[1]
Chen, J.G.; Chen, H.Z.; Zhu, J.; Yang, Y.L.; Zhang, Y.H.; Huang, P.X.; Chen, Y.S.; Zhu, C.Y.; Yang, L.P.; Shen, K.; Qiang, F.L.; Wang, G.R. Cancer survival in patients from a hospital-based cancer registry, China. J. Cancer, 2018, 9(5), 851-860.
[2]
Sacco, P.C.; Casaluce, F.; Sgambato, A.; Rossi, A.; Maione, P.; Palazzolo, G.; Napolitano, A.; Gridelli, C. Current challenges of lung cancer care in an aging population. Expert Rev. Anticancer Ther., 2015, 15(12), 1419-1429.
[3]
Ettinger, D.S.; Wood, D.E.; Aisner, D.L.; Akerley, W.; Bauman, J.; Chirieac, L.R.; D’Amico, T.A.; DeCamp, M.M.; Dilling, T.J.; Dobelbower, M.; Doebele, R.C.; Govindan, R.; Gubens, M.A.; Hennon, M.; Horn, L.; Komaki, R.; Lackner, R.P.; Lanuti, M.; Leal, T.A.; Leisch, L.J.; Lilenbaum, R.; Lin, J.; Loo, B.W., Jr; Martins, R.; Otterson, G.A.; Reckamp, K.; Riely, G.J.; Schild, S.E.; Shapiro, T.A.; Stevenson, J.; Swanson, S.J.; Tauer, K.; Yang, S.C.; Gregory, K.; Hughes, M. Non-small cell lung cancer, Version 5.2017, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw., 2017, 15(4), 504-535.
[4]
Shi, X.; Sun, X. Regulation of paclitaxel activity by microtubule-associated proteins in cancer chemotherapy. Cancer Chemother. Pharmacol., 2017, 80(5), 909-917.
[5]
Liao, P.C.; Tan, S.K.; Lieu, C.H.; Jung, H.K. Involvement of endoplasmic reticulum in paclitaxel-induced apoptosis. J. Cell. Biochem., 2008, 104(4), 1509-1523.
[6]
Xu, L.; Liu, J.H.; Zhang, J.; Zhang, N.; Wang, Z.H. Blockade of autophagy aggravates endoplasmic reticulum stress and improves Paclitaxel cytotoxicity in human cervical cancer cells. Cancer Res. Treat., 2015, 47(2), 313-321.
[7]
Kubota, T.; Okano, Y.; Sakai, M.; Takaoka, M.; Tsukuda, T.; Anabuki, K.; Kawase, S.; Miyamoto, S.; Ohnishi, H.; Hatakeyama, N.; Machida, H.; Urata, T.; Yamamoto, A.; Ogushi, F.; Yokoyama, A. Carboplatin plus weekly paclitaxel with bevacizumab for first-line treatment of non-small cell lung cancer. Anticancer Res., 2016, 36(1), 307-312.
[8]
Gelderblom, H.; Verweij, J.; Nooter, K.; Sparreboom, A.; Cremophor, E.L. Tthe drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer, 2001, 37(13), 1590-1598.
[9]
Ingemarsdotter, C.K.; Tookman, L.A.; Browne, A.; Pirlo, K.; Cutts, R.; Chelela, C.; Khurrum, K.F.; Leung, E.Y.; Dowson, S.; Webber, L.; Khan, I.; Ennis, D.; Syed, N.; Crook, T.R.; Brenton, J.D.; Lockley, M.; McNeish, I.A. Paclitaxel resistance increases oncolytic adenovirus efficacy via upregulated CAR expression and dysfunctional cell cycle control. Mol. Oncol., 2015, 9(4), 791-805.
[10]
Ma, P.; Mumper, R.J. Paclitaxel nano-delivery systems: A comprehensive review. J. Nanomed. Nanotechnol., 2013, 4(2), 1000164.
[11]
Yi, Y.; Lin, G.; Chen, S.; Liu, J.; Zhang, H.; Mi, P. Polyester micelles for drug delivery and cancer theranostics: Current achievements, progresses and future perspectives. Mater. Sci. Eng. C Mater. Biol. Appl., 2018, 83, 218-232.
[12]
Zhu, Y.; Yang, B.; Chen, S. Du, J. Polymer vesicles: Mechanism, preparation, application, and responsive behavior. Prog. Polym. Sci., 2017, 64, 1-22.
[13]
Komiyama, M.; Yoshimoto, K.; Sisido, M.; Ariga, K. Chemistry can make strict and fuzzy controls for bio-systems: DNA nanoarchitectonics and cell-macromolecular nanoarchitectonics. Bull. Chem. Soc. Japan., 2017, 90(9), 967-1004.
[14]
Li, X.; Xu, H.; Dai, X.; Zhu, Z.; Liu, B.; Lu, X. Enhanced in vitro and in vivo therapeutic efficacy of codrug-loaded nanoparticles against liver cancer. Int. J. Nanomedicine, 2012, 7, 5183-5190.
[16]
Zhang, H.; Tian, Y.; Zhu, Z.; Xu, H.; Li, X.; Zheng, D.; Sun, W. Efficient antitumor effect of co-drug-loaded nanoparticles with gelatin hydrogel by local implantation. Sci. Rep., 2016, 6, 26546.
[17]
Zhang, L.; He, Y.; Yu, M.; Song, C. Paclitaxel-loaded polymeric nanoparticles based on PCL-PEG-PCL: Preparation, in vitro and in vivo evaluation. J. Control. Release, 2011, 152(Suppl. 1), e114-e116.
[18]
Greish, K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol., 2010, 624, 25-37.
[19]
Xu, H.; Lu, X.; Li, J.; Ding, D.; Wang, H.; Li, X.; Xie, W. Superior antitumor effect of extremely high drug loading self-assembled paclitaxel nanofibers. Int. J. Pharm., 2017, 526(1-2), 217-224.
[20]
Surman, M.; Janik, M.E. Stress and its molecular consequences in cancer progression. Postepy Hig. Med. Dosw.(Online), 2017, 71, 485-499.
[21]
Adams, J.M.; Cory, S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene, 2007, 26(9), 1324-1337.
[22]
Joseph, B.; Lewensohn, R.; Zhivotovsky, B. Role of apoptosis in the response of lung carcinomas to anti-cancer treatment. Ann. N. Y. Acad. Sci., 2000, 926, 204-216.
[23]
Deng, J. How to unleash mitochondrial apoptotic blockades to kill cancers? Acta Pharm. Sin. B, 2017, 7(1), 18-26.
[24]
Park, J.S.; Kim, I.K.; Han, S.; Park, I.; Kim, C.; Bae, J.; Oh, S.J.; Lee, S.; Kim, J.H.; Woo, D.C.; He, Y.; Augustin, H.G.; Kim, I.; Lee, D.; Koh, G.Y. Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell, 2016, 30(6), 953-967.
[25]
Minami, T.; Jiang, S.; Schadler, K.; Suehiro, J.; Osawa, T.; Oike, Y.; Miura, M.; Naito, M.; Kodama, T.; Ryeom, S. The calcineurin-NFAT-angiopoietin-2 signaling axis in lung endothelium is critical for the establishment of lung metastases. Cell Rep., 2013, 4(4), 709-723.
[26]
Koontongkaew, S. The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinomas. J. Cancer, 2013, 4(1), 66-83.
[27]
Bergers, G.; Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer, 2008, 8(8), 592-603.
[28]
Stuelten, C.H.; Parent, C.A.; Montell, D.J. Cell motility in cancer invasion and metastasis: Insights from simple model organisms. Nat. Rev. Cancer, 2018, 18(5), 296-312.
[29]
Li, Y.; Sun, B.; Zhao, X.; Wang, X.; Zhang, D.; Gu, Q.; Liu, T. MMP-2 and MMP-13 affect vasculogenic mimicry formation in large cell lung cancer. J. Cell. Mol. Med., 2017, 21(12), 3741-3751.
[30]
Maryam, A.; Mehmood, T.; Yan, Q.; Li, Y.; Khan, M.; Ma, T. Proscillaridin a promotes oxidative stress and ER stress, inhibits STAT3 activation, and induces apoptosis in A549 lung adenocarcinoma cells. Oxid. Med. Cell. Longev., 2018, 2018, 3853409.
[31]
Lin, C.L.; Lee, C.H.; Chen, C.M.; Cheng, C.W.; Chen, P.N.; Ying, T.H.; Hsieh, Y.H. Protodioscin induces apoptosis through ROS-mediated endoplasmic reticulum stress via the JNK/p38 activation pathways in human cervical cancer cells. Cell. Physiol. Biochem., 2018, 46(1), 322-334.
[32]
Tsai, T.C.; Lai, K.H.; Su, J.H.; Wu, Y.J.; Sheu, J.H. 7-Acetylsinumaximol B induces apoptosis and autophagy in human gastric carcinoma cells through mitochondria dysfunction and activation of the PERK/eIF2alpha/ATF4/CHOP signaling pathway. Mar. Drugs, 2018, 16(4), E104.
[33]
Corazzari, M.; Gagliardi, M.; Fimia, G.M.; Piacentini, M. Endoplasmic reticulum stress, unfolded protein response, and cancer cell fate. Front. Oncol., 2017, 7, 78.
[34]
Puthalakath, H.; O’Reilly, L.A.; Gunn, P.; Lee, L.; Kelly, P.N.; Huntington, N.D.; Hughes, P.D.; Michalak, E.M.; McKimm-Breschkin, J.; Motoyama, N.; Gotoh, T.; Akira, S.; Bouillet, P.; Strasser, A. ER stress triggers apoptosis by activating BH3-only protein Bim. Cell, 2007, 129(7), 1337-1349.
[35]
Rosati, E.; Sabatini, R.; Rampino, G.; De Falco, F.; Di Ianni, M.; Falzetti, F.; Fettucciari, K.; Bartoli, A.; Screpanti, I.; Marconi, P. Novel targets for endoplasmic reticulum stress-induced apoptosis in B-CLL. Blood, 2010, 116(15), 2713-2723.
[36]
Shore, G.C.; Papa, F.R.; Oakes, S.A. Signaling cell death from the endoplasmic reticulum stress response. Curr. Opin. Cell Biol., 2011, 23(2), 143-149.
[37]
Merksamer, P.I.; Papa, F.R. The UPR and cell fate at a glance. J. Cell Sci., 2010, 123(Pt 7), 1003-1006.
[38]
Kim, H.; Shin, E.A.; Kim, C.G.; Lee, D.Y.; Kim, B.; Baek, N.I.; Kim, S.H. Obovatol induces apoptosis in non-small cell lung cancer cells via C/EBP homologous protein activation. Phytother. Res., 2016, 30(11), 1841-1847.
[39]
Marciniak, S.J.; Yun, C.Y.; Oyadomari, S.; Novoa, I.; Zhang, Y.; Jungreis, R.; Nagata, K.; Harding, H.P.; Ron, D. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev., 2004, 18(24), 3066-3077.
[40]
Han, J.; Back, S.H.; Hur, J.; Lin, Y.H.; Gildersleeve, R.; Shan, J.; Yuan, C.L.; Krokowski, D.; Wang, S.; Hatzoglou, M.; Kilberg, M.S.; Sartor, M.A.; Kaufman, R.J. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat. Cell Biol., 2013, 15(5), 481-490.
[41]
Rozpedek, W.; Pytel, D.; Mucha, B.; Leszczynska, H.; Diehl, J.A.; Majsterek, I. The role of the PERK/eIF2alpha/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress. Curr. Mol. Med., 2016, 16(6), 533-544.
[42]
Urano, F.; Wang, X.; Bertolotti, A.; Zhang, Y.; Chung, P.; Harding, H.P.; Ron, D. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science, 2000, 287(5453), 664-666.
[43]
Dhanasekaran, D.N.; Reddy, E.P. JNK signaling in apoptosis. Oncogene, 2008, 27(48), 6245-6251.