[1]
Ho, B.; Baryshnikova, A.; Brown, G.W. Unification of protein abundance datasets yields a quantitative. Saccharomyces cerevisiae Proteome. Cell Syst., 2018, 6, 192-205.
[2]
(a)Gouaux, E.; MacKinnon, R. Principles of selective ion transport in channels and pumps. Science, 2005, 310, 1461-1465.
(b)Watson, H. Biological membranes. Essays Biochem., 2015, 59, 43-69.
(c)Venkatakrishnan, A.J.; Deupi, X.; Lebon, G.; Tate, C.G.; Schertler, G.F.; Babu, M.M. Molecular signatures of G-protein-coupled receptors. Nature, 2013, 494, 185-194.
[3]
(a)Bill, R.M.; Henderson, P.J.; Iwata, S.; Kunji, E.R.; Michel, H.; Neutze, R.; Newstead, S.; Poolman, B.; Tate, C.G.; Vogel, H. Overcoming barriers to membrane protein structure determination. Nat. Biotechnol., 2011, 29, 335-340.
(b)Bao, P.; Cartron, M.L.; Sheikh, K.H.; Johnson, B.R.G.; Hunter, C.N.; Evans, S.D. Controlling transmembrane protein concentration and orientation in supported lipid bilayers. Chem. Commun., 2017, 53, 4250-4253.
[4]
Takayama, H.; Chelikani, P.; Reeves, P.J.; Zhang, S.; Khorana, H.G. High-level expression, single-step immunoaffinity purification and characterization of human tetraspanin membrane protein CD81. PLoS One, 2008, 3, e2314.
[5]
Wingfield, P.T. Overview of the purification of recombinant proteins. Curr. Protoc. Protein Sci., 2015, 80, 1-35.
[6]
(a)Evans, T.C.; Benner, Jr , J.; Xu, M.Q. Semisynthesis of cytotoxic proteins using a modified protein splicing element. Protein Sci., 1998, 7, 2256-2264.
(b)Junge, F.; Schneider, B.; Reckel, S.; Schwarz, D.; Dötsch, V.; Bernhard, F. Large scale production of functional membrane proteins. Cell. Mol. Life Sci., 2008, 65, 1729-1755.
[7]
Schwarz, D.; Junge, F.; Durst, F.; Frölich, N.; Schneider, B.; Reckel, S.; Sobnanifar, S.; Dötsch, V.; Bernhard, F. Preparative scale expression of membrane proteins in Escherichia Coli-based continuous exchange cell-free systems. Nat. Protoc., 2007, 2, 2945-2957.
[8]
Muir, T.W.; Kent, S.B. The chemical synthesis of proteins. Curr. Opin. Biotechnol., 1993, 4, 420-4273.
[9]
(a)Zheng, J-S.; Tang, S.; Qi, Y-K.; Wang, Z-P.; Liu, L. Chemical synthesis of proteins using peptide hydrazides as thioester surrogates. Nature Protocols.., 2013, 8, 2483-2495.
(b)Li, Y.M.; Li, Y.T.; Pan, M.; Kong, X.Q.; Huang, Y.C.; Hong, Z.Y.; Liu, L. Irreversible site-specific hydrazinolysis of proteins by use of sortase. Angew. Chem. Int. Ed., 2014, 53, 2198-2202.
(c)Fang, G.M.; Li, Y.M.; Shen, F.; Huang, Y.C.; Li, J.B.; Lin, Y.; Cui, H.K.; Liu, L. Protein chemical synthesis by ligation of peptide hydrazides. Angew. Chem. Int. Ed., 2011, 50, 7645-7649. d) Fang, G.M.; Wang, J.X.; Liu, L. Convergent chemical synthesis of proteins by ligation of peptide hydrazides. Angew. Chem. Int. Ed., 2012, 51, 10347-10350.
[10]
Dawson, P.E.; Muir, T.W.; Clark-Lewis, I.; Kent, S.B. Synthesis of proteins by native chemical ligation. Science, 1994, 266, 776-778.
[11]
(a)Baumruck, A.C.; Tietze, D.; Steinackera, L.K.; Tietze, A.A. Chemical synthesis of membrane proteins: a model study on the influenza virus B proton channel. Chem. Sci., 2018, 9, 2365-2375.
(b)Tang, S.; Zuo, C.; Huang, D.L.; Cai, X.Y.; Zhang, L.H.; Tian, C.L.; Zheng, J.S.; Liu, L. Chemical synthesis of membrane proteins by the removable backbone modification method. Nat. Protoc., 2017, 12, 2554-2569.
[12]
(a)Gao, S.; Pan, M.; Zheng, Y.; Huang, Y.C.; Zheng, Q.Y.; Sun, D.M.; Lu, L.N.; Tan, X.D.; Tan, X.L.; Lan, H.; Wang, J.X.; Wang, T.; Wang, J.W.; Liu, L. Monomer/oligomer quasi-racemic protein crystallography. J. Am. Chem. Soc., 2016, 138, 14497-14502.
(b)Pan, M.; Gao, S.; Zheng, Y.; Tan, X.D.; Lan, H.; Tan, X.; Sun, D.M.; Wang, J.W.; Liu, L. Quasi-racemic x-ray structures of K27-linked ubiquitin chains prepared by total chemical synthesis. J. Am. Chem. Soc., 2016, 138, 7429-7435.
[13]
(a)Nagorny, P.; Sane, N.; Fasching, B.; Aussedat, B.; Danishefsky, S.J. Probing the frontiers of glycoprotein synthesis: The fully elaborated β-Subunit of the human follicle-stimulating hormone. Angew. Chem. Int. Ed., 2012, 51, 975-979.
(b)Hien, N.M.; Izumi, M.; Sato, H.; Okamoto, R.; Kajihara, Y. Chemical synthesis of glycoproteins with the specific installation of gradient-enriched 15N-labeled amino acids for getting insights into glycoprotein behavior. Chemistry., 2017, 23, 6579-6585.
[14]
Thapa, P.; Zhang, R.Y.; Menon, V.; Bingham, J.P. Native chemical ligation: A boon to peptide chemistry. Molecules, 2014, 19, 14461-14483.
[15]
Shen, F.; Huang, Y.C.; Tang, S. Chen, Y.X.; Liu, L. Chemical Synthesis of Integral Membrane Proteins: Methods and Applications. Isr. J. Chem., 2011, 51, 940-952.
[16]
Li, J.B.; Tang, S.; Zheng, J.S.; Tian, C.L.; Liu, L. Removable backbone modification method for the chemical synthesis of membrane proteins. Acc. Chem. Res., 2017, 50, 1143-1153.
[17]
Dittmann, M.; Sadek, M.; Seidel, R.; Engelhard, M. Native chemical ligation in dimethylformamide can be performed chemoselectively without racemization. J. Pept. Sci., 2012, 18, 312-316.
[18]
Dittmann, M.; Sauermann, J.; Seidel, R.; Zimmermann, W.; Engelhard, M. Native chemical ligation of hydrophobic peptides in organic solvents. J. Pept. Sci., 2010, 16, 558-562.
[19]
Kochendoerfer, G.G.; Salom, D.; Lear, J.D.; Wilk-Orescan, R.; Kent, S.B.; DeGrado, W.F. Total chemical synthesis of the integral membrane protein influenza A virus M2: Role of its C-terminal domain in tetramer assembly. Biochemistry, 1999, 38, 11905-11913.
[20]
Shen, F.; Tang, S.; Liu, L. Hexafluoro-2-propanol as a potent co-solvent for chemical ligation of membrane proteins. Sci. China Chem., 2011, 54, 110-116.
[21]
Zuo, C.; Tang, S.; Zheng, J.S. Chemical synthesis and biophysical applications of membrane proteins. J. Pept. Sci., 2015, 21, 540-549.
[22]
Valiyaveetil, F.I.; MacKinnon, R.; Muir, T.W. Semisynthesis and folding of the potassium channel KcsA. J. Am. Chem. Soc., 2002, 124, 9113-9120.
[23]
Lahiri, S.; Brehs, M.; Olschewski, D.; Becker, C.F. Total chemical synthesis of an integral membrane enzyme: Diacylglycerol kinase from Escherichia coli. Angew. Chem. Int. Ed., 2011, 50, 3988-3992.
[24]
Olschewski, D.; Becker, C.F. Chemical synthesis and semisynthesis of membrane proteins. Mol. Biosyst., 2008, 4, 733-740.
[25]
Loo, R.R.; Dales, N.; Andrews, P.C. Surfactant effects on protein structure examined by electrospray ionization mass spectrometry. Protein Sci., 1994, 3, 1975-1983.
[26]
(a)Hilbich, C.; Kisters-Woike, B.; Reed, J.; Masters, C.L.; Beyreuther, K. Aggregation and secondary structure of synthetic amyloid βA4 peptides of Alzheimer’s disease. J. Mol. Biol., 1999, 218, 149-163.
(b)Némethy, G. Hydrophobic Interactions. Angew. Chem. Int. Ed., 1967, 6, 195-206.
[27]
Rauf, S.M.; Arvidsson, P.I.; Albericio, F.; Govender, T.; Maguire, G.E.; Kruger, H.G.; Honarparvar, B. The effect of N-methylation of amino acids (Ac-X-OMe) on solubility and conformation: a DFT study. Org. Biomol. Chem., 2015, 13, 9993-10006.
[28]
Simmonds, R.G. Use of the Hmb backbone-protecting group in the synthesis of difficult sequences. Int. J. Pept. Protein Res., 1996, 47, 36-41.
[29]
Johnson, E.C.; Kent, S.B. Studies on the insolubility of a transmembrane peptide from signal peptide peptidase. J. Am. Chem. Soc., 2006, 128, 7140-7141.
[30]
Levinson, A.M.; McGee, J.H.; Roberts, A.G.; Creech, G.S.; Wang, T.; Peterson, M.T.; Hendrickson, R.C.; Verdine, G.L.; Danishefsky, S.J. Total chemical synthesis and folding of all-L and all-D variants of oncogenic KRas(G12V). J. Am. Chem. Soc., 2017, 139, 7632-7639.
[31]
Liu, L.P.; Deber, C.M. Guidelines for membrane protein engineering derived from de novo designed model peptides. Biopolymers, 1998, 47, 41-62.
[32]
Paradís-Bas, M.; Tulla-Puche, J.; Albericio, F. Semipermanent Cterminal carboxylic acid protecting group: application to solubilizing peptides and fragment condensation. Org. Lett., 2015, 17, 294-297.
[33]
Bianchi, E.; Ingenito, R.; Simon, R.J.; Pessi, A. Engineering and chemical synthesis of a transmembrane protein: The HCV protease cofactor protein NS4A. J. Am. Chem. Soc., 1999, 121, 7698-7699.
[34]
Tan, Z.; Shang, S.; Danishefsky, S.J. Rational evelopment of a strategy for modifying the aggregatibility of proteins. Proc. Natl. Acad. Sci. USA, 2011, 108, 4297-4302.
[35]
Becker, C.W.; Oblatt-Montal, M.; Kochendoerfer, G.G.; Montal, M. Chemical synthesis and single channel properties of tetrameric and pentameric TASPs (template-assembled synthetic proteins) derived from the transmembrane domain of HIV Virus protein u (Vpu). J. Biol. Chem., 2004, 279, 17483-17489.
[36]
Paradis-Bas, M.; Tulla-Puche, J.; Albericio, F. The road to the synthesis of “difficult peptides”. Chem. Soc. Rev., 2016, 45, 631-654.
[37]
(a)Sato, T.; Saito, Y.; Aimoto, S. Synthesis of the C-terminal region of opioid receptor like 1 in an SDS micelle by the native chemical ligation: effect of thiol additive and SDS concentration on ligation efficiency. J. Peptide . Sci., 2005, 11, 410-416.
(b)Johnsona, E.C.; Kent, S.B. Towards the total chemical synthesis of integral membrane proteins: A general method for the synthesis of hydrophobic peptide-αthioester building blocks. Tetrahedron Lett., 2007, 48, 1795-1799.
[38]
(a)Harris, P.W.; Brimble, M.A. Synthesis of an arginine tagged [Cys155–Arg180] fragment of NY-ESO-1: Elimination of an undesired by-product using ‘In house’ resins. Synthesis, 2009, 20, 3460-3466.
(b)Harris, P.W.; Brimble, M.A. Toward the total chemical synthesis of the cancer protein NYESO- 1. Biopolymers (Pept. Sci)., 2010, 94, 542-550.
[39]
(a)(Johnson, E.C.; Malito, E.; Shen, Y.; Rich, D.; Tang, W.J.; Kent, S.B. Modular total chemical synthesis of a human immunodeficiency virus type 1 protease. J. Am. Chem. Soc., 2007, 129, 11480-11490.
(b)Chemuru, S.; Kodali, R.; Wetzel, R. Improved chemical synthesis of hydrophobic Aβ peptides using addition of C terminal lysines later removed by carboxypeptidase B. Biopolymers, 2014, 102, 206-221.
[40]
(a)Johnson, E.C.; Kent, S.B. Insights into the mechanism and catalysis of the native chemical ligation reaction. J. Am. Chem. Soc., 2006, 128, 6640-6646.
(b)Tang, S.; Si, Y.Y.; Wang, Z.P.; Mei, K.R.; Chen, X.; Cheng, J.Y.; Zheng, J.S.; Liu, L. An efficient one-pot four-segment condensation method for protein chemical synthesis. Angew. Chem. Int. Ed., 2015, 54, 5713-5717.
(c)Wang, J.X.; Fang, G.M.; He, Y.; Qu, D.L.; Yu, M.; Hong, Z.Y.; Liu, L. Peptide o-aminoanilides as crypto-thioesters for protein chemical synthesis. Angew. Chem. Int. Ed., 2015, 54, 2194-2198.
(d)Wang, Z.; Xu, W.; Liu, L.; Zhu, T.F. A synthetic molecular system capable of mirror-image genetic replication and transcription. Nat. Chem., 2016, 8, 698-704.
[41]
Raz, R.; Burlina, F.; Ismail, M.; Downward, J.; Li, J.J.; Smerdon, S.J.; Quibell, M. White, P.D.; Offer, J. HF-free Boc synthesis of peptide thioesters for ligation and cyclization. Angew. Chem. Int. Ed., 2016, 55, 13174-13179.
[42]
Behrendt, R.; White, P.; Offer, J. Advances in Fmoc solid-phase peptide synthesis. J. Pept. Sci., 2016, 22, 4-27.
[43]
Choma, C.T.; Robillard, G.T.; Englebretsen, D.R. Synthesis of hydrophobic peptides: an Fmoc “solubilising tail” method. Tetrahedron Lett., 1998, 39, 2417-2420.
[44]
Miller, M.; Schneider, J.; Sathyanarayana, B.K.; Toth, M.V.; Marshall, G.R.; Clawson, L.; Selk, L.; Kent, S.B.; Wlodawer, A. Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 A resolution. Science, 1989, 246, 1149-1152.
[45]
Chatterjee, A.; Mridula, P.; Mishra, R.K.; Mittal, R.; Hosur, R.V. Folding regulates autoprocessing of HIV-1 protease precursor. J. Biol. Chem., 2005, 280, 11369-11378.
[46]
Linn, K.M.; Derebe, M.G.; Jiang, Y.; Valiyaveetil, F.I. Semisynthesis of NaK; a Na+ and K+ conducting ion channel. Biochemistry, 2010, 49, 4450-4456.
[47]
(a)Mix, K.A.; Lomax, J.E.; Raines, R.T. Cytosolic delivery of proteins by bioreversible esterification. J. Am. Chem. Soc., 2017, 139, 14396-14398.
(b)Vassiliou, G.; McPherson, R. Role of cholesteryl ester transfer protein in selective uptake of high density lipoprotein cholesteryl esters by adipocytes. J. Lipid Res., 2004, 45, 1683-1693.
[48]
Kabeya, Y.; Mizushima, N.; Ueno, T.; Yamamoto, A.; Kirisako, T.; Noda, T.; Kominami, E.; Ohsumi, Y.; Yoshimori, T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J., 2000, 19, 5720-5728.
[49]
Huang, Y.C.; Li, Y.M.; Chen, Y.; Pan, M.; Li, Y.T.; Yu, L.; Guo, Q.X.; Liu, L. Synthesis of autophagosomal marker protein LC3-II under detergent-free conditions. Angew. Chem. Int. Ed., 2013, 52, 4858-4862.
[50]
Maity, S.K.; Mann, G.; Jbara, M.; Laps, S.; Kamnesky, G.; Brik, A. Palladium-assisted removal of a solubilizing tag from a Cys side chain to facilitate peptide and protein synthesis. Org. Lett., 2016, 18, 3026-3029.
[51]
Brailsford, J.A.; Stockdill, J.L.; Axelrod, A.J.; Peterson, M.T.; Vadola, P.A.; Johnston, E.V.; Danishefsky, S.J. Total chemical synthesis of human thyroid-stimulating hormone (hTSH) b-subunit: Application of arginine-tagged acetamidomethyl (AcmR) protecting groups. Tetrahedron, 2018, 74, 1951-1956.
[52]
Tsuda, S.; Mochizuki, M.; Ishiba, H.; Yoshizawa-Kumagaye, K.; Nishio, H.; Oishi, S.; Yoshiya, T. Easy-to-attach/detach solubilizing tag-aided chemical synthesis of an aggregative capsid protein. Angew. Chem. Int. Ed., 2018, 57, 2105-2109.
[53]
Porterfield, J.Z.; Dhason, M.S.; Loeb, D.D.; Nassal, M.; Stray, S.J.; Zlotnick, A. Full-length hepatitis B virus core protein packages viral and heterologous RNA with similarly high levels of cooperativity. J. Virol., 2010, 84, 7174-7184.
[54]
Jacobsen, M.T.; Petersen, M.E.; Ye, X.; Galibert, M.; Lorimer, G.H.; Aucagne, V.; Kay, M.S. A helping hand to overcome solubility challenges in chemical protein synthesis. J. Am. Chem. Soc., 2016, 138, 11775-11782.
[55]
Ozinskas, A.J.; Rosenthal, G.A. Synthesis of L-canaline and gamma-functional 2-aminobutyric acid derivatives. J. Org. Chem., 1986, 51, 5047-5050.
[56]
Tsuda, S.; Nishio, H.; Yoshiya, T. Peptide self-cleavage at a canaline residue: Application to a solubilizing tag system for native chemical ligation. Chem. Commun., 2018, 54, 8861-8864.
[57]
Eilers, M.; Shekar, S.C. Internal packing of helical membrane proteins. J. Proc. Natl. Acad. Sci. USA, 2000, 97, 5796-5801.
[58]
Zheng, J.S.; Yu, M.; Qi, Y.K.; Tang, S.; Shen, F.; Wang, Z.P.; Xiao, L.; Zhang, L.; Tian, C.L.; Liu, L. Expedient total synthesis of small to medium-sized membrane proteins via Fmoc chemistry. J. Am. Chem. Soc., 2014, 136, 3695-3704.
[59]
Zheng, J.S.; He, Y.; Zuo, C.; Cai, X.Y.; Tang, S.; Wang, Z.P.; Zhang, L.H.; Tian, C.L.; Liu, L. Robust chemical synthesis of membrane proteins through a general method of removable backbone modification. J. Am. Chem. Soc., 2016, 138, 3553-3561.
[60]
Zuo, C.; Tang, S.; Si, Y.Y.; Wang, Z.A.; Tian, C.L.; Zheng, J.S. Efficient synthesis of longer Aβ peptides via removable backbone modification. Org. Biomol. Chem., 2016, 14, 5012-5018.