[4]
Vavilis, T.; Delivanoglou, N.; Aggelidou, E.; Stamoula, E.; Mellidis, K.; Kaidoglou, A.; Cheva, A.; Pourzitaki, C.; Chatzimeletiou, K.; Lazou, A.; Albani, M.; Kritis, A. Oxygen-glucose deprivation (OGD) modulates the unfolded protein response (UPR) and inflicts autophagy in a PC12 Hypoxia cell line model. Cell. Mol. Neurobiol., 2016, 36(5), 701-712.
[7]
Yang, X.; Zheng, T.; Hong, H.; Cai, N.; Zhou, X.; Sun, C.; Wu, L.; Liu, S.; Zhao, Y.; Zhu, L.; Fan, M.; Zhou, X.; Jin, F. Neuroprotective effects of Ginkgo Biloba extract and ginkgolide B against oxygen-glucose deprivation/reoxygenation and Gglucose injury in a new in vitro multicellular network model. Front. Med., 2018, 12(3), 307-318.
[8]
Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; de Ferranti, S.; Després, J-P.; Fullerton, H.J.; Howard, V.J. Heart disease and stroke statistics—2015 update. Circulation, 2015, 131(4), e29-e322.
[10]
Arevalo, M.A.; Santos-Galindo, M.; Lagunas, N.; Azcoitia, I.; Garcia-Segura, L.M. Selective estrogen receptor modulators as brain therapeutic agents. J. Mol. Endocrinol., 2011, 46(1), R1-R9.
[11]
Ávila, R.M.; Garcia-Segura, L. M.; Cabezas, R.; Torrente, D.; Capani, F.; Gonzalez, J.; Barreto, G. E. Tibolone protects T98G cells from glucose deprivation., J. Steroid Biochem. Mol. Biol.,
2014, 144(PART B), 294-303.
[19]
Wu, Q.; Chen, W.; Sinha, B.; Tu, Y.; Manning, S.; Thomas, N.; Zhou, S.; Jiang, H.; Ma, H.; Kroessler, D.A.; Yao, J.; Liz, Z.; Inder, T.E.; Wang, X. Neuroprotective agents for neonatal hypoxic-ischemic brain injury. Drug Discov. Today, 2015, 20(11), 1372-1381.
[41]
Hirayama, Y.; Koizumi, S. Astrocytes and ischemic tolerance. Neurosci. Res., 2018, 126, 53-59.
[48]
Domnguez, R.; Zitting, M.; Liu, Q.; Patel, A.; Babadjouni, R.; Hodis, D.M.; Chow, R.H.; Mack, W.J. Estradiol protects white matter of male C57BL6J mice against experimental chronic cerebral hypoperfusion. J. Stroke Cerebrovasc. Dis., 2018, 27(7), 1743-1751.
[63]
Gressens, P.; Marret, S.; Evrard, P. Developmental spectrum of the excitotoxic cascade induced by ibotenate: A model of hypoxic insults in fetuses and neonates. Neuropathol. Appl. Neurobiol., 2018, 22(6), 498-502.
[67]
Yang, D.; Sun, Y-Y.; Bhaumik, S.K.; Li, Y.; Baumann, J.M.; Lin, X.; Zhang, Y.; Lin, S-H.; Dunn, R.S.; Liu, C-Y.; Shie, F.S.; Lee, Y.H.; Wills-Karp, M.; Chougnet, C.A.; Kallapur, S.G.; Lewkowich, I.P.; Lindquist, D.M.; Murali-Krishna, K.; Kuan, C.Y. Blocking lymphocyte trafficking with FTY720 prevents inflammation-sensitized hypoxic-ischemic brain injury in newborns. J. Neurosci., 2014, 34(49), 16467-16481.
[80]
Cui, X.; Fu, Z.; Wang, M.; Nan, X.; Zhang, B. Pitavastatin treatment induces neuroprotection through the BDNF-TrkB signalling pathway in cultured cerebral neurons after oxygen-glucose deprivation. Neurol. Res., 2018, 40(5), 391-397.
[81]
Dong, Y-F.; Guo, R-B.; Ji, J.; Cao, L-L.; Zhang, L.; Chen, Z-Z.; Huang, J-Y.; Wu, J.; Lu, J.; Sun, X-L. S1PR3 is essential for phosphorylated fingolimod to protect Astrocytes against oxygen-glucose deprivation-induced neuroinflammation via inhibiting TLR2/4-NFκB signalling. J. Cell. Mol. Med., 2018, 22(6), 3159-3166.
[91]
Zhou, T.; Lin, H.; Jiang, L.; Yu, T.; Zeng, C.; Liu, J.; Yang, Z. Mild hypothermia protects hippocampal neurons from oxygen-glucose deprivation injury through inhibiting caspase-3 activation. Cryobiology, 2018, 80, 55-61.
[96]
Guo, C.; Hao, L-J.; Yang, Z-H.; Chai, R.; Zhang, S.; Gu, Y.; Gao, H-L.; Zhong, M-L.; Wang, T.; Li, J-Y.; Wang, Z.Y. Deferoxamine-mediated up-regulation of HIF-1α prevents dopaminergic neuronal death via the activation of MAPK family proteins in MPTP-treated mice. Exp. Neurol., 2016, 280, 13-23.
[110]
Ke, Q.; Costa, M. Hypoxia-inducible factor-1 (HIF-1). Mol. Pharmacol., 2006, 70(5), 1469-1480.
[119]
Hu, Y.; Wang, Z.; Liu, Y.; Pan, S.; Zhang, H.; Fang, M.; Jiang, H.; Yin, J.; Zou, S.; Li, Z.; Zhang, H.; Lin, Z.; Xiao, J. Melatonin Reduces hypoxic-ischaemic (HI) induced autophagy and apoptosis: An in Vivo and in Vitro investigation in experimental models of neonatal HI brain injury. Neurosci. Lett., 2017, 653, 105-112.
[131]
Lizcano, F.; Guzmán, G. Estrogen deficiency and the origin of obesity during menopause. Biomed Res. Int., 2014, 2014, 757461.
[133]
Paterni, I.; Granchi, C.; Katzenellenbogen, J.A.; Minutolo, F. Estrogen receptors alpha (ERα) and beta (ERβ): Subtype-selective ligands and clinical potential. Steroids, 2014, 90, 13-29.
[135]
Shang, Y.; Hu, X.; DiRenzo, J.; Lazar, M.A.; Brown, M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell, 2000, 103(6), 843-852.
[140]
Harvey, B.J.; Condliffe, S.; Doolan, C.M. Sex and salt Hormones: Rapid effects in epithelia. News Physiol. Sci., 2001, 16, 174-177.
[144]
Fernandez, S.M.; Lewis, M.C.; Pechenino, A.S.; Harburger, L.L.; Orr, P.T.; Gresack, J.E.; Schafe, G.E.; Frick, K.M. Estradiol-induced enhancement of object memory consolidation involves hippocampal extracellular signal-regulated kinase activation and membrane-bound estrogen receptors. J. Neurosci., 2008, 28(35), 8660-8667.
[145]
Fan, L.; Zhao, Z.; Orr, P.T.; Chambers, C.H.; Lewis, M.C.; Frick, K.M. Nongenomic actions of steroid hormones. Nat. Rev. Mol. Cell Biol., 2003, 4(1), 46-56.
[154]
Herrera, M. I.; Mucci, S.; Barreto, G. E.; Kolliker-Frers, R.
Capani, F. Neuroprotection in hypoxic-Iischemic brain injury targeting Glial cells. Curr. Pharm. Des., 2017, 23(26), 3899-3906.
[162]
Marín, F.; Barbancho, M.C. Action of selective estrogen receptor
modulators (SERMs) through the classical mechanism of estrogen
action. In: Selective Estrogen Receptor Modulators, 2006, pp. 71-
77.
[164]
Lopez-Rodriguez, A. B.; Ávila-Rodriguez, M.; Vega-vela, N. E.; Capani, F.; Gonzalez, J.; Garciá-Segura, L. M.; Barreto, G. E. Estrogen Effects on Traumatic Brain Injury, 2015.
[165]
Gao, Y.; Wang, Z.; He, W.; Ma, W.; Ni, X. Mild hypothermia
protects neurons against oxygen glucose deprivation via Poly
(ADP-Ribose) signaling. J. Matern. Neonatal Med., 2017, 1-7.
[168]
Abdelhamid, R.; Luo, J.; Vandevrede, L.; Kundu, I.; Michalsen, B.; Litosh, V.A.; Schiefer, I.T.; Gherezghiher, T.; Yao, P.; Qin, Z.; Thatcher, G.R. Benzothiophene selective estrogen receptor modulators provide neuroprotection by a Novel GPR30-dependent mechanism. ACS Chem. Neurosci., 2011, 2(5), 256-268.
[174]
Stark, J.; Varbiro, S.; Sipos, M.; Tulassay, Z.; Sara, L.; Adler, I.; Dinya, E.; Magyar, Z.; Szekacs, B.; Marczell, I.; Kloosterboer, H.J.; Racz, K.; Bekesi, G. Antioxidant effect of the active metabolites of tibolone. Gynecol. Endocrinol., 2015, 31(1), 31-35.
[175]
Crespo-Castrillo, A.; Yanguas-Casás, N.; Arevalo, M.A.; Azcoitia, I.; Barreto, G.E.; Garcia-Segura, L.M. The synthetic steroid tibolone decreases reactive gliosis and neuronal death in the cerebral cortex of female mice after a stab wound injury. Mol. Neurobiol., 2018, 55(11), 8651-8667.
[179]
Robertson, N.J.; Faulkner, S.; Fleiss, B.; Bainbridge, A.; Andorka, C.; Price, D.; Powell, E.; Lecky-Thompson, L.; Thei, L.; Chandrasekaran, M.; Hristova, M.; Cady, E.B.; Gressens, P.; Golay, X.; Raivich, G. Melatonin augments hypothermic neuroprotection in a perinatal Asphyxia Model. Brain, 2013, 136(1), 90-105.
[183]
Nonaka, Y.; Koumura, A.; Hyakkoku, K.; Shimazawa, M.; Yoshimura, S.; Iwama, T.; Hara, H. Combination treatment with normobaric hyperoxia and cilostazol protects mice against focal cerebral ischemia-iInduced neuronal damage better than each treatment alone. J. Pharmacol. Exp. Ther., 2009, 330(1), 13-22.