Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Recent Progress of Supercritical Carbon Dioxide in Producing Natural Nanomaterials

Author(s): Maobin Xie*, Man Xu, Xiaoming Chen and Yi Li*

Volume 19, Issue 6, 2019

Page: [465 - 476] Pages: 12

DOI: 10.2174/1389557518666181015152952

Price: $65

Open Access Journals Promotions 2
Abstract

Natural medicines are widely utilized in human healthcare. Their beneficial effects have been attributed to the existence of natural active ingredients (NAI) with a positive impact on disease treatment and prevention. Public awareness about the side effects of synthetic chemical compounds increased the need for NAI as well. Clinical applications of NAI are limited by their instability and poor water solubility, while micronization is a major strategy to overcome these drawbacks. Supercritical carbon dioxide (sc-CO2) based nano techniques have drawn great attention in nanomedicinal area for many years, due to their unique characters such as fast mass transfer, near zero surface tension, effective solvents elimination, non-toxic, non-flammable, low cost and environmentally benign. In terms of functions of sc-CO2, many modified sc-CO2 based techniques are developed to produce NAI nanoparticles with high solubility, biological availability and stability. 5 types of promising methods, including gas-assisted melting atomization, CO2-assisted nebulization with a bubble dryer, supercritical fluidassisted atomization with a hydrodynamic cavitation mixer, supercritical CO2-based coating method and solution-enhanced dispersion by sc-CO2 process, are summarized in this article followed by a highlight of their fundamental synthesis principles and important medicinal applications.

Keywords: Supercritical, micronization, natural active ingredients, nanoparticle, nanomedicine, drug delivery.

Graphical Abstract
[1]
Azmin, S.N.H.M.; Manan, Z.A.; Alwi, S.R.W.; Chua, L.S.; Mustaffa, A.A.; Yunus, N.A. Herbal processing and extraction technologies. Separ. Purif. Rev., 2016, 45(4), 305-320.
[2]
Nuchuchua, O.; Nejadnik, M.R.; Goulooze, S.C.; Ljeskovic, N.J.; Every, H.A.; Jiskoot, W. Characterization of drug delivery particles, produced by supercritical carbon dioxide technologies. J. Supercrit. Fluids, 2017, 128, 244-262.
[3]
Ratanajiajaroen, P.; Ohshima, M. Preparation of highly porous β-chitin structure through nonsolvent–solvent exchange-induced phase separation and supercritical CO2 drying. J. Supercrit. Fluids, 2012, 68, 31-38.
[4]
Diop, M.; Auberval, N.; Viciglio, A.; Langlois, A.; Bietiger, W.; Mura, C.; Peronet, C.; Bekel, A.; Julien David, D.; Zhao, M.; Pinget, M.; Jeandidier, N.; Vauthier, C.; Marchioni, E.; Frere, Y.; Sigrist, S. Design, characterisation, and bioefficiency of insulin-chitosan nanoparticles after stabilisation by freeze-drying or cross-linking. Int. J. Pharm., 2015, 491(1-2), 402-408.
[5]
Dadparvar, M.; Wagner, S.; Wien, S.; Worek, F.; von Briesen, H.; Kreuter, J. Freeze-drying of HI-6-loaded recombinant human serum albumin nanoparticles for improved storage stability. Eur. J. Pharm. Biopharm., 2014, 88(2), 510-517.
[6]
Fonte, P.; Araujo, F.; Seabra, V.; Reis, S.; van de Weert, M.; Sarmento, B. Co-encapsulation of lyoprotectants improves the stability of protein-loaded PLGA nanoparticles upon lyophilization. Int. J. Pharm., 2015, 496(2), 850-862.
[7]
Chow, S.F.; Wan, K.Y.; Cheng, K.K.; Wong, K.W.; Sun, C.C.; Baum, L.; Chow, A.H. Development of highly stabilized curcumin nanoparticles by flash nanoprecipitation and lyophilization. Eur. J. Pharm. Biopharm., 2015, 94, 436-449.
[8]
Tonon, R.V.; Grosso, C.R.F.; Hubinger, M.D. Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food Res. Int., 2011, 44(1), 282-289.
[9]
Nie, H.; Lee, L.Y.; Tong, H.; Wang, C.H. PLGA/chitosan composites from a combination of spray drying and supercritical fluid foaming techniques: new carriers for DNA delivery. J. Control. Release, 2008, 129(3), 207-214.
[10]
Sliwinski, E.L.; Lavrijsen, B.W.M.; Vollenbroek, J.M.; van der Stege, H.J.; van Boekel, M.A.J.S.; Wouters, J.T.M. Effects of spray drying on physicochemical properties of milk protein-stabilised emulsions. Coll. Surface B, 2003, 31(1-4), 219-229.
[11]
Hoyer, H.; Schlocker, W.; Krum, K.; Bernkop-Schnürch, A. Preparation and evaluation of microparticles from thiolated polymers via air jet milling. Eur. J. Pharm. Biopharm., 2008, 69(2), 476-485.
[12]
Edris, A.E.; Kalemba, D.; Adamiec, J.; Piatkowski, M. Microencapsulation of Nigella sativa oleoresin by spray drying for food and nutraceutical applications. Food Chem., 2016, 204, 326-333.
[13]
Seto, Y.; Suzuki, G.; Leung, S.S.; Chan, H.K.; Onoue, S. Development of an improved inhalable powder formulation of pirfenidone by spray-drying: in vitro characterization and pharmacokinetic profiling. Pharm. Res., 2016, 33(6), 1447-1455.
[14]
Huang, K.; Zhang, P.J.; Hu, B.; Yu, S.J. The effect of spray drying on sucrose-glycine caramel powder preparation. J. Sci. Food Agric., 2016, 96(7), 2319-2327.
[15]
Sun, W.; Ni, R.; Zhang, X.; Li, L.C.; Mao, S. Spray drying of a poorly water-soluble drug nanosuspension for tablet preparation: formulation and process optimization with bioavailability evaluation. Drug Dev. Ind. Pharm., 2015, 41(6), 927-933.
[16]
Soazo, M.; Rubiolo, A.C.; Verdini, R.A. Effect of drying temperature and beeswax content on moisture isotherms of whey protein emulsion film. Procedia Food Sci., 2011, 1, 210-215.
[17]
Clark, B.D.; Molina, A.R.; Martin, G.G.; Wang, J.W.; Spain, E.M. Au nanoparticle clusters from deposition of a coalescing emulsion. J. Colloid Interface Sci., 2015, 450, 417-423.
[18]
de Paz, E.; Martín, Á.; Duarte, C.M.M.; Cocero, M.J. Formulation of β-carotene with poly-(ε-caprolactones) by PGSS process. Powder Technol., 2012, 217, 77-83.
[19]
Chen, A.Z.; Pu, X.M.; Yin, G.F.; Zhao, C.; Wang, S.B.; Liu, Y.G.; Wang, G.Y.; Kang, Y.Q. Study of lysozyme-polymer composite microparticles in supercritical CO2. J. Appl. Polym. Sci., 2012, 125(4), 3175-3183.
[20]
Chen, A.Z.; Li, Y.; Chau, F.T.; Lau, T.Y.; Hu, J.Y. Effect of operating parameters on yield and anti-oxidative activity of puerarin in supercritical process. J. Fiber. Bioeng. Inform., 2009, 2, 198-205.
[21]
Zhao, Z.; Li, Y.; Chen, A.Z.; Zheng, Z.J.; Hu, J.Y.; Li, J.S.; Li, G. Generation of silk fibroin nanoparticles via solution-enhanced dispersion by supercritical CO2. Ind. Eng. Chem. Res., 2013, 52(10), 3752-3761.
[22]
Xie, M.B.; Li, Y.; Zhao, Z.; Chen, A.Z.; Li, J.S.; Hu, J.Y.; Li, G.; Li, Z. Solubility enhancement of curcumin via supercritical CO2 based silk fibroin carrier. J. Supercrit. Fluids, 2015, 103, 1-9.
[23]
Wang, J.S.; Wai, C.M.; Brown, G.J.; Apt, S.D. Two-dimensional nanoparticle cluster formation in supercritical fluid CO2. Langmuir, 2016, 32(18), 4635-4642.
[24]
Shen, Y.B.; Du, Z.; Tang, C.; Guan, Y.X.; Yao, S.J. Formulation of insulin-loaded N-trimethyl chitosan microparticles with improved efficacy for inhalation by supercritical fluid assisted atomization. Int. J. Pharm., 2016, 505(1-2), 223-233.
[25]
Beckman, E.J. Supercritical and near-critical CO2 in green chemical synthesis and processing. J. Supercrit. Fluids, 2004, 28(2-3), 121-191.
[26]
Ribaut, T.; Oberdisse, J.; Annighofer, B.; Fournel, B.; Sarrade, S.; Haller, H.; Lacroix-Desmazes, P. Solubility and self-assembly of amphiphilic gradient and block copolymers in supercritical CO2. J. Phys. Chem. B, 2011, 115(5), 836-843.
[27]
Tabernero, A.; del Valle, E.M.M.; Galan, M.A. Supercritical fluids for pharmaceutical particle engineering: Methods, basic fundamentals and modelling. Chem. Eng. Process., 2012, 60, 9-25.
[28]
Wu, W.; Zhang, J.; Han, B.; Chen, J.; Liu, Z.; Jiang, T.; He, J.; Li, W. Solubility of room-temperature ionic liquid in supercritical CO2 with and without organic compounds. Chem. Commun., 2003, 9(12), 1412-1413.
[29]
Esfandiari, N.; Ghoreishi, S.M. Ampicillin nanoparticles production via supercritical CO2 gas antisolvent process. AAPS PharmSciTech, 2015, 16(6), 1263-1269.
[30]
Mullers, K.C.; Paisana, M.; Wahl, M.A. Simultaneous formation and micronization of pharmaceutical cocrystals by Rapid Expansion of Supercritical Solutions (RESS). Pharm. Res., 2015, 32(2), 702-713.
[31]
Kalani, M.; Yunus, R. Application of supercritical antisolvent method in drug encapsulation: A review. Int. J. Nanomedicine, 2011, 6, 1429-1442.
[32]
Lee, D.I.; Ling, Y.; Sung, M.H.; Park, I.H. Preparation and characterization of microparticles of poly(gamma-glutamic acid) containing lysozyme by means of Supercritical Anti-Solvent (SAS) precipitation process. Polym-Korea, 2007, 31(2), 168-176.
[33]
Elvassore, N.; Bertucco, A.; Caliceti, P. Production of insulin-loaded poly(ethylene glycol)/poly(l-lactide) (PEG/PLA) nanoparticles by gas antisolvent techniques. J. Pharm. Sci., 2001, 90(10), 1628-1636.
[34]
Chang, S.C.; Lee, M.J.; Lin, H.M. Role of phase behavior in micronization of lysozyme via a supercritical anti-solvent process. Chem. Eng. J., 2008, 139(2), 416-425.
[35]
Chen, A.Z.; Li, Y.; Chau, F.T.; Lau, T.Y.; Hu, J.Y.; Zhao, Z.; Mok, D.K.W. Application of organic nonsolvent in the process of solution-enhanced dispersion by supercritical CO2 to prepare puerarin fine particles. J. Supercrit. Fluids, 2009, 49(3), 394-402.
[36]
Chen, A.Z.; Li, Y.; Chau, F.T.; Lau, T.Y.; Hu, J.Y.; Zhao, Z.; Mok, D.K.W. Microencapsulation of puerarin nanoparticles by poly(L-lactide) in a supercritical CO2 process. Acta Biomater., 2009, 5(8), 2913-2919.
[37]
Zhao, Z.; Chen, A.Z.; Li, Y.; Hu, J.Y.; Liu, X.Q.; Li, J.S.; Zhang, Y.; Li, G.; Zheng, Z. Fabrication of silk fibroin nanoparticles for controlled drug delivery. J. Nanopart. Res., 2012, 14(4), 1-10.
[38]
Muhrer, G.; Mazzotti, M. Precipitation of lysozyme nanoparticles from dimethyl sulfoxide using carbon dioxide as antisolvent. Biotechnol. Prog., 2003, 19(2), 549-556.
[39]
Moshashaee, S.; Bisrat, M.; Forbes, R.T.; Quinn, E.A.; Nyqvist, H.; York, P. Supercritical fluid processing of proteins: Lysozyme precipitation from aqueous solution. J. Pharm. Pharmacol., 2003, 55(2), 185-192.
[40]
Carpenter, J.F.; Prestrelski, S.J.; Arakawa, T. Separation of freezing- and drying-induced denaturation of lyophilized proteins using stress-specific stabilization: I. enzyme activity and calorimetric studies. Arch. Biochem. Biophys., 1993, 303(2), 456-464.
[41]
Prestrelski, S.J.; Arakawa, T.; Carpenter, J.F. Separation of freezing- and drying-induced denaturation of lyophilized proteins using stress-specific stabilization: II. structural studies using infrared spectroscopy. Arch. Biochem. Biophys., 1993, 303(2), 465-473.
[42]
Labuschagne, P.W.; Naicker, B.; Kalombo, L. Micronization, characterization and in-vitro dissolution of shellac from PGSS supercritical CO2 technique. Int. J. Pharm., 2016, 499(1-2), 205-216.
[43]
Salmaso, S.; Elvassore, N.; Bertucco, A.; Caliceti, P. Production of solid lipid submicron particles for protein delivery using a novel supercritical gas-assisted melting atomization process. J. Pharm. Sci., 2009, 98(2), 640-650.
[44]
Sellers, S.P.; Clark, G.S.; Sievers, R.E.; Carpenter, J.F. Dry powders of stable protein formulations from aqueous solutions prepared using supercritical CO2-assisted aerosolization. J. Pharm. Sci., 2001, 90(6), 785-797.
[45]
Sievers, R.E.; Karst, P.; Milewski, P.D.; Sellers, S.P.; Miles, B.A.; Schaefer, J.D.; Stoldt, C.R.; Xu, C.Y. Formation of aqueous small droplet aerosols assisted by supercritical carbon dioxide. Aerosol Sci. Technol., 1999, 30(1), 3-15.
[46]
Sievers, R.E.; Milewski, P.D.; Sellers, S.P.; Miles, B.A.; Korte, B.J.; Kusek, K.D.; Clark, G.S.; Mioskowski, B.; Villa, J.A. Supercritical and near-critical carbon dioxide assisted low temperature bubble drying. Ind. Eng. Chem. Res., 2000, 39(12), 4831-4836.
[47]
Sievers, R.E.; Huang, E.T.S.; Villa, J.A.; Kawamoto, J.K.; Evans, M.M.; Brauer, P.R. Low-temperature manufacturing of fine pharmaceutical powders with supercritical fluid aerosolization in a Bubble Dryer (R). Pure Appl. Chem., 2001, 73(8), 1299-1303.
[48]
Sievers, R.E.; Huang, E.T.S.; Villa, J.A.; Engling, G.; Brauer, P.R. Micronization of water-soluble or alcohol-soluble pharmaceuticals and model compounds with a low-temperature bubble dryer®. J. Supercrit. Fluids, 2003, 26(1), 9-16.
[49]
Villa, J.A.; Huang, E.T.S.; Cape, S.P.; Sievers, R.E. Synthesis of composite microparticles with a mixing cross. Aerosol Sci. Technol., 2005, 39(6), 473-484.
[50]
Adler, M.; Lee, G. Stability and surface activity of lactate dehydrogenase in spray-dried trehalose. J. Pharm. Sci., 1999, 88(2), 199-208.
[51]
Cape, S.P.; Villa, J.A.; Huang, E.T.S.; Yang, T.H.; Carpenter, J.F.; Sievers, R.E. Preparation of active proteins, vaccines and phamaceuticals as fine powders using supercritical or near-critical fluids. Pharm. Res-Dordr., 2008, 25(9), 1967-1990.
[52]
Reverchon, E.; Spada, A. Crystalline microparticles of controlled size produced by supercritical-assisted atomization. Ind. Eng. Chem. Res., 2004, 43(6), 1460-1465.
[53]
Sievers, R.E.; Quinn, B.P.; Cape, S.P.; Searles, J.A.; Braun, C.S.; Bhagwat, P.; Rebits, L.G.; McAdams, D.H.; Burger, J.L.; Best, J.A.; Lindsay, L.; Hernandez, M.T.; Kisich, K.O.; Iacovangelo, T.; Kristensen, D.; Chen, D. Near-critical fluid micronization of stabilized vaccines, antibiotics and anti-virals. J. Supercrit. Fluids, 2007, 42(3), 385-391.
[54]
Manion, J.R.; Cape, S.P.; McAdams, D.H.; Rebits, L.G.; Evans, S.; Sievers, R.E. Inhalable antibiotics manufactured through use of near-critical or supercritical fluids. Aerosol Sci. Technol., 2012, 46(4), 403-410.
[55]
Shoyele, S.A.; Cawthorne, S. Particle engineering techniques for inhaled biopharmaceuticals. Adv. Drug Deliv. Rev., 2006, 58(9-10), 1009-1029.
[56]
Kisich, K.O.; Higgins, M.P.; Park, I.; Cape, S.P.; Lindsay, L.; Bennett, D.J.; Winston, S.; Searles, J.; Sievers, R.E. Dry powder measles vaccine: Particle deposition, virus replication, and immune response in cotton rats following inhalation. Vaccine, 2011, 29(5), 905-912.
[57]
Gießauf, A.; Gamse, T. A simple process for increasing the specific activity of porcine pancreatic lipase by supercritical carbon dioxide treatment. J. Mol. Catal., B Enzym., 2000, 9(1-3), 57-64.
[58]
Adami, R.; Osseo, L.S.; Reverchon, E. Micronization of lysozyme by supercritical assisted atomization. Biotechnol. Bioeng., 2009, 104(6), 1162-1170.
[59]
Cai, M.Q.; Guan, Y.X.; Yao, S.J.; Zhu, Z.Q. Supercritical fluid assisted atomization introduced by hydrodynamic cavitation mixer (SAA-HCM) for micronization of levofloxacin hydrochloride. J. Supercrit. Fluids, 2008, 43(3), 524-534.
[60]
Wang, Q.; Guan, Y.X.; Yao, S.J.; Zhu, Z.Q. Controllable preparation and formation mechanism of BSA microparticles using supercritical assisted atomization with an enhanced mixer. J. Supercrit. Fluid, 2011, 56(1), 97-104.
[61]
Du, Z.; Tang, C.; Guan, Y.X.; Yao, S.J.; Zhu, Z.Q. Bioactive insulin microparticles produced by supercritical fluid assisted atomization with an enhanced mixer. Int. J. Pharm., 2013, 454(1), 174-182.
[62]
Du, Z.; Shen, Y.B.; Tang, C.; Guan, Y.X.; Yao, S.J.; Zhu, Z.Q. Supercritical fluid assisted production of chitosan oligomers micrometric powders. Carbohydr. Polym., 2014, 102, 400-408.
[63]
Shen, Y.B.; Du, Z.; Wang, Q.; Guan, Y.X.; Yao, S.J. Preparation of chitosan microparticles with diverse molecular weights using supercritical fluid assisted atomization introduced by hydrodynamic cavitation mixer. Powder Technol., 2014, 254, 416-424.
[64]
Shen, Y.B.; Guan, Y.X.; Yao, S.J. Supercritical fluid assisted production of micrometric powders of the labile trypsin and chitosan/trypsin composite microparticles. Int. J. Pharm., 2015, 489(1-2), 226-236.
[65]
Shen, Y.B.; Du, Z.; Tang, C.; Guan, Y.X.; Yao, S.J. Formulation of insulin-loaded N-trimethyl chitosan microparticles with improved efficacy for inhalation by supercritical fluid assisted atomization. Int. J. Pharm., 2016, 505(1-2), 223-233.
[66]
Reverchon, E.; Antonacci, A. Chitosan microparticles production by supercritical fluid processing. Ind. Eng. Chem. Res., 2006, 45(16), 5722-5728.
[67]
Chew, N.Y.; Tang, P.; Chan, H.K.; Raper, J.A. How much particle surface corrugation is sufficient to improve aerosol performance of powders. Pharm. Res.-. Dord., 2005, 22(1), 148-152.
[68]
Svitova, T.F.; Wetherbee, M.J.; Radke, C.J. Dynamics of surfactant sorption at the air/water interface: Continuous-flow tensiometry. J. Coll. Interf. Sci., 2003, 261(1), 170-179.
[69]
Seydel, P.; Blomer, J.; Bertling, J. Modeling particle formation at spray drying using population balances. Dry. Technol., 2006, 24(2), 137-146.
[70]
Thies, C.; Dos Santos, I.R.; Richard, J.; Vandevelde, V.; Rolland, H.; Benoit, J.P. A supercritical fluid-based coating technology 1: process considerations. J. Microencapsul., 2003, 20(1), 87-96.
[71]
Ribeiro Dos Santos, I.; Richard, J.; Pech, B.; Thies, C.; Benoit, J.P. Microencapsulation of protein particles within lipids using a novel supercritical fluid process. Int. J. Pharm., 2002, 242(1-2), 69-78.
[72]
Dos Santos, I.R.; Richard, J.; Thies, C.; Pech, B.; Benoit, J.P. A supercritical fluid-based coating technology. 3: preparation and characterization of bovine serum albumin particles coated with lipids. J. Microencapsul., 2003, 20(1), 110-128.
[73]
Murillo-Cremaes, N.; Subra-Paternault, P.; Saurina, J.; Roig, A.; Domingo, C. Compressed antisolvent process for polymer coating of drug-loaded aerogel nanoparticles and study of the release behavior. Colloid Polym. Sci., 2014, 292(10), 2475-2484.
[74]
Chen, A.Z.; Wang, G.Y.; Wang, S.B.; Li, L.; Liu, Y.G.; Zhao, C. Formation of methotrexate-PLLA-PEG-PLLA composite microspheres by microencapsulation through a process of suspension-enhanced dispersion by supercritical CO2. Int. J. Nanomedicine, 2012, 7, 3013-3022.
[75]
Marra, F.; De Marco, I.; Reverchon, E. Numerical analysis of the characteristic times controlling supercritical antisolvent micronization. Chem. Eng. Sci., 2012, 71, 39-45.
[76]
De Marco, I.; Knauer, O.; Cice, F.; Braeuer, A.; Reverchon, E. Interactions of phase equilibria, jet fluid dynamics and mass transfer during supercritical antisolvent micronization: the influence of solvents. Chem. Eng. J., 2012, 203, 71-80.
[77]
Jia, J.F.; Wang, W.C.; Gao, Y.H.; Zhao, Y.P. Controlled morphology and size of curcumin using ultrasound in supercritical CO2 antisolvent. Ultrason. Sonochem., 2015, 27, 389-394.
[78]
Xie, M.B.; Li, Y.; Zhao, Z.; Chen, A.Z.; Li, J.S.; Li, Z.; Li, G.; Lin, X.F. Development of silk fibroin-derived nanofibrous drug delivery system in supercritical CO2. Mater. Lett., 2016, 167, 175-178.
[79]
Xie, M.B.; Fan, D.J.; Chen, Y.F.; Zhao, Z.; He, X.W.; Li, G.; Chen, A.Z.; Wu, X.J.; Li, J.S.; Li, Z.; Hunt, J.A.; Li, Y.; Lan, P. An implantable and controlled drug-release silk fibroin nanofibrous matrix to advance the treatment of solid tumour cancers. Biomaterials, 2016, 103, 33-43.
[80]
Jia, J.F.; Wang, J.; Zhang, K.R.; Zhou, D.; Ge, F.H.; Zhao, Y.P. Aescin nanoparticles prepared using SEDS: composition stability and dissolution enhancement. J. Supercrit. Fluids, 2017, 130, 267-272.
[81]
Kankala, R.K.; Zhang, Y.S.; Wang, S.B.; Lee, C.H.; Chen, A.Z. Supercritical fluid technology: an emphasis on drug delivery and related biomedical applications. Adv. Healthc. Mater., 2017, 6(16), 1-31.
[82]
Nerome, H.; Machmudah, S. Wahyudiono.; Fukuzato, R.; Higashiura, T.; Youn, Y.S.; Lee, Y.W.; Goto, M. Nanoparticle formation of lycopene/beta-cyclodextrin inclusion complex using supercritical antisolvent precipitation. J. Supercrit. Fluids, 2013, 83, 97-103.
[83]
Chen, F.; Yin, G.; Liao, X.; Yang, Y.; Huang, Z.; Gu, J.; Yao, Y.; Chen, X.; Gao, H. Preparation, characterization and in vitro release properties of morphine-loaded PLLA-PEG-PLLA microparticles via solution enhanced dispersion by supercritical fluids. J. Mater. Sci. Mater. Med., 2013, 24(7), 1693-1705.
[84]
Boschetto, D.L.; Dalmolin, I.; de Cesaro, A.M.; Rigo, A.A.; Ferreira, S.R.S.; Meireles, M.A.A.; Batista, E.A.C.; Oliveira, J.V. Phase behavior and process parameters effect on grape seed extract encapsulation by SEDS technique. Ind. Crops Prod., 2013, 50, 352-360.
[85]
Machado, F.R.S.; Reis, D.F.; Boschetto, D.L.; Burkert, J.F.M.; Ferreira, S.R.S.; Oliveira, J.V.; Burkert, C.A.V. Encapsulation of astaxanthin from Haematococcus pluvialis in PHBV by means of SEDS technique using supercritical CO2. Ind. Crops Prod., 2014, 54, 17-21.
[86]
Xie, M.B.; Fan, D.J.; Zhao, Z.; Li, Z.; Li, G.; Chen, Y.F.; He, X.W.; Chen, A.Z.; Li, J.S.; Lin, X.F.; Zhi, M.; Li, Y.; Lan, P. Nano-curcumin prepared via supercritical: Improved anti-bacterial, anti-oxidant and anti-cancer efficacy. Int. J. Pharm., 2015, 496(2), 732-740.
[87]
Yan, T.X.; Cheng, Y.; Wang, Z.X.; Huang, D.C.; Miao, H.G.; Zhang, Y. Preparation and characterization of baicalein powder micronized by the SEDS process. J. Supercrit. Fluids, 2015, 104, 177-182.
[88]
Yang, G.; Zhao, Y.P.; Feng, N.P.; Zhang, Y.T.; Liu, Y.; Dang, B.L. Improved dissolution and bioavailability of silymarin delivered by a solid dispersion prepared using supercritical fluids. Asian J. Pharm. Sci., 2015, 10(3), 194-202.
[89]
Huang, X.; Zhang, Y.; Yin, G.; Pu, X.; Liao, X.; Huang, Z.; Chen, X.; Yao, Y. Tumor-targeted paclitaxel-loaded folate conjugated poly(ethylene glycol)-poly(L-lactide) microparticles produced by supercritical fluid technology. J. Mater. Sci. Mater. Med., 2015, 26(2), 95.
[90]
Li, S.N.; Zhao, Y.P. Preparation of zein nanoparticles by using solution-enhanced dispersion with supercritical CO2 and elucidation with computational fluid dynamics. Int. J. Nanomedicine, 2017, 12, 3485-3494.
[91]
Xiao, K.F.; Wang, W.Q.; Hu, D.D.; Qu, Y.P.; Hao, Z.H.; Wang, L.L. Cefquinome controlled size submicron particles precipitation by SEDS process using annular gap nozzle. Int. J. Chem. Eng., 2017, 1-8.
[92]
Prosapio, V.; De Marco, I.; Reverchon, E. Supercritical antisolvent coprecipitation mechanisms. J. Supercrit. Fluids, 2018, 138, 247-258.
[93]
Amara, Z.; Bellamy, J.F.B.; Horvath, R.; Miller, S.J.; Beeby, A.; Burgard, A.; Rossen, K.; Poliakoff, M.; George, M.W. Applying green chemistry to the photochemical route to artemisinin. Nat. Chem., 2015, 7(6), 489-495.
[94]
Yu, H.M.; Zhao, X.H.; Zu, Y.G.; Zhang, X.J.; Zu, B.S.; Zhang, X.N. Preparation and characterization of micronized artemisinin via a rapid expansion of supercritical solutions (RESS) method. Int. J. Mol. Sci., 2012, 12(4), 5060-5073.
[95]
Prosapio, V.; Reverchon, E.; De Marco, I. Incorporation of liposoluble vitamins within PVP microparticles using supercritical antisolvent precipitation. J. CO2 Util., 2017, 19, 230-237.
[96]
Xie, M.B.; Fan, D.J.; Li, Y.; He, X.W.; Chen, X.M.; Chen, Y.F.; Zhu, J.X.; Xu, G.B.; Wu, X.J.; Lan, P. Supercritical carbon dioxide-developed silk fibroin nanoplatform for smart colon cancer therapy. Int. J. Nanomedicine, 2017, 12, 7751-7761.
[97]
Aliakbarian, B.; Paini, M.; Adami, R.; Perego, P.; Reverchon, E. Use of supercritical assisted atomization to produce nanoparticles from olive pomace extract. Innov. Food Sci. Emerg., 2017, 40, 2-9.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy