; Sprongl, L. Leucine metabolism in rats with cirrhosis. J. Hepatol., 1996, 24(2), 209-216.
[50]
Shimomura, Y.; Honda, T.; Shiraki, M.; Murakami, T.; Sato, J.; Kobayashi, H.; Mawatari, K.; Obayashi, M.; Harris, R.A. Branched-chain amino acid catabolism in exercise and liver disease. J. Nutr., 2006, 136(1)(Suppl.), 250S-253S.
[51]
Baldissera, M.D.; Rech, V.C.; Grings, M.; Kolling, J.; Da Silva, A.S.; Gressler, L.T.; Souza, C.D.F.; Vaucher, R.A.; Schwertz, C.I.; Mendes, R.E.; Leipnitz, G.; Wyse, A.T.S.; Stefani, L.M.; Monteiro, S.G. Relationship between pathological findings and enzymes of the energy metabolism in liver of rats infected by Trypanosoma evansi. Parasitol. Int., 2015, 64(6), 547-552.
[52]
Fu, Q.; Huang, X.; Shu, B.; Xue, M.; Zhang, P.; Wang, T.; Liu, L.; Jiang, Z.; Zhang, L. Inhibition of mitochondrial respiratory chain is involved in triptolide-induced liver injury. Fitoterapia, 2011, 82(8), 1241-1248.
[53]
Xu, W.; Wang, H.; Chen, G.; Li, W.; Xiang, R.; Zhang, X.; Pei, Y. A metabolic profiling analysis of the acute toxicological effects of the realgar (As2S2) combined with other herbs in Niuhuang Jiedu Tablet using 1H NMR spectroscopy. J. Ethnopharmacol., 2014, 153(3), 771-781.
[54]
Guo, P.; Li, Y.; Eslamfam, S.; Ding, W.; Ma, X. Discovery of novel genes mediating glucose and lipid metabolisms. Curr. Protein Pept. Sci., 2017, 18(6), 609-618.
[55]
Schwabe, R.F.; Maher, J.J. Lipids in liver disease: Looking beyond steatosis. Gastroenterology, 2012, 142(1), 8-11.
[56]
Cohen, J.C.; Horton, J.D.; Hobbs, H.H. Human fatty liver disease: Old questions and new insights. Science, 2011, 332(6037), 1519-1523.
[57]
Thiele, C.; Spandl, J. Cell biology of lipid droplets. Curr. Opin. Cell Biol., 2008, 20(4), 378-385.
[58]
Teratani, T.; Tomita, K.; Suzuki, T.; Oshikawa, T.; Yokoyama, H.; Shimamura, K.; Tominaga, S.; Hiroi, S.; Irie, R.; Okada, Y.; Kurihara, C.; Ebinuma, H.; Saito, H.; Hokari, R.; Sugiyama, K.; Kanai, T.; Miura, S.; Hibi, T. A high-cholesterol diet exacerbates liver fibrosis in mice via accumulation of free cholesterol in hepatic stellate cells. Gastroenterology, 2012, 142(1), 152-164.e10.
[59]
Moustafa, T.; Fickert, P.; Magnes, C.; Guelly, C.; Thueringer, A.; Frank, S.; Kratky, D.; Sattler, W.; Reicher, H.; Sinner, F.; Gumhold, J.; Silbert, D.; Fauler, G.; Höfler, G.; Lass, A.; Zechner, R.; Trauner, M. Alterations in lipid metabolism mediate inflammation, fibrosis, and proliferation in a mouse model of chronic cholestatic liver injury. Gastroenterology, 2012, 142(1), 140-151.e12.
[60]
Hemmes, B.; De Wert, L.A.; Brink, P.R.G.; Oomens, C.W.J.; Bader, D.L.; Poeze, M. Cytokine IL1alpha and lactate as markers for tissue damage in spineboard immobilisation. A prospective, randomised open-label crossover trial. J. Mech. Behav. Biomed. Mater., 2017, 75, 82-88.
[61]
Carter, E.A.; Khalid, M.A.; Burke, J.F.; Tompkins, R.G. Absence of change in hepatic lactate metabolism after burn injury. Burns, 1993, 19(6), 475-478.
[62]
Hu, S.; Han, M.; Rezaei, A.; Li, D.; Wu, G.; Ma, X. L-Arginine modulates glucose and lipid metabolism in obesity and diabetes. Curr. Protein Pept. Sci., 2017, 18(6), 599-608.
[63]
Chen, C-L.; Fei, Z.; Carter, E.A.; Lu, X-M.; Hu, R-H.; Young, V.R.; Tompkins, R.G.; Yu, Y-M. Metabolic fate of extrahepatic arginine in liver after burn injury. Metabolism, 2003, 52(10), 1232-1239.
[64]
Liu, X-W.; Tang, C-L.; Zheng, H.; Wu, J-X.; Wu, F.; Mo, Y-Y.; Liu, X.; Zhu, H-J.; Yin, C-L.; Cheng, B.; Ruan, J-X.; Song, F-M.; Chen, Z-N.; Song, H.; Guo, H-W.; Liang, Y-H.; Su, Z-H. Investigation of the hepatoprotective effect of Corydalis saxicola bunting on carbon tetrachloride-induced liver fibrosis in rats by 1H-NMR-based metabonomics and network pharmacology approaches. J. Pharm. Biomed. Anal., 2018, 159, 252-261.
[65]
Binukumar, B.K.; Bal, A.; Kandimalla, R.; Sunkaria, A.; Gill, K.D. Mitochondrial energy metabolism impairment and liver dysfunction following chronic exposure to dichlorvos. Toxicology, 2010, 270(2-3), 77-84.
[66]
Serviddio, G.; Bellanti, F.; Giudetti, A.M.; Gnoni, G.V.; Capitanio, N.; Tamborra, R.; Romano, A.D.; Quinto, M.; Blonda, M.; Vendemiale, G.; Altomare, E. Mitochondrial oxidative stress and respiratory chain dysfunction account for liver toxicity during amiodarone but not dronedarone administration. Free Radic. Biol. Med., 2011, 51(12), 2234-2242.
[67]
Hussein, O.; Grosovski, M.; Lasri, E.; Svalb, S.; Ravid, U.; Assy, N. Monounsaturated fat decreases hepatic lipid content in non-alcoholic fatty liver disease in rats. World J. Gastroenterol., 2007, 13(3), 361-368.
[68]
Martínez-Reyes, I.; Diebold, L.P.; Kong, H.; Schieber, M.; Huang, H.; Hensley, C.T.; Mehta, M.M.; Wang, T.; Santos, J.H.; Woychik, R.; Dufour, E.; Spelbrink, J.N.; Weinberg, S.E.; Zhao, Y.; DeBerardinis, R.J.; Chandel, N.S. TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions. Mol. Cell, 2016, 61(2), 199-209.
[69]
Kucejova, B.; Sunny, N.E.; Nguyen, A.D.; Hallac, R.; Fu, X.; Peña-Llopis, S.; Mason, R.P.; Deberardinis, R.J.; Xie, X.J.; Debose-Boyd, R.; Kodibagkar, V.D.; Burgess, S.C.; Brugarolas, J. Uncoupling hypoxia signaling from oxygen sensing in the liver results in hypoketotic hypoglycemic death. Oncogene, 2011, 30(18), 2147-2160.
[70]
Sunny, N.E.; Parks, E.J.; Browning, J.D.; Burgess, S.C. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab., 2011, 14(6), 804-810.
[71]
Sprague, C.L.; Phillips, L.A.; Young, K.M.; Elfarra, A.A. Species and tissue differences in the toxicity of 3-butene-1,2-diol in male Sprague-Dawley rats and B6C3F1 mice. Toxicol. Sci., 2004, 80(1), 3-13.
[72]
Phipps, A.N.; Stewart, J.; Wright, B.; Wilson, I.D. Effect of diet on the urinary excretion of hippuric acid and other dietary-derived aromatics in rat. A complex interaction between diet, gut microflora and substrate specificity. Xenobiotica, 1998, 28(5), 527-537.
[73]
Zira, A.; Kostidis, S.; Theocharis, S.; Sigala, F.; Engelsen, S.B.; Andreadou, I.; Mikros, E. 1H NMR-based metabonomics approach in a rat model of acute liver injury and regeneration induced by CCl4 administration. Toxicology, 2013, 303, 115-124.
[74]
Al-Mukhaini, N.; Ba-Omar, T.; Eltayeb, E.; Al-Shihi, A.; Al-Riyami, N.; Al-Belushi, J.; Al-Adawi, K. Liver and kidney toxicity induced by Afzal smokeless tobacco product in Oman. Tissue Cell, 2017, 49(2 Pt B), 307-314.
[75]
Jia, H-M.; Yu, M.; Ma, L-Y.; Zhang, H-W.; Zou, Z-M. Chaihu-Shu-Gan-San regulates phospholipids and bile acid metabolism against hepatic injury induced by chronic unpredictable stress in rat. J. Chromatogr. B, 2017, 1064, 14-21.
[76]
Ji, P.; Wei, Y.; Sun, H.; Xue, W.; Hua, Y.; Li, P.; Zhang, W.; Zhang, L.; Zhao, H.; Li, J. Metabolomics research on the hepatoprotective effect of Angelica sinensis polysaccharides through gas chromatography-mass spectrometry. J. Chromatogr. B, 2014, 973, 45-54.
[77]
Liang, Y-H.; Tang, C-L.; Lu, S-Y.; Cheng, B.; Wu, F.; Chen, Z-N.; Song, F.; Ruan, J-X.; Zhang, H-Y.; Song, H.; Zheng, H.; Su, Z-H. Serum metabonomics study of the hepatoprotective effect of Corydalis saxicola bunting on carbon tetrachloride-induced acute hepatotoxicity in rats by 1H NMR analysis. J. Pharm. Biomed. Anal., 2016, 129, 70-79.
[78]
Song, Y-N.; Zhang, G-B.; Lu, Y-Y.; Chen, Q-L.; Yang, L.; Wang, Z-T.; Liu, P.; Su, S-B. Huangqi decoction alleviates dimethylnitrosamine-induced liver fibrosis: An analysis of bile acids metabolic mechanism. J. Ethnopharmacol., 2016, 189, 148-156.
[79]
Man, S.; Fan, W.; Gao, W.; Li, Y.; Wang, Y.; Liu, Z.; Li, H. Anti-fibrosis and anti-cirrhosis effects of Rhizoma paridis saponins on diethylnitrosamine induced rats. J. Ethnopharmacol., 2014, 151(1), 407-412.
[80]
Feng, Y-L.; Lei, P.; Tian, T.; Yin, L.; Chen, D-Q.; Chen, H.; Mei, Q.; Zhao, Y-Y.; Lin, R-C. Diuretic activity of some fractions of the epidermis of Poria cocos. J. Ethnopharmacol., 2013, 150(3), 1114-1118.
[81]
Zhao, Y-Y.; Li, H-T.; Feng, Y-L.; Bai, X.; Lin, R-C. Urinary metabonomic study of the surface layer of Poria cocos as an effective treatment for chronic renal injury in rats. J. Ethnopharmacol., 2013, 148(2), 403-410.
[82]
Bao, Y.; Wang, S.; Yang, X.; Li, T.; Xia, Y.; Meng, X. Metabolomic study of the intervention effects of Shuihonghuazi Formula, a traditional Chinese medicinal formulae, on Hepatocellular Carcinoma (HCC) rats using performance HPLC/ESI-TOF-MS. J. Ethnopharmacol., 2017, 198, 468-478.
[83]
Zhang, Y.; Li, H.; Hu, T.; Li, H.; Jin, G.; Zhang, Y. Metabonomic profiling in study hepatoprotective effect of polysaccharides from Flammulina velutipes on carbon tetrachloride-induced acute liver injury rats using GC-MS. Int. J. Biol. Macromol., 2018, 110, 285-293.
[84]
Sun, C.; Teng, Y.; Li, G.; Yoshioka, S.; Yokota, J.; Miyamura, M.; Fang, H.; Zhang, Y. Metabonomics study of the protective effects of Lonicera japonica extract on acute liver injury in dimethylnitrosamine treated rats. J. Pharm. Biomed. Anal., 2010, 53(1), 98-102.
[85]
Wu, F.; Zheng, H.; Yang, Z-T.; Cheng, B.; Wu, J-X.; Liu, X-W.; Tang, C-L.; Lu, S-Y.; Chen, Z-N.; Song, F-M.; Ruan, J-X.; Zhang, H-Y.; Liang, Y-H.; Song, H.; Su, Z-H. Urinary metabonomics study of the hepatoprotective effects of total alkaloids from Corydalis saxicola bunting on carbon tetrachloride-induced chronic hepatotoxicity in rats using 1H NMR analysis. J. Pharm. Biomed. Anal., 2017, 140, 199-209.
[86]
Hua, Y.; Xue, W.; Zhang, M.; Wei, Y.; Ji, P. Metabonomics study on the hepatoprotective effect of polysaccharides from different preparations of Angelica sinensis. J. Ethnopharmacol., 2014, 151(3), 1090-1099.
[87]
Wang, H.; Su, G.; Chen, G.; Bai, J.; Pei, Y. 1H NMR-based metabonomics of the protective effect of Curcuma longa and curcumin on cinnabar-induced hepatotoxicity and nephrotoxicity in rats. J. Funct. Foods, 2015, 17, 459-467.