[1]
Seigneuric, R.; Mjahed, H.; Gobbo, J.; Joly, A.L.; Berthenet, K.; Shirley, S.; Garrido, C. Heat shock proteins as danger signals for cancer detection. Front. Oncol., 2011, 1, 37.
[2]
Hendrick, J.P.; Hartl, F.U. Molecular chaperone functions of heat-shock proteins. Annu. Rev. Biochem., 1993, 62, 349-384.
[3]
Saibil, H. Chaperone machines for protein folding, unfolding and disaggregation. Nat. Rev. Mol. Cell Biol., 2013, 14, 630-642.
[4]
Banerji, U. Heat shock protein 90 as a drug target: Some like it hot. Clin. Cancer Res., 2009, 15, 9-14.
[5]
RR. K.; NS, N.; SP, A.; Sinha, D.; Veedin Rajan, V. B.; Esthaki, V.K.; D’Silva, P. HSPIR: A manually annotated heat shock protein information resource. Bioinformatics, 2012, 28, 2853-2855.
[6]
Dong, C.W.; Zhang, Y.B.; Zhang, Q.Y.; Gui, J.F. Differential expression of three Paralichthys olivaceus Hsp40 genes in responses to virus infection and heat shock. Fish Shellfish Immunol., 2006, 21, 146-158.
[7]
Wang, Q.; Bag, J. Induction of expression and co-localization of heat shock polypeptides with the polyalanine expansion mutant of poly(A)-binding protein N1 after chemical stress. Biochem. Biophys. Res. Commun., 2008, 370, 11-15.
[8]
Pockley, A.G. Heat shock proteins, inflammation, and cardiovascular disease. Circulation, 2002, 105, 1012-1017.
[9]
Wu, Y.R.; Wang, C.K.; Chen, C.M.; Hsu, Y.; Lin, S.J.; Lin, Y.Y.; Fung, H.C.; Chang, K.H.; Lee-Chen, G.J. Analysis of heat-shock protein 70 gene polymorphisms and the risk of Parkinson’s disease. Hum. Genet., 2004, 114, 236-241.
[10]
Van Noort, J.M.; Bugiani, M.; Amor, S. Heat shock proteins: Old and novel roles in neurodegenerative diseases in the central nervous system. CNS Neurol. Disord. Drug Targets, 2017, 16, 244-256.
[11]
Dattilo, S.; Mancuso, C.; Koverech, G.; Di Mauro, P.; Ontario, M.L.; Petralia, C.C.; Petralia, A.; Maiolino, L.; Serra, A.; Calabrese, E.J.; Calabrese, V. Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases. Immun. Ageing, 2015, 12, 20.
[12]
Urbanics, R. Heat shock proteins in stroke and neurodegenerative diseases. Curr. Opin. Investig. Drugs, 2002, 3, 1718-1719.
[13]
Ciocca, D.R.; Calderwood, S.K. Heat shock proteins in cancer: Diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones, 2005, 10, 86-103.
[14]
Chatterjee, S.; Burns, T.F. Targeting heat shock proteins in cancer: A promising therapeutic approach. Int. J. Mol. Sci., 2017, 18, pii E1978.
[15]
Chen, W.; Tang, H.; Ye, J.; Lin, H.; Chou, K.C. iRNA-PseU: Identifying RNA pseudouridine sites. Mol. Ther. Nucleic Acids, 2016, 5, e332.
[16]
Chen, W.; Tran, H.; Liang, Z.; Lin, H.; Zhang, L.Q. Identification and analysis of the N6-methyladenosine in the Saccharomyces cerevisiae transcriptome. Sci. Rep., 2015, 5, 13859.
[17]
Chen, W.; Xing, P.; Zou, Q. Detecting N6-methyladenosine sites from RNA transcriptomes using ensemble Support Vector Machines. Sci. Rep., 2017, 7, 40242.
[18]
Lin, H.; Chen, W.; Ding, H. AcalPred: A sequence-based tool for discriminating between acidic and alkaline enzymes. PLoS One, 2013, 8, e75726.
[19]
Lin, H.; Ding, C.; Song, Q.; Yang, P.; Ding, H.; Deng, K.J.; Chen, W. The prediction of protein structural class using averaged chemical shifts. J. Biomol. Struct. Dyn., 2012, 29, 1147-1153.
[20]
Lin, H.; Liu, W.X.; He, J.; Liu, X.H.; Ding, H.; Chen, W. Predicting cancerlectins by the optimal g-gap dipeptides. Sci. Rep., 2015, 5, 16964.
[21]
Wang, X.F.; Zhang, Y.; Wang, J.M. Prediction of protein structural class based on reliefF-SVM. Lett. Org. Chem., 2017, 14, 696-702.
[22]
UniProt Consortium. UniProt: The universal protein knowledgebase. Nucleic Acids Res., 2017, 45, D158-D169.
[23]
Finn, R.D.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Mistry, J.; Mitchell, A.L.; Potter, S.C.; Punta, M.; Qureshi, M.; Sangrador-Vegas, A.; Salazar, G.A.; Tate, J.; Bateman, A. The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Res., 2016, 44, D279-D285.
[24]
Marchler-Bauer, A.; Bo, Y.; Han, L.; He, J.; Lanczycki, C.J.; Lu, S.; Chitsaz, F.; Derbyshire, M.K.; Geer, R.C.; Gonzales, N.R.; Gwadz, M.; Hurwitz, D.I.; Lu, F.; Marchler, G.H.; Song, J.S.; Thanki, N.; Wang, Z.; Yamashita, R.A.; Zhang, D.; Zheng, C.; Geer, L.Y.; Bryant, S.H. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Res., 2017, 45, D200-D203.
[25]
Finn, R.D.; Attwood, T.K.; Babbitt, P.C.; Bateman, A.; Bork, P.; Bridge, A.J.; Chang, H.Y.; Dosztanyi, Z.; El-Gebali, S.; Fraser, M.; Gough, J.; Haft, D.; Holliday, G.L.; Huang, H.; Huang, X.; Letunic, I.; Lopez, R.; Lu, S.; Marchler-Bauer, A.; Mi, H.; Mistry, J.; Natale, D.A.; Necci, M.; Nuka, G.; Orengo, C.A.; Park, Y.; Pesseat, S.; Piovesan, D.; Potter, S.C.; Rawlings, N.D.; Redaschi, N.; Richardson, L.; Rivoire, C.; Sangrador-Vegas, A.; Sigrist, C.; Sillitoe, I.; Smithers, B.; Squizzato, S.; Sutton, G.; Thanki, N.; Thomas, P.D.; Tosatto, S.C.; Wu, C.H.; Xenarios, I.; Yeh, L.S.; Young, S.Y. Mitchel,l A.L. InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res., 2017, 45, D190-D199.
[26]
Jaspard, E.; Hunault, G. sHSPdb: A database for the analysis of small Heat Shock Proteins. BMC Plant Biol., 2016, 16, 135.
[27]
Chou, K.C. Some remarks on protein attribute prediction and pseudo amino acid composition. J. Theor. Biol., 2011, 273, 236-247.
[28]
Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics, 2012, 28, 3150-3152.
[29]
Feng, P.M.; Ding, H.; Yang, H.; Chen, W.; Lin, H.; Chou, K.C. iRNA-PseColl: Identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC. Mol. Ther. Nucleic Acids, 2017, 7, 155-163.
[30]
Chen, W.; Yang, H.; Feng, P.M.; Ding, H.; Lin, H. iDNA4mC: Identifying DNA N4-methylcytosine sites based on nucleotide chemical properties. Bioinformatics, 2017, 33(22), 3518-3523.
[31]
Chen, W.; Ding, H.; Feng, P.M.; Lin, H.; Chou, K.C. iACP: A sequence-based tool for identifying anticancer peptides. Oncotarget, 2016, 7, 16895.
[32]
Chen, W.; Lin, H. Identification of voltage-gated potassium channel subfamilies from sequence information using support vector machine. Comput. Biol. Med., 2012, 42, 504-507.
[33]
Feng, P.M.; Chen, W.; Lin, H.; Chou, K.C. iHSP-PseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition. Anal. Biochem., 2013, 442, 118-125.
[34]
Ru, B.; Hoen, P.A.; Nie, F.; Lin, H.; Guo, F.B.; Huang, J. PhD7Faster: Predicting clones propagating faster from the Ph.D.-7 phage display peptide library. J. Bioinform. Comput. Biol., 2014, 12, 1450005.
[35]
He, B.; Kang, J.; Ru, B.; Ding, H.; Zhou, P.; Huang, J. SABinder: A web service for predicting streptavidin-binding peptides. BioMed Res. Int., 2016, 2016, 9175143.
[36]
Li, N.; Kang, J.; Jiang, L.; He, B.; Lin, H.; Huang, J. PSBinder: A web service for predicting polystyrene surface-binding peptides. BioMed Res. Int., 2017, 2017, 5761517.
[37]
Lin, H.; Chen, W. Prediction of thermophilic proteins using feature selection technique. J. Microbiol. Methods, 2011, 84, 67-70.
[38]
Chen, W.; Lin, H. Identification of voltage-gated potassium channel subfamilies from sequence information using support vector machine. Comput. Biol. Med., 2012, 42, 504-507.
[39]
Ding, H.; Deng, E.Z.; Yuan, L.F.; Liu, L.; Lin, H.; Chen, W.; Chou, K.C. iCTX-Type: A sequence-based predictor for identifying the types of conotoxins in targeting ion channels. BioMed Res. Int., 2014, 2014, 286419.
[40]
Ding, H.; Liang, Z.Y.; Guo, F.B.; Huang, J.; Chen, W.; Lin, H. Predicting bacteriophage proteins located in host cell with feature selection technique. BioMed Res. Int., 2016, 71, 156-161.
[41]
Tang, H.; Zhang, C.M.; Chen, R.; Huang, P.; Duan, C.G.; Zou, P. Identification of secretory proteins of malaria parasite by feature selection technique. Lett. Org. Chem., 2017, 14, 621-624.
[42]
Feng, Y.E.; Zhao, W. Identify protein 8-class secondary structure with quadratic discriminant algorithm based on the feature combination. Lett. Org. Chem., 2017, 14, 625-631.
[43]
Feng, P.M.; Chen, W.; Lin, H. Identifying antioxidant proteins by using optimal dipeptide compositions. Interdiscip. Sci., 2016, 8, 186-191.
[44]
Feng, P.M.; Ding, H.; Chen, W.; Lin, H. Naive Bayes classifier with feature selection to identify phage virion proteins. Comput. Math. Methods Med., 2013, 2013, 530696.
[45]
Feng, P.M.; Lin, H.; Chen, W. Identification of antioxidants from sequence information using naive Bayes. Comput. Biol. Med., 2013, 2013, 567529.
[46]
Mirny, L.A.; Shakhnovich, E.I. Universally conserved positions in protein folds: Reading evolutionary signals about stability, folding kinetics and function. J. Mol. Biol., 1999, 291, 177-196.
[47]
Zuo, Y.; Li, Y.; Chen, Y.; Li, G.; Yan, Z.; Yang, L. PseKRAAC: A flexible web server for generating pseudo K-tuple reduced amino acids composition. Bioinformatics, 2017, 33, 122-124.
[48]
Zuo, Y.; Lv, Y.; Wei, Z.; Yang, L.; Li, G.; Fan, G. iDPF-PseRAAAC: A Web-server for identifying the defensin peptide family and subfamily using pseudo reduced amino acid alphabet composition. PLoS One, 2015, 10, e0145541.
[49]
Zuo, Y.C.; Li, Q.Z. Using reduced amino acid composition to predict defensin family and subfamily: Integrating similarity measure and structural alphabet. Peptides, 2009, 30, 1788-1793.
[50]
De Brevern, A.G. New assessment of a structural alphabet. In Silico Biol., 2005, 5, 283-289.
[51]
Etchebest, C.; Benros, C.; Bornot, A.; Camproux, A.C.; De Brevern, A.G. A reduced amino acid alphabet for understanding and designing protein adaptation to mutation. Eur. Biophys. J., 2007, 36, 1059-1069.
[52]
de Brevern, A.G.; Etchebest, C.; Hazout, S. Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks. Proteins, 2000, 41, 271-287.
[53]
Feng, P.M.; Lin, H.; Chen, W.; Zuo, Y. Predicting the types of J-proteins using clustered amino acids. BioMed Res. Int., 2014, 2014, 935719.
[54]
Feng, P.M.; Chen, W.; Lin, H.; Chou, K.C. iHSP-PseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition. Anal. Biochem., 2013, 442, 118-125.
[55]
Kumar, R.; Kumari, B.; Kumar, M. PredHSP: Sequence based proteome-wide heat shock protein prediction and classification tool to unlock the stress biology. PLoS One, 2016, 11, e0155872.
[56]
Mitra, A.; Shevde, L.A.; Samant, R.S. Multi-faceted role of HSP40 in cancer. Clin. Exp. Metastasis, 2009, 26, 559-567.
[57]
Sterrenberg, J.N.; Blatch, G.L.; Edkins, A.L. Human DNAJ in cancer and stem cells. Cancer Lett., 2011, 312, 129-142.
[58]
Feng, P.M.; Lin, H.; Chen, W.; Zuo, Y. Predicting the types of J-proteins using clustered amino acids. BioMed Res. Int., 2014, 2014, 935719.