Research Article

通过内在白细胞介素-15Rα信号功能改善嵌合抗原受体

卷 19, 期 1, 2019

页: [40 - 53] 页: 14

弟呕挨: 10.2174/1566523218666181116093857

摘要

简介:最近对CD19特异性嵌合抗原受体(CAR)修饰的T细胞(CART)的研究已经证明在治疗难治性和复发性B细胞恶性肿瘤方面取得了前所未有的成功。最新CART治疗进展的关键可归因于CAR设计中改进的共刺激信号。 方法:在此,我们通过将CD28的T细胞信号传导结构域与4-1BB,CD27,OX40,ICOS和IL-15Rα的细胞内信号传导基序结合,建立了几种新型CAR。基于简单的靶细胞杀伤测定,对这些新型CAR进行功能评估。 结果:结果显示CD28 / IL-15Rα共信号传导(153z)CAR表现出最快的T细胞扩增潜能和细胞毒活性。 IL-15是介导免疫效应活性的关键细胞因子。 153z CART在重复一轮靶细胞接合后维持了长时间的杀伤活动。与增强的靶杀伤功能一致,153z CART在与靶细胞相互作用时产生增加量的效应细胞因子,包括IFN-γ,TNFα和IL-2。 结论:在一项随访临床研究中,一名急性淋巴细胞白血病(ALL)患者,经历了多次中枢神经系统白血病复发(CNSL)并且未通过所有常规治疗,参加了CD19特异性153z CART治疗。在153z CART细胞输注后,患者达到完全缓解。翻译结果支持进一步研究IL-15Rα修饰的CART细胞在癌症患者中的安全性和增强的治疗功效。

关键词: IL-15受体,嵌合抗原受体,免疫疗法,急性B淋巴细胞白血病,慢病毒载体,CNS白血病。

图形摘要
[1]
Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA 1993; 90(2): 720-4.
[2]
Kowolik CM, Topp MS, Gonzalez S, et al. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res 2006; 66(22): 10995-1004.
[3]
Hwu P, Yang JC, Cowherd R, et al. In vivo antitumor activity of T cells redirected with chimeric antibody/T-cell receptor genes. Cancer Res 1995; 55(15): 3369-73.
[4]
Savoldo B, Ramos CA, Liu E, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest 2011; 121(5): 1822-6.
[5]
Song DG, Ye Q, Carpenito C, et al. In vivo persistence, tumor localization, and antitumor activity of CAR-engineered T cells is enhanced by costimulatory signaling through CD137 (4-1BB). Cancer Res 2011; 71(13): 4617-27.
[6]
Carpenito C, Milone MC, Hassan R, et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci USA 2009; 106(9): 3360-5.
[7]
Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011; 365(8): 725-33.
[8]
Brentjens RJ, Davila ML, Riviere I, et al. CD19-Targeted T Cells Rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013; 5(177): 177ra138.
[9]
Grupp SA, Kalos M, Barrett D, et al. Chimeric antigen receptor-modified t cells for acute lymphoid leukemia. N Engl J Med 2013; 368: 1509-18.
[10]
Cruz CR, Micklethwaite KP, Savoldo B, et al. Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: A phase 1 study. Blood 2013; 122(17): 2965-73.
[11]
Brentjens RJ, Riviere I, Park JH, et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 2011; 118(18): 4817-28.
[12]
Kochenderfer JN, Dudley ME, Carpenter RO, et al. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood 2013; 122(25): 4129-39.
[13]
Maus MV, Grupp SA, Porter DL, June CH. Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood 2014; 123(17): 2625-35.
[14]
Turtle CJ. Chimeric antigen receptor modified T cell therapy for B cell malignancies. Int J Hematol 2014; 99(2): 132-40.
[15]
Steel JC, Waldmann TA, Morris JC. Interleukin-15 biology and its therapeutic implications in cancer. Trends Pharmacol Sci 2012; 33(1): 35-41.
[16]
Munger W, DeJoy SQ, Jeyaseelan R, et al. Studies evaluating the antitumor activity and toxicity of interleukin-15, a new T cell growth factor: Comparison with interleukin-2. Cell Immunol 1995; 165(2): 289-93.
[17]
Marks-Konczalik J, Dubois S, Losi JM, et al. IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc Natl Acad Sci USA 2000; 97(21): 11445-50.
[18]
Jakobisiak M, Golab J, Lasek W. Interleukin 15 as a promising candidate for tumor immunotherapy. Cytokine Growth Factor Rev 2011; 22(2): 99-108.
[19]
Budagian V, Bulanova E, Paus R, Bulfone-Paus S. IL-15/IL-15 receptor biology: A guided tour through an expanding universe. Cytokine Growth Factor Rev 2006; 17(4): 259-80.
[20]
Okada S, Han S, Patel ES, Yang LJ, Chang LJ. STAT3 signaling contributes to the high effector activities of interleukin-15-derived dendritic cells. Immunol Cell Biol 2015; 93(5): 461-71.
[21]
Zhang JP, Zhang R, Tsao ST, et al. Sequential allogeneic and autologous CAR-T-cell therapy to treat an immune-compromised leukemic patient. Blood Adv 2018; 2(14): 1691-5.
[22]
Chang L-J, Zhang C. Infection and replication of Tat-minus human immunodeficiency viruses: Genetic analyses of LTR and tat mutants in primary and long-term human lymphoid cells. Virology 1995; 211: 157-69.
[23]
Chang L-J, Liu X, He J. Lentiviral siRNAs targeting multiple highly conserved RNA sequences of human immunodeficiency virus type 1. Gene Ther 2005; 12: 1133-44.
[24]
Wang B, He J, Liu C, Chang LJ. An effective cancer vaccine modality: Lentiviral modification of dendritic cells expressing multiple cancer-specific antigens. Vaccine 2006; 24: 3477-89.
[25]
Zhang G, Gurtu V, Kain SR, Yan G. Early detection of apoptosis using a fluorescent conjugate of annexin V. Biotechniques 1997; 23(3): 525-31.
[26]
Nicholson IC, Lenton KA, Little DJ, et al. Construction and characterisation of a functional CD19 specific single chain Fv fragment for immunotherapy of B lineage leukaemia and lymphoma. Mol Immunol 1997; 34(16-17): 1157-65.
[27]
Kochenderfer JN, Feldman SA, Zhao Y, et al. Construction and preclinical evaluation of an anti-CD19 chimeric antigen receptor. J Immunother 2009; 32(7): 689-702.
[28]
Chang L-J, He J. Retroviral vectors for gene therapy of AIDS and cancer. Curr Opin Mol Ther 2001; 3(5): 468-75.
[29]
Chang LJ, Zaiss AK. Methods for the preparation and use of lentivirus vectors. Methods Mol Med 2002; 69: 303-18.
[30]
Brunner KT, Mauel J, Cerottini JC, Chapuis B. Quantitative assay of the lytic action of immune lymphoid cells on 51-Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology 1968; 14(2): 181-96.
[31]
Henderson MA, Yong CS, Duong CP, et al. Chimeric antigen receptor-redirected T cells display multifunctional capacity and enhanced tumor-specific cytokine secretion upon secondary ligation of chimeric receptor. Immunotherapy 2013; 5(6): 577-90.
[32]
Trapani JA, Smyth MJ. Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2002; 2(10): 735-47.
[33]
Betts MR, Koup RA. Detection of T-cell degranulation: CD107a and b. Methods Cell Biol 2004; 75: 497-512.
[34]
Kinter AL, Godbout EJ, McNally JP, et al. The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. J Immunol 2008; 181(10): 6738-46.
[35]
Tao Q, Chen T, Tao L, et al. IL-15 improves the cytotoxicity of cytokine-induced killer cells against leukemia cells by upregulating CD3+CD56+ cells and downregulating regulatory T cells as well as IL-35. J Immunother 2013; 36(9): 462-7.
[36]
Hoyos V, Savoldo B, Quintarelli C, et al. Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia 2010; 24(6): 1160-70.
[37]
Mishra A, Liu S, Sams GH, et al. Aberrant overexpression of IL-15 initiates large granular lymphocyte leukemia through chromosomal instability and DNA hypermethylation. Cancer Cell 2012; 22(5): 645-55.
[38]
Williams MT, Yousafzai Y, Cox C, et al. Interleukin-15 enhances cellular proliferation and upregulates CNS homing molecules in pre-B acute lymphoblastic leukemia. Blood 2014; 123(20): 3116-27.
[39]
Steinway SN, Loughran TP. Targeting IL-15 in large granular lymphocyte leukemia. Expert Rev Clin Immunol 2013; 9(5): 405-8.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy