Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Hybrid Molecules Development: A Versatile Landscape for the Control of Antifungal Drug Resistance: A Review

Author(s): Chioma G. Anusionwu, Blessing A. Aderibigbe* and Xavier Y. Mbianda

Volume 19, Issue 6, 2019

Page: [450 - 464] Pages: 15

DOI: 10.2174/1389557519666181210162003

Price: $65

Open Access Journals Promotions 2
Abstract

Hybrid molecule approach of drug design has become popular due to advantages such as delayed resistance, reduced toxicity, ease of treatment of co-infection and lower cost of preclinical evaluation. Antifungal drugs currently available for the treatment of fungal diseases suffer a major side effect of drug resistance. Hybrid drugs development is one of the approaches that has been employed to control microbial resistance. Their antifungal activity is influenced by their design. This review is focused on hybrid molecules exhibiting antifungal properties to guide scientists in search of more efficient drugs for the treatment of fungal diseases.

Keywords: Heterocyclic compounds, hybrid compounds, antifungal, co-infection, preclinical evaluation, fungal diseases.

Graphical Abstract
[1]
Meunier, B. Hybrid molecules with a dual mode of action: Dream or reality? Acc. Chem. Res., 2008, 41(1), 69-77.
[2]
Yang, S-Y. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov. Today, 2010, 15(11-12), 444-450.
[3]
Shaveta; Mishra, S.; Singh, P. Hybrid molecules: The privileged scaffolds for various pharmaceuticals. Eur. J. Med. Chem., 2016, 124, 500-536.
[4]
Muregi, F.W.; Ishih, A. Next-generation antimalarial drugs: Hybrid molecules as a new strategy in drug design. Drug Dev. Res., 2010, 71(1), 20-32.
[5]
Morphy, R.; Rankovic, Z. Designed multiple ligands: An emerging drug discovery paradigm. J. Med. Chem., 2005, 48(21), 6523-6543.
[6]
Alovero, F.; Nieto, M.; Mazzieri, M.R.; Then, R.; Manzo, R.H. Mode of action of sulfanilyl fluoroquinolones. Antimicrob. Agents Chemother., 1998, 42(6), 1495-1498.
[7]
Christiaans, J.A.M.; Timmerman, H. Cardiovascular hybrid drugs: Combination of more than one pharmacological property in one single molecule. Eur. J. Pharm. Sci., 1996, 4(1), 1-22.
[8]
Locher, H.H.; Caspers, P.; Bruyere, T.; Schroeder, S.; Pfaff, P.; Knezevic, A.; Keck, W.; Ritz, D. Investigations of the mode of action and resistance development of cadazolid, a new antibiotic for treatment of clostridium difficile infections. Antimicrob. Agents Chemother., 2014, 58(2), 901-908.
[9]
Gorityala, B.K.; Guchhait, G.; Goswami, S.; Fernando, D.M.; Kumar, A.; Zhanel, G.G.; Schweizer, F. Hybrid antibiotic overcomes resistance in P. aeruginosa by enhancing outer membrane penetration and reducing efflux. J. Med. Chem., 2016, 59(18), 8441-8455.
[10]
Shavit, M.; Pokrovskaya, V.; Belakhov, V.; Baasov, T. Covalently linked kanamycin - Ciprofloxacin hybrid antibiotics as a tool to fight bacterial resistance. Bioorg. Med. Chem., 2017, 25(11), 2917-2925.
[11]
Singla, P.; Luxami, V.; Paul, K. Triazine as a promising scaffold for its versatile biological behavior. Eur. J. Med. Chem., 2015, 102, 39-57.
[12]
Berube, G. An overview of molecular hybrids in drug discovery. Expert Opin. Drug Discov., 2016, 441, 1-25.
[13]
Faruck, M.O.; Yusof, F.; Chowdhury, S. An overview of antifungal peptides derived from insect. Peptides, 2016, 80, 80-88.
[14]
Cuenca-Estrella, M. Combinations of antifungal agents in therapy - What value are they? J. Antimicrob. Chemother., 2004, 54(5), 854-869.
[15]
Parente-Rocha, J.A.; Bailao, A.M.; Amaral, A.C.; Taborda, C.P.; Paccez, J.D.; Borges, C.L.; Pereira, M. Antifungal resistance, metabolic routes as drug targets, and new antifungal agents: An overview about endemic dimorphic fungi. Mediators Inflamm., 2017, 2017, 1-16.
[16]
Jiang, Z.; Wang, Y.; Wang, W.; Wang, S.; Xu, B.; Fan, G.; Dong, G.; Liu, Y.; Yao, J.; Miao, Z.; Zhang, W.; Sheng, C. Discovery of highly potent triazole antifungal derivatives by heterocycle-benzene bioisosteric replacement. Eur. J. Med. Chem., 2013, 64, 16-22.
[17]
Walsh, T.J.; Dixon, D.M. Spectrum of Mycoses. In:Medical Microbiology; Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston, TX, 1996.
[18]
Graybill, J.R.; Burgess, D.S.; Hardin, T.C. Key issues concerning fungistatic versus fungicidal drugs. Eur. J. Clin. Microbiol. Infect. Dis., 1997, 16(1), 42-50.
[19]
Michael, A.; Pfaller, M.D. Antifungal drug resistance: Mechanisms, epidemiology, and consequences for treatment. Am. J. Med., 2012, 125(1), 3-13.
[20]
Abe, F.; Hiraki, T. Mechanistic role of ergosterol in membrane rigidity and cycloheximide resistance in Saccharomyces cerevisiae. Biochimica et Biophysica Acta - Biomembranes,2009, 1788(3), 743-752.
[21]
Wheat, L.J.; Cloud, G.; Johnson, P.C.; Connolly, P.; Goldman, M.; Le Monte, A.; Fuller, D.E.; Davis, T.E.; Hafner, R. The AIDS clinical trials group. The mycoses study group of niaid. clearance of fungal burden during treatment of disseminated histoplasmosis with liposomal amphotericin b versus itraconazole. Antimicrob. Agents Chemother., 2001, 45(8), 2354-2357.
[22]
Kathiravan, M.K.; Salake, A.B.; Chothe, A.S.; Dudhe, P.B.; Watode, R.P.; Mukta, M.S.; Gadhwe, S. The biology and chemistry of antifungal agents: A review. Bioorg. Med. Chem., 2012, 20(19), 5678-5698.
[23]
Odds, F.C.; Brown, A.J.P.; Gow, N.A.R. Antifungal agents: Mechanisms of action. Trends Microbiol., 2003, 11(6), 272-279.
[24]
Cohen, B.E. Amphotericin B toxicity and lethality: A tale of two channels. Int. J. Pharm., 1998, 162(1-2), 95-106.
[25]
Saravolatz, L.D.; Ostrosky-Zeichner, L.; Marr, K.A.; Rex, J.H.; Cohen, S.H.; Amphotericin, B. Time for a new ‘Gold Standard. Clin. Infect. Dis., 2003, 37(3), 415-425.
[26]
Mistro, S.; MacIel, I.D.M.; De Menezes, R.G.; Maia, Z.P.; Schooley, R.T.; Badaro, R. Does lipid emulsion reduce amphotericin B nephrotoxicity? A systematic review and meta-analysis. Clin. Infect. Dis., 2012, 54(12), 1774-1777.
[27]
Hakki, M.; Staab, J.F.; Marr, K.A. Emergence of a Candida krusei isolate with reduced susceptibility to caspofungin during therapy. Antimicrob. Agents Chemother., 2006, 50(7), 2522-2524.
[28]
Schäfer-Korting, M.; Schoellmann, C.; Korting, H.C. Fungicidal activity plus reservoir effect allow short treatment courses with terbinafine in tinea pedis. Skin Pharmacol. Physiol., 2008, 21(4), 203-210.
[29]
Ma, H.; Sui, F.; Zhao, Q.; Zhang, N.; Sun, Y.; Xian, J.; Jiao, M.; Liu, Y.; Wang, Z. Lewis base-catalyzed cyanation of Morita-Baylis-Hillman carbonates. Synthesis of allylamine derivatives. Tetrahedron Lett., 2017, 58(35), 3410-3414.
[30]
Yu, S.; Chai, X.; Hu, H.; Yan, Y.; Guan, Z.; Zou, Y.; Sun, Q.; Wu, Q. Synthesis and antifungal evaluation of novel triazole derivatives as inhibitors of cytochrome P450 14α-demethylase. Eur. J. Med. Chem., 2010, 45(10), 4435-4445.
[31]
da Silva, C.M.; da Silva, D.L.; Modolo, L.V.; Alves, R.B.; de Resende, M.A.; Martins, C.V.B.; de Fatima, A. Schiff bases: A short review of their antimicrobial activities. J. Adv. Res., 2011, 2(1), 1-8.
[32]
Cuenca-Estrella, M.; Bernal-Martinez, L.; Buitrago, M.J.; Castelli, M.V.; Gomez-Lopez, A.; Zaragoza, O.; Rodriguez-Tudela, J.L. Update on the epidemiology and diagnosis of invasive fungal infection. Int. J. Antimicrob. Agents, 2008, 32(2), 143-147.
[33]
Lewis, R.E.; Kontoyiannis, D.P.; Darouiche, R.O.; Raad, I.I.; Prince, R.A. Antifungal activity of amphotericin B, fluconazole, and voriconazole in an in vitro model of Candida catheter-related bloodstream infection. Antimicrob. Agents Chemother., 2002, 46(11), 3499-3505.
[34]
Borate, H.B.; Sawargave, S.P.; Chavan, S.P.; Chandavarkar, M.A.; Iyer, R.; Tawte, A.; Rao, D.; Deore, J.V.; Kudale, A.S.; Mahajan, P.S.; Kangire, G.S. Novel hybrids of fluconazole and furanones: Design, synthesis and antifungal activity. Bioorg. Med. Chem. Lett., 2011, 21(16), 4873-4878.
[35]
Šenel, P.; Tichotova, L.; Votruba, I.; Buchta, V.; Spulak, M.; Kunes, J.; Nobilis, M.; Krenk, O.; Pour, M. Antifungal 3,5-disubstituted furanones: From 5-Acyloxymethyl to 5-alkylidene derivatives. Bioorg. Med. Chem., 2010, 18, 1988-2000.
[36]
kowalsky, S.F.; Dixon, D.M. Fluconazole: A new antifungal agent. Clin. Pharm., 1991, 10(3), 179-194.
[37]
Borate, H.B.; Maujan, S.R.; Sawargave, S.P.; Chandavarkar, M.A.; Vaiude, S.R.; Joshi, V.A.; Wakharkar, R.D.; Iyer, R.; Kelkar, R.G.; Chavan, S.P.; Kunte, S.S. Fluconazole analogues containing 2H-1, 4-benzothiazin-3 (4H)-one or 2H-1, 4-benzoxazin-3 (4H)-one moieties, a novel class of anti-Candida agents. Bioorg. Med. Chem. Lett., 2010, 20(2), 722-725.
[38]
Tiwari, R.; Miller, P.A.; Chiarelli, L.R.; Mori, G.; Sarkan, M.; Centarova, I.; Cho, S.; Mikusova, K.; Franzblau, S.G.; Oliver, A.G.; Miller, M.J. Design, syntheses, and anti-TB activity of 1,3-benzothiazinone azide and click chemistry products inspired by BTZ043. ACS Med. Chem. Lett., 2016, 7(3), 266-270.
[39]
Dudley, D.A.; Bunker, M.A.; Chi, L.; Cody, W.L.; Holland, D.R.; Ignasiak, D.P.; Janiczek-Dolphin, N.; McClanahan, T.B.; Mertz, T.E.; Narasimhan, L.S.; Rapundalo, S.T.; Trautschold, J.A.; Van Huis, C.A.; Edmunds, J.J. Rational design, synthesis, and biological activity of benzoxazinones as novel factor Xa inhibitors. J. Med. Chem., 2000, 43(22), 4063-4070.
[40]
Fang, X.F.; Li, D.; Tangadanchu, V.K.; Gopala, L.; Gao, W.W.; Zhou, C.H. Novel potentially antifungal hybrids of 5-flucytosine and fluconazole: Design, synthesis and bioactive evaluation. Bioorg. Med. Chem. Lett., 2017, 27(22), 4964-4969.
[41]
Imperi, F.; Massai, F.; Facchini, M.; Frangipani, E.; Visaggio, D.; Leoni, L.; Brangozi, A.; Visca, P. Repurposing the antimycotic drug flucytosine for suppression of Pseudomonas aeruginosa pathogenicity. Proc. Natl. Acad. Sci. USA, 2013, 110(18), 7458-7463.
[42]
Eilard, T.; Alestig, K.; Wahlen, P. Treatment of disseminated candidiasis with 5-Fluorocytosine. J. Infect. Dis., 1974, 130(2), 155-159.
[43]
Vermes, A.; Guchelaar, H-J.; Dankert, J. Flucytosine: A review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J. Antimicrob. Chemother., 2000, 42(6), 171-179.
[44]
Biot, C.; François, N.; Maciejewski, L.; Brocard, J.; Poulain, D. Synthesis and antifungal activity of a ferrocene-fluconazole analogue. Bioorg. Med. Chem. Lett., 2000, 10(8), 839-841.
[45]
Ornelas, C. Application of ferrocene and its derivatives in cancer research. New J. Chem., 2011, 35(10), 1973-1985.
[46]
Chohan, Z.H. Antibacterial and antifungal ferrocene incorporated dithiothione and dithioketone compounds. Bioorganomettal. Chem., 2006, 20(2), 112-116.
[47]
Yu. S. Chai. X.; Wang, Y.; Cao, Y.; Zhang, J.; Wu Q., Zhang, D.; Jiang Y.; Yan T.; Sun Q. Triazole derivatives with improved in vitro antifungal activity over azole drugs. Drug Des. Devel. Ther., 2014, 383-390.
[48]
Mochizuki, A.; Nakamoto, Y.; Naito, H.; Uoto, K.; Ohta, T. Design, synthesis, and biological activity of piperidine diamine derivatives as factor Xa inhibitor. Bioorg. Med. Chem. Lett., 2008, 18(2), 782-787.
[49]
Caldas, E.D.; Conceição, M.H.; Miranda, M.C.C.; De Souza, L.C.K.R.; Lima, J.F. Determination of dithiocarbamate fungicide residues in food by a spectrophotometric method using a vertical disulfide reaction system. J. Agric. Food Chem., 2001, 49(10), 4521-4525.
[50]
Woodrow, J.E.; Seiber, J.N.; Fitzell, D. Analytical method for the dithiocarbamate fungicides ziram and mancozeb in Air: Preliminary field results. J. Agric. Food Chem., 1995, 43(6), 1524-1529.
[51]
Zou, Y.; Yu, S.; Li, R.; Zhao, Q.; Li, X.; Wu, M.; Huang, T.; Chai, X.; Hu, H.; Hu, Q. Synthesis, antifungal activities and molecular docking studies of novel 2-(2,4-difluorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propyl dithiocarbamates. Eur. J. Med. Chem., 2014, 74, 366-374.
[52]
Küçük, H.B.; Yusufoğlu, A.; Mataracı, E.; Döşler, S. Synthesis and biological activity of new 1,3-dioxolanes as potential antibacterial and antifungal compounds. Molecules, 2011, 16(8), 6806-6815.
[53]
Miniyar, P.B.; Mahajan, A.A.; Mokale, S.N.; Shah, M.U.; Kumar, A.S.; Chaturbhuj, G.U. Triazole hybrids as new type of anti-fungal agents. Arab. J. Chem., 2017, 10(3), 295-299.
[54]
Salahuddin; Shaharyar, M.; Mazumder, A. Benzimidazoles : A biologically active compounds. Arab. J. Chem., 2017, 10(S1), S157-S173.
[55]
Ouahrouch, A. Ighachane. H.; Taourirte, M.; Engels, J.W.; Sedra, M.H.; Lazrek, H.B. Benzimidazole-1, 2, 3-triazole hybrid molecules: Synthesis and evaluation for antibacterial/antifungal activity. Archiv der Pharmazie,, 2014, 347(10), 748-755.
[56]
Pramod, K.; Ansari, S.H.; Ali, J. Eugenol: A natural compound with versatile pharmacological actions. Nat. Prod. Commun., 2010, 5(12), 1999-2006.
[57]
Lokwani, P.; Nagori, B.P.; Batra, N.; Goyal, A.; Gupta, S.; Singh, N. Benzoxazole: The molecule of diverse biological activities. J. Chem. Pharm. Res., 2011, 3(3), 302-311.
[58]
de Carvalho, L.I.S.; Alvarenga, D.J.; do Carmo, L.C.F.; de Oliveira, L.G.; Silva, N.C.; Dias, A.L.T.; Coelho, L.F.L.; de Souza, T.B.; Dias, D.F.; Carvalho, D.T. Antifungal activity of new eugenol-benzoxazole hybrids against Candida spp. J. Chem., 2017, 1-8.
[59]
Iman, M.; Peroomian, T.; Davood, A.; Amini, M.; Sardari, S.; Azerang, P. Design, synthesis and evaluation of new azoles as antifungal agents: A molecular hybridization approach. Pharm. Chem. J., 2016, 49(10), 687-693.
[60]
Singh, K.; Kaur, H.; Chibale, K.; Balzarini, J.; Little, S.; Bharatam, P.V. 2-Aminopyrimidine based 4-Aminoquinoline anti-plasmodial agents. Synthesis, biological activity, structure -activity relationship and mode of action studies. Eur. J. Med. Chem., 2012, 52, 82-97.
[61]
Ahmad, A.; Husain, A. Synthesis, antimicrobial and antitubercular activities of some novel pyrazoline derivatives. J. Saudi Chem. Soc., 2016, 20(5), 577-584.
[62]
Montoya, A.; Quiroga, J.; Abonia, R.; Derita, M.; Sortino, M.; Ornelas, A.; Zacchino, S.; Insuasty, B. Hybrid molecules containing a 7-chloro-4-aminoquinoline nucleus and a substituted 2-pyrazoline with antiproliferative and antifungal activity. Molecules, 2016, 21(8), 969-987.
[63]
Shaikh, M.H.; Subhedar, D.D.; Khan, K.; Sangshetti, J.N.; Nawale, L.; Arkile, M.; Sarkar, D.; Shingate, B.B. Synthesis of novel triazole-incorporated isatin derivatives as antifungal, antitubercular, and antioxidant agents and molecular docking study. J. Heterocycl. Chem., 2017, 54(1), 413-421.
[64]
Raj, R.; Singh, P.; Singh, P.; Gut, J.; Rosenthal, P.J.; Kumar, V.N. Lal, V. Kumar, A. Sarswat, S. Jangir. Azide-alkyne cycloaddition en route IH- 1,2,3-triazole-tethered 7-chloroquinoline-isatin chimeras: Synthesis and antimalarial evaluaton. Eur. J. Med. Chem., 2013, 62, 590-592.
[65]
Shaikh, S.K.J.; Kamble, R.R.; Somagond, S.M.; Devarajegowda, H.C.; Dixit, S.R.; Joshi, S.D. Tetrazolylmethyl quinolines: Design, docking studies, synthesis, anticancer and antifungal analyses. Eur. J. Med. Chem., 2017, 128, 258-273.
[66]
Joseph, A.; Shah, C.S.; Kumar, S.S.; Aex, A.T.; Maliyakkal, N.; Moorkoth, S.; Mahew, J.E. Synthesis, in vitro anticancer and antioxidant activity of thiadiazole substituted thiazolidin-4-ones. Acta Pharm., 2013, 63(3), 397-408.
[67]
Levent, S.; Kaya, C.B.; Sağlık, B.N.; Osmaniye, D.; Acar, C.U.; Atlı, Ö.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis of oxadiazole-thiadiazole hybrids and their anticandidal activity. Molecules, 2017, 22(11), 2004.
[68]
Can Baser, K.H. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr. Pharm. Des., 2008, 1(29), 3106-3119.
[69]
Pete, U.D.; Zade, C.M.; Bhosale, J.D.; Tupe, S.G.; Chaudhary, P.M.; Dikundwar, A.G.; Bendre, R.S. Hybrid molecules of carvacrol and benzoyl urea/thiourea with potential applications in agriculture and medicine. Bioorg. Med. Chem. Lett., 2012, 22(17), 5550-5554.
[70]
Xu, L.; Wu, Y.; Zhao, X.; Zhang, W. In: The Study on Biological and Pharmacological Activity of Coumarins In: Proceedings of Asia-pacific Energy equipment Engineering Research Conference, Zuhani, China, June 13-14, 2015; Carl J., Ed . Atlantis Press, 2015; pp. 135-138
[71]
Sposato, L.A.; Fustinoni, O. Latrogenic neurology. In:Handbook of Clinical Neurology; Biller, J.; Ferro, J.M., Eds.; Elsevier Science B.V: Amsterdam, 2014, Vol. 121, pp. 1635-1671.
[72]
Vekariya, R.H.; Patel, K.D.; Rajani, D.P.; Rajani, S.D.; Patel, H.D. A one pot, three component synthesis of coumarin hybrid thiosemicarbazone derivatives and their antimicrobial evolution. J. Associat. Arab Univ. Basic Appl. Sci., 2017, 23, 10-19.
[73]
Desai, N.C.; Satodiya, H.M.; Rajpara, K.M.; Joshi, V.V.; Vaghani, H.V. Microwave assisted synthesis of new coumarin based 3-cyanopyridine scaffolds bearing sulfonamide group having antimicrobial activity. Indian J. Chem., 2013, 52B(7), 904-914.
[74]
Mohana, K.N.; Prasanna, B.N. Synthesis and biological activity of some pyrimidine derivatives. Drug Invent. Today, 2013, 5(3), 216-222.
[75]
Laxmi, S.V.; Kuarm, B.S.; Rajitha, B. Synthesis and antimicrobial activity of coumarin pyrazole pyrimidine 2, 4, 6 (1H, 3H, 5H) triones and thioxopyrimidine4, 6 (1H, 5H) diones. Med. Chem. Res., 2013, 22(2), 768-774.
[76]
Naim, J.M.; Alam, O.; Nawaz, F.; Alam, M.J.; Alam, P. Current status of pyrazole and its biological activities. J. Pharm. Bioallied Sci., 2016, 8, 2-17.
[77]
Thakrar, S.; Bavishi, A.; Radadiya, A.; Vala, H.; Parekh, S.; Bhavsar, D.; Chaniyara, R.; Shah, A. An Efficient microwave‐assisted synthesis and antimicrobial activity of novel 2‐amino 3‐cyano pyridine derivatives using two reusable solid acids as catalysts. J. Heterocycl. Chem., 2014, 51(3), 555-561.
[78]
Reddy, K.R.; Mamatha, R.; Babu, M.S.; Shiva, K.K.; Jayaveera, K.N.; Narayanaswamy, G. Synthesis and antimicrobial activities of some triazole, thiadiazole, and oxadiazole substituted coumarins. J. Heterocycl. Chem., 2014, 51(1), 132-137.
[79]
Puttaraju, K.B.; Shivashankar, K.; Mahendra, M.; Rasal, V.P.; Vivek, P.N.; Rai, K.; Chanu, M.B. Microwave assisted synthesis of dihydrobenzo [4, 5] imidazo [1, 2-a] pyrimidin-4-ones; synthesis, in vitro antimicrobial and anticancer activities of novel coumarin substituted dihydrobenzo [4, 5] imidazo [1, 2-a] pyrimidin-4-ones. Eur. J. Med. Chem., 2013, 69, 316-322.
[80]
Boregowda, P.; Kalegowda, S.; Rasal, V.P.; Eluru, J.; Koyye, E. Synthesis and Biological Evaluation of 4-(3-Hydroxy-benzofuran-2-yl) coumarins. Org. Chem. Int., 2014, 27, 2014.
[81]
Dongamanti, A.; Bommidi, V.L.; Arram, G.; Sidda, R. Microwave-assisted synthesis of (E)-7-[(1-benzyl-1H-1, 2, 3-triazol-4-yl) methoxy]-8-(3-arylacryloyl)-4-methyl-2H-chromen-2-ones and their antimicrobial activity. Heterocycl. Commun., 2014, 20(5), 293-298.
[82]
Tiwari, S.V.; Seijas, J.A.; Vazquez-Tato, M.P.; Sarkate, A.P.; Karnik, K.S.; Nikalje, A.P. Facile synthesis of novel coumarin derivatives, antimicrobial analysis, enzyme assay, docking study, ADMET prediction and toxicity study. Molecules, 2017, 22(7), 1172-1190.
[83]
Irfan, M.; Aneja, B.; Yadava, U.; Khan, S.I.; Manzoor, N.; Daniliuc, C.G.; Abid, M. Synthesis, QSAR and anticandidal evaluation of 1, 2, 3-triazoles derived from naturally bioactive scaffolds. Eur. J. Med. Chem., 2015, 93, 246-254.
[84]
Irfan, M.; Alam, S.; Manzoor, N.; Abid, M. Effect of quinoline based 1, 2, 3-triazole and its structural analogues on growth and virulence attributes of Candida albicans. PLoS One, 2017, 12(4), 0175710.
[85]
Mohana, K.N.; Mallesha, L.; Gurudatt, D.M. Synthesis and antimicrobial activity of 5-aminoquinoline and 3-amino phenol derivatives. Inter. J. Drug Design Discov., 2011, 2, 584-590.
[86]
Amir, M.; Javed, S.A.; Hassan, M.Z. Synthesis and antimicrobial activity of pyrazolinone and pyrazole analogues containing quinoline moiety. Indian J. Chem., 2013, 52, 1493-1499.
[87]
Kumar, S.; Bawa, S.; Drabu, S.; Panda, B.P. Design and synthesis of 2-chloroquinoline derivatives as non-azoles antimycotic agents. Med. Chem. Res., 2011, 20(8), 1340-1348.
[88]
Desai, N.C.; Rajpara, K.M.; Joshi, V.V.; Vaghani, H.V.; Satodiya, H.M. Synthesis, characterization and antimicrobial screening of hybrid molecules containing quinoline, pyrimidine and morpholine analogues. J. Chem. Sci., 2013, 125(2), 321-333.
[89]
Desai, N.C.; Patel, B.Y.; Dave, B.P. Synthesis and antimicrobial activity of novel quinoline derivatives bearing pyrazoline and pyridine analogues. Med. Chem. Res., 2017, 26(1), 109-119.
[90]
Singh, H.; Nand, B.; Sindhu, J.; Khurana, J.M.; Sharma, C.; Aneja, K.R. Efficient one pot synthesis of xanthene-triazole-quinoline/ phenyl conjugates and evaluation of their antimicrobial activity. J. Braz. Chem. Soc., 2014, 25(7), 1178-1193.
[91]
Sidoryk, K.; Świtalska, M.; Jaromin, A.; Cmoch, P.; Bujak, I.; Kaczmarska, M.; Wietrzyk, J.; Dominguez, E.G.; Żarnowski, R.; Andes, D.R.; Bańkowski, K. The synthesis of indolo [2, 3-b] quinoline derivatives with a guanidine group: Highly selective cytotoxic agents. Eur. J. Med. Chem., 2015, 105, 208-219.
[92]
Kumar, M.P. Synthesis and antifungal activity screening of some novel 7-substituted-2-hydroxy-quinoline schiff bases. J. Appl. Pharm. Res., 2016, 4(4), 5-9.
[93]
Shah, N.M.; Patel, M.P.; Patel, R.G. Synthesis of a novel class of some biquinoline pyridine hybrids via one-pot, three-component reaction and their antimicrobial activity. J. Chem. Sci., 2012, 124(3), 669-677.
[94]
Desai, N.C.; Dodiya, A.M. Synthesis, characterization and in vitro antimicrobial screening of quinoline nucleus containing 1, 3, 4-oxadiazole and 2-azetidinone derivatives. J. Saudi Chem. Soc., 2014, 18(5), 425-431.
[95]
Zaheer, Z.; Khan, F.A.K.; Sangshetti, J.N.; Patil, R.H.; Lohar, K.S. Novel amalgamation of phthalazine-quinolines as biofilm inhibitors: One-pot synthesis, biological evaluation and in silico ADME prediction with favorable metabolic fate. Bioorg. Med. Chem. Lett., 2016, 26(7), 1696-1703.
[96]
Perokovic, V.P.; Ribic, R.; Prugovecki, B.; Matkovic-calogovic, D.; Tomic, C. An efficient synthesis of novel adamantane ß-amino Acid. Croat. Chem. Acta, 2012, 85(4), 419-423.
[97]
Hassan, G.S.; El-Emam, A.A.; Gad, L.M.; Barghash, A.E. Synthesis, antimicrobial and antiviral testing of some new 1-adamantyl analogues. Saudi Pharm. J., 2010, 18(3), 123-128.
[98]
Kadi, A.A.; El-Brollosy, N.R.; Al-Deeb, O.A.; Habib, E.E.; Ibrahim, T.M.; El-Emam, A.A. Synthesis, antimicrobial, and anti-inflammatory activities of novel 2-(1-adamantyl)-5-substituted-1,3,4-oxadiazoles and 2-(1-adamantylamino)-5-substituted-1,3,4-thiadiazoles. Eur. J. Med. Chem., 2007, 42(2), 235-242.
[99]
El-Emam, A.A.; Al-Tamimi, A.M.; Al-Omar, M.A.; Alrashood, K.A.; Habib, E.E. Synthesis and antimicrobial activity of novel 5-(1-adamantyl)-2-aminomethyl-4-substituted-1, 2, 4-triazoline-3-thiones. Eur. J. Med. Chem., 2013, 68, 96-102.
[100]
Al-Wahaibi, L.H.; Hassan, H.M.; Abo-Kamar, A.M.; Ghabbour, H.A.; El-Emam, A.A. Adamantane-Isothiourea hybrid derivatives: Synthesis, characterization, in vitro antimicrobial, and in vivo hypoglycemic activities. Molecules, 2017, 22(5), 710.
[101]
Ačimovič, J.; Rozman, D. Steroidal triterpenes of cholesterol synthesis. Molecules, 2013, 18(4), 4002-4017.
[102]
Radwan, A.A.; Alanazi, F.K. Targeting cancer using cholesterol conjugates. Saudi Pharm. J., 2014, 22(1), 3-16.
[103]
Loncle, C.; Brunel, J.M.; Vidal, N.; Dherbomez, M.; Letourneux, Y. Synthesis and antifungal activity of cholesterol-hydrazone derivatives. Eur. J. Med. Chem., 2004, 39(12), 1067-1071.
[104]
Dybowski, B.; Jabłońska, O.; Radziszewski, P.; Gromadzka-Ostrowska, J.; Borkowski, A. Ciprofloxacin and furagin in acute cystitis: comparison of early immune and microbiological results. Int. J. Antimicrob. Agents, 2008, 31(2), 130-134.
[105]
Piplani, M.; Rana, A.C.; Sharma, P.C. Synthesis, characterization and evaluation of prodrugs of ciprofloxacin clubbed with benzothiazoles through N-Mannich base approach. Chem. Biol. Lett., 2016, 3(2), 52-57.
[106]
Perez-Vizcaino, F.; Duarte, J.; Santos-Buelga, C. The flavonoid paradox: Conjugation and deconjugation as key steps for the biological activity of flavonoids. J. Sci. Food Agric., 92(9), 1822- 1825.
[107]
Xiao, Z.P.; Wang, X.D.; Wang, P.F.; Zhou, Y.; Zhang, J.W.; Zhang, L.; Zhou, J.; Zhou, S.S.; Ouyang, H.; Lin, X.Y.; Mustapa, M. Design, synthesis, and evaluation of novel fluoroquinolone-flavonoid hybrids as potent antibiotics against drug-resistant microorganisms. Eur. J. Med. Chem., 2014, 80, 92-100.
[108]
Jubie, S.; Rajeshkumar, R.; Yellareddy, B.; Siddhartha, G.; Sandeep, M.; Surendrareddy, K.; Dushyanth, H.S.; Elango, K. Microwave assisted synthesis of some novel benzimidazole substituted fluoroquinolones and their antimicrobial evaluation. J. Pharm. Sci. Res., 2010, 2, 69-76.
[109]
Papich, M.G. Saunders Handbook of Veterinary, 4th ed; Elsevier: Amsterdam, 2016.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy