Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Radicals, Oxidative/Nitrosative Stress and Preeclampsia

Author(s): Seyithan Taysi*, Ayse Saglam Tascan, Mete Gurol Ugur and Mustafa Demir

Volume 19, Issue 3, 2019

Page: [178 - 193] Pages: 16

DOI: 10.2174/1389557518666181015151350

Price: $65

Abstract

Preeclampsia (PE) has a profound effect in increasing both maternal and fetal morbidity and mortality especially in third World. Disturbances of extravillous trophoblast migration toward uterine spiral arteries is characteristic feature of PE, which, in turn, leads to increased uteroplacental vascular resistance and by vascular dysfunction resulting in reduced systemic vasodilatory properties. Underlying pathogenesis appeared to be an altered bioavailability of nitric oxide (NO•) and tissue damage caused by increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The increase in ROS and RNS production or the decrease in antioxidant mechanisms generates a condition called oxidative and nitrosative stress, respectively, defined as the imbalance between pro- and antioxidants in favor of the oxidants. Additionally, ROS might trigger platelet adhesion and aggregation leading to intravascular coagulopathy. ROS-induced coagulopathy causes placental infarction and impairs the uteroplacental blood flow in PE. As a consequence of these disorders could result in deficiencies in oxygen and nutrients required for normal fetal development resulting in fetal growth restriction. On the one hand, enzymatic and nonenzymatic antioxidants scavenge ROS and protect tissues against oxidative damage. More specifically, placental antioxidant enzymes including catalase, superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) protect the vasculature from ROS, maintaining the vascular function. On the other hand, ischemia in placenta in PE reduces the antioxidant activity. Collectively, the extent of oxidative stress would increase and therefore leads to the development of the pathological findings of PE including hypertension and proteinuria. Our goal in this article is to review current literature about researches demonstrating the interplay between oxidative, nitrosative stresses and PE, about their roles in the pathophysiology of PE and also about the outcomes of current clinical trials aiming to prevent PE with antioxidant supplementation.

Keywords: Antioxidant, free radicals, nitrosative stress, oxidative stress, preeclampsia, PE.

Graphical Abstract
[1]
Halliwell, B. Free Radical Reactions in Human Disease. In Environmental Stressors in Health and Disease; Fuchs, J.; Packer, L., Eds.; Marcel Dekker, Inc.: New York, 2001.
[2]
Gulcin, I. Antioxidant activity of food constituents: An overview. Arch. Toxicol., 2012, 86(3), 345-391.
[3]
Pauling, L. The discovery of the superoxide radical. Trends Biochem. Sci., 1979, 4, N270-N271.
[4]
Mann, T.; Keilin, D. Haemocuprein and hepatocuprein, copper protein compounds of blood and liver in mammals. Proc. Royal Soc. London Series B: Biol. Sci., 1938, 126, 303-315.
[5]
McCord, J.M.; Fridovich, I. The reduction of cytochrome c by milk xanthine oxidase. J. Biol. Chem., 1968, 243(21), 5753-5760.
[6]
Toro, J.; Rodrigo, R. Oxidative stress: Basic overview in oxidative stress and antioxidants: Their role in human disease; Nova Biomedical: New York, 2009, pp. 1-24.
[7]
Knowles, P.F.; Gibson, J.F.; Pick, F.M.; Bray, R.C. Electron-spin-resonance evidence for enzymic reduction of oxygen to a free radical, the superoxide ion. Biochem. J., 1969, 111(1), 53-58.
[8]
Babior, B.M.; Kipnes, R.S.; Curnutte, J.T. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J. Clin. Invest., 1973, 52(3), 741-744.
[9]
Salin, M.L.; McCord, J.M. Superoxide dismutases in polymorphonuclear leukocytes. J. Clin. Invest., 1974, 54(4), 1005-1009.
[10]
McCord, J.M. Free radicals and inflammation: Protection of synovial fluid by superoxide dismutase. Science, 1974, 185(4150), 529-531.
[11]
Furchgott, R.F.; Zawadzki, J.V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 1980, 288(5789), 373-376.
[12]
Ignarro, L.J.; Byrns, R.E.; Buga, G.M.; Wood, K.S. Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circulat. Res., 1987, 61(6), 866-879.
[13]
Palmer, R.M.; Ferrige, A.G.; Moncada, S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature, 1987, 327(6122), 524-526.
[14]
Granger, D.N.; Rutili, G.; McCord, J.M. Superoxide radicals in feline intestinal ischemia. Gastroenterology, 1981, 81(1), 22-29.
[15]
Okumus, S.; Taysi, S.; Orkmez, M.; Saricicek, E.; Demir, E.; Adli, M.; Al, B. The effects of oral Ginkgo biloba supplementation on radiation-induced oxidative injury in the lens of rat. Pharmacogn. Mag., 2011, 7(26), 141-145.
[16]
Ucuncu, H.; Taysi, S.; Aktan, B.; Buyukokuroglu, M.E.; Elmastas, M. Effect of dantrolene on lipid peroxidation, lutathione and glutathione-dependent enzyme activities in experimental otitis media with effusion in guinea pigs. Hum. Exp. Toxicol., 2005, 24(11), 567-571.
[17]
Taysi, S.; Cikman, O.; Kaya, A.; Demircan, B.; Gumustekin, K.; Yilmaz, A.; Boyuk, A.; Keles, M.; Akyuz, M.; Turkeli, M. Increased oxidant stress and decreased antioxidant status in erythrocytes of rats fed with zinc-deficient diet. Biol. Trace Elem. Res., 2008, 123(1-3), 161-167.
[18]
Kayaalp, O.S. Rasyonel Tedavi Yönünden Tıbbi Farmakoloji; Hacettepe Taş: Ankara, Turkey, 2005.
[19]
Halliwell, B.; Gutteridge, J.M.C. Free radicals in biology and medicine; Oxford University Press Inc.: New York, US, 1999.
[20]
Taysi, S.; Memisogullari, R.; Koc, M.; Yazici, A.T.; Aslankurt, M.; Gumustekin, K.; Al, B.; Ozabacigil, F.; Yilmaz, A.; Tahsin Ozder, H. Melatonin reduces oxidative stress in the rat lens due to radiation-induced oxidative injury. Int. J. Radiat. Biol., 2008, 84(10), 803-808.
[21]
Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-biol. Interact., 2006, 160(1), 1-40.
[22]
Keles, M.; Al, B.; Gumustekin, K.; Demircan, B.; Ozbey, I.; Akyuz, M.; Yilmaz, A.; Demir, E.; Uyanik, A.; Ziypak, T.; Taysi, S. Antioxidative status and lipid peroxidation in kidney tissue of rats fed with vitamin B(6)-deficient diet. Ren. Fail., 2010, 32(5), 618-622.
[23]
Gumustekin, K.; Altinkaynak, K.; Timur, H.; Taysi, S.; Oztasan, N.; Polat, M.F.; Akcay, F.; Suleyman, H.; Dane, S.; Gul, M. Vitamin E but not Hippophea rhamnoides L. prevented nicotine-induced oxidative stress in rat brain. Hum. Exp. Toxicol., 2003, 22(8), 425-431.
[24]
Gul, M.; Demircan, B.; Taysi, S.; Oztasan, N.; Gumustekin, K.; Siktar, E.; Polat, M.F.; Akar, S.; Akcay, F.; Dane, S. Effects of endurance training and acute exhaustive exercise on antioxidant defense mechanisms in rat heart. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2006, 143(2), 239-245.
[25]
Ginter, E.; Simko, V.; Panakova, V. Antioxidants in health and disease. Bratislavske lekarske listy, 2014, 115(10), 603-606.
[26]
Taysi, S.; Ucuncu, H.; Elmastas, M.; Aktan, B.; Emin Buyukokuroglu, M. Effect of melatonin on lipid peroxidation, glutathione and glutathione-dependent enzyme activities in experimental otitis media with effusion in guinea pigs. J. Pineal Res., 2005, 39(3), 283-286.
[27]
Ahlatci, A.; Kuzhan, A.; Taysi, S.; Demirtas, O.C.; Alkis, H.E.; Tarakcioglu, M.; Demirci, A.; Caglayan, D.; Saricicek, E.; Cinar, K. Radiation-modifying abilities of Nigella sativa and thymoquinone on radiation-induced nitrosative stress in the brain tissue. Phytomedicine, 2014, 21(5), 740-744.
[28]
Taysi, S.; Keles, M.S.; Gumustekin, K.; Akyuz, M.; Boyuk, A.; Cikman, O.; Bakan, N. Plasma homocysteine and liver tissue S-adenosylmethionine, S-adenosylhomocysteine status in vitamin B6-deficient rats. Eur. Rev. Med. Pharmacol. Sci., 2015, 19(1), 154-160.
[29]
Aktan, B.; Taysi, S.; Gumustekin, K.; Bakan, N.; Sutbeyaz, Y. Evaluation of oxidative stress in erythrocytes of guinea pigs with experimental otitis media and effusion. Ann. Clin. Lab. Sci., 2003, 33(2), 232-236.
[30]
Aktan, B.; Taysi, S.; Gumustekin, K.; Ucuncu, H.; Memisogullari, R.; Save, K.; Bakan, N. Effect of macrolide antibiotics on nitric oxide synthase and xanthine oxidase activities, and malondialdehyde level in erythrocyte of the guinea pigs with experimental otitis media with effusion. Pol. J. Pharmacol., 2003, 55(6), 1105-1110.
[31]
Southorn, P.A.; Powis, G. Free radicals in medicine. I. Chemical nature and biologic reactions. Mayo Clin. Proc., 1988, 63(4), 381-389.
[32]
Akkuş, İ. Serbest Radikaller ve Fizyopatolojik Etkileri Mimoza Yayınları, Konya ,Turkey (In Turkish), 1995
[33]
Polat, M.F.; Taysi, S.; Gul, M.; Cikman, O.; Yilmaz, I.; Bakan, E.; Erdogan, F. Oxidant/antioxidant status in blood of patients with malignant breast tumour and benign breast disease. Cell Biochem. Funct., 2002, 20(4), 327-331.
[34]
Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem.: IJCB, 2015, 30(1), 11-26.
[35]
Alici, D.; Bulbul, F.; Virit, O.; Unal, A.; Altindag, A.; Alpak, G.; Alici, H.; Ermis, B.; Orkmez, M.; Taysi, S.; Savas, H. Evaluation of oxidative metabolism and oxidative DNA damage in patients with obsessive-compulsive disorder. Psychiatry Clin. Neurosci., 2016, 70(2), 109-115.
[36]
Kılınç, K.; Kılınç, A. Oksijen toksisitesinin aracı molekülleri olarak oksijen radikalleri. Hacettepe Tıp Dergisi, 2002, 33, 110-118.
[37]
Fang, Y.Z.; Yang, S.; Wu, G. Free radicals, antioxidants, and nutrition. Nutrition, 2002, 18(10), 872-879.
[38]
Taysi, S.; Okumus, S.; Ezirmik, S.; Uzun, N.; Yilmaz, A.; Akyuz, M.; Tekelioglu, U.; Dirier, A.; Al, B. The Protective Effects of L-Carnitine and Vitamin E in Rat Lenses in Irradiation-Induced Oxidative Injury. Adv. Clin. Exp. Med., 2011, 20(1), 15-21.
[39]
Young, I.S.; Woodside, J.V. Antioxidants in health and disease. J. Clin. Pathol., 2001, 54(3), 176-186.
[40]
Gupta, R.K.; Patel, A.K.; Shah, N.; Chaudhary, A.K.; Jha, U.K.; Yadav, U.C.; Gupta, P.K.; Pakuwal, U. Oxidative stress and antioxidants in disease and cancer: A review. Asian Pacific J. Cancer Prevent.: APJCP, 2014, 15(11), 4405-4409.
[41]
Alfadda, A.A.; Sallam, R.M. Reactive Oxygen Species in Health and Disease. J. Biomed. Biotechnol., 2012.
[42]
Gumustekin, K.; Taysi, S.; Alp, H.H.; Aktas, O.; Oztasan, N.; Akcay, F.; Suleyman, H.; Akar, S.; Dane, S.; Gul, M. Vitamin E and Hippophea rhamnoides L. extract reduce nicotine-induced oxidative stress in rat heart. Cell Biochem. Funct., 2010, 28(4), 329-333.
[43]
Abdollahi, M.; Ranjbar, A.; Shadnia, S.; Nikfar, S.; Rezaie, A. Pesticides and oxidative stress: A review. Med. Sci. Monitor: Intl. Med. J. Experiment. Clin. Res., 2004, 10(6), RA141-RA147.
[44]
Ustun, K.; Taysi, S.; Sezer, U.; Demir, E.; Baysal, E.; Demir, T.; Saricicek, E.; Alkis, H.; Senyurt, S.Z.; Tarakcioglu, M.; Aksoy, N. Radio-protective effects of Nigella sativa oil on oxidative stress in tongue tissue of rats. Oral Dis., 2014, 20(1), 109-113.
[45]
Kocer, I.; Taysi, S.; Ertekin, M.V.; Karslioglu, I.; Gepdiremen, A.; Sezen, O.; Serifoglu, K. The effect of L-carnitine in the prevention of ionizing radiation-induced cataracts: a rat model. Graefes Arch. Clin. Exp. Ophthalmol., 2007, 245(4), 588-594.
[46]
Taysi, S.; Oztasan, N.; Efe, H.; Polat, M.F.; Gumustekin, K.; Siktar, E.; Canakci, E.; Akcay, F.; Dane, S.; Gul, M. Endurance training attenuates the oxidative stress due to acute exhaustive exercise in rat liver. Acta Physiol. Hung., 2008, 95(4), 337-347.
[47]
Oztasan, N.; Taysi, S.; Gumustekin, K.; Altinkaynak, K.; Aktas, O.; Timur, H.; Siktar, E.; Keles, S.; Akar, S.; Akcay, F.; Dane, S.; Gul, M. Endurance training attenuates exercise-induced oxidative stress in erythrocytes in rat. Eur. J. Appl. Physiol., 2004, 91(5-6), 622-627.
[48]
Thomas, M.J. The role of free-radicals and antioxidants - How do we know that they are working. Crit. Rev. Food Sci., 1995, 35(1-2), 21-39.
[49]
Karslioglu, I.; Ertekin, M.V.; Kocer, I.; Taysi, S.; Sezen, O.; Gepdiremen, A.; Balci, E. Protective role of intramuscularly administered vitamin E on the levels of lipid peroxidation and the activities of antioxidant enzymes in the lens of rats made cataractous with gamma-irradiation. Eur. J. Ophthalmol., 2004, 14(6), 478-485.
[50]
Koc, M.; Taysi, S.; Emin Buyukokuroglu, M.; Bakan, N. The effect of melatonin against oxidative damage during total-body irradiation in rats. Radiat. Res., 2003, 160(2), 251-255.
[51]
Aikens, J.; Dix, T.A. Perhydroxyl radical (HOO.) initiated lipid peroxidation. The role of fatty acid hydroperoxides. J. Biol. Chem., 1991, 266(23), 15091-15098.
[52]
Bakan, E.; Taysi, S.; Polat, M.F.; Dalga, S.; Umudum, Z.; Bakan, N.; Gumus, M. Nitric oxide levels and lipid peroxidation in plasma of patients with gastric cancer. Jpn. J. Clin. Oncol., 2002, 32(5), 162-166.
[53]
Karasen, R.M.; Uslu, C.; Gundogdu, C.; Taysi, S.; Akcay, F. Effect of WEB 2170 BS, platelet activating factor receptor inhibitor, in the rabbit model of sinusitis. Ann. Otol. Rhinol. Laryngol., 2004, 113(6), 477-482.
[54]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39(1), 44-84.
[55]
Diplock, A.T.; Charleux, J.L.; Crozier-Willi, G.; Kok, F.J.; Rice-Evans, C.; Roberfroid, M.; Stahl, W.; Vina-Ribes, J. Functional food science and defence against reactive oxidative species. Br. J. Nutr., 1998, 80(Suppl. 1), S77-S112.
[56]
Niki, E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: In vitro and in vivo evidence. Free Radic. Biol. Med., 2014, 66, 3-12.
[57]
Everett, S.A.; Dennis, M.F.; Patel, K.B.; Maddix, S.; Kundu, S.C.; Willson, R.L. Scavenging of nitrogen dioxide, thiyl, and sulfonyl free radicals by the nutritional antioxidant beta-carotene. J. Biol. Chem., 1996, 271(8), 3988-3994.
[58]
Wardman, P.; von Sonntag, C. Kinetic factors that control the fate of thiyl radicals in cells. Methods Enzymol., 1995, 251, 31-45.
[59]
Schoneich, C.; Dillinger, U.; von Bruchhausen, F.; Asmus, K.D. Oxidation of polyunsaturated fatty acids and lipids through thiyl and sulfonyl radicals: reaction kinetics, and influence of oxygen and structure of thiyl radicals. Arch. Biochem. Biophys., 1992, 292(2), 456-467.
[60]
Yim, M.B.; Chae, H.Z.; Rhee, S.G.; Chock, P.B.; Stadtman, E.R. On the protective mechanism of the thiol-specific antioxidant enzyme against the oxidative damage of biomacromolecules. J. Biol. Chem., 1994, 269(3), 1621-1626.
[61]
Habib, S.; Ali, A. Biochemistry of nitric oxide. Indian J. Clin. Biochem.: IJCB, 2011, 26(1), 3-17.
[62]
Bryan, N.S.; Loscalzo, J. Nitrite and Nitrate in Human Health and Disease; Humana Press: London, UK, 2011.
[63]
Taysi, S.; Uslu, C.; Akcay, F.; Sutbeyaz, M.Y. Malondialdehyde and nitric oxide levels in the plasma of patients with advanced laryngeal cancer. Surg. Today, 2003, 33(9), 651-654.
[64]
Mattila, J.T.; Thomas, A.C. Nitric oxide synthase: non-canonical expression patterns. Front. Immunol., 2014, 5, 478.
[65]
Choudhari, S.K.; Chaudhary, M.; Bagde, S.; Gadbail, A.R.; Joshi, V. Nitric oxide and cancer: a review. World J. Surg. Oncol., 2013, 11, 118.
[66]
Taysi, S.; Koc, M.; Buyukokuroglu, M.E.; Altinkaynak, K.; Sahin, Y.N. Melatonin reduces lipid peroxidation and nitric oxide during irradiation-induced oxidative injury in the rat liver. J. Pineal Res., 2003, 34(3), 173-177.
[67]
Bakan, N.; Taysi, S.; Yilmaz, O.; Bakan, E.; Kuskay, S.; Uzun, N.; Gundogdu, M. Glutathione peroxidase, glutathione reductase, Cu-Zn superoxide dismutase activities, glutathione, nitric oxide, and malondialdehyde concentrations in serum of patients with chronic lymphocytic leukemia. Clin. Chim. Acta, 2003, 338(1-2), 143-149.
[68]
Espey, M.G.; Miranda, K.M.; Thomas, D.D.; Wink, D.A. Distinction between nitrosating mechanisms within human cells and aqueous solution. J. Biol. Chem., 2001, 276(32), 30085-30091.
[69]
Espey, M.G.; Miranda, K.M.; Thomas, D.D.; Xavier, S.; Citrin, D.; Vitek, M.P.; Wink, D.A. A chemical perspective on the interplay between NO, reactive oxygen species, and reactive nitrogen oxide species. Ann. N. Y. Acad. Sci., 2002, 962, 195-206.
[70]
Augusto, O.; Bonini, M.G.; Amanso, A.M.; Linares, E.; Santos, C.C.; De Menezes, S.L. Nitrogen dioxide and carbonate radical anion: two emerging radicals in biology. Free Radic. Biol. Med., 2002, 32(9), 841-859.
[71]
Dassanayake, R.S.; Cabelli, D.E.; Brasch, N.E. Pulse radiolysis studies of the reactions of nitrogen dioxide with the vitamin B complexes cob(II)alamin and nitrocobalamin. J. Inorg. Biochem., 2014, 142C, 54-58.
[72]
Kehrer, J.P. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology, 2000, 149(1), 43-50.
[73]
Memisoğulları, R. Diyabette serbest radikallerin rolü ve antioksidanların etkisi. Dicle Tıp Fakültesi Dergisi, 2005, 3, 30-39.
[74]
Castelao, C.; da Silva, A.P.; Matos, A.; Inacio, A.; Bicho, M.; Medeiros, R.; Bicho, M.C. Association of myeloperoxidase polymorphism (G463A) with cervix cancer. Mol. Cell. Biochem., 2015.
[75]
Dacvies, C.A.; Blake, D.R.; Winyard, P.G. Radicals and Inflammation: Mediators and Modulators.In Environmental Stressors in Health and Disease; Fuchs, J.; Packer, L., Eds.; Marcel Dekker, Inc.: New York, 2001.
[76]
American College of. O.; Gynecologists; Task Force on Hypertension in, P., Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet. Gynecol., 2013, 122(5), 1122-1131.
[77]
Abalos, E.; Cuesta, C.; Grosso, A.L.; Chou, D.; Say, L. Global and regional estimates of preeclampsia and eclampsia: A systematic review. Eur. J. Obstet. Gyn. R B,, 2013, 170(1), 1-7.
[78]
Ananth, C.V.; Keyes, K.M.; Wapner, R.J. Pre-eclampsia rates in the United States, 1980-2010: Age-period-cohort analysis. BMJ, 2013, 347, f6564.
[79]
Lisonkova, S.; Sabr, Y.; Mayer, C.; Young, C.; Skoll, A.; Joseph, K.S. Maternal morbidity associated with early-onset and late-onset preeclampsia. Obstet. Gynecol., 2014, 124(4), 771-781.
[80]
Sibai, B.M. The HELLP syndrome (hemolysis, elevated liver enzymes, and low platelets): much ado about nothing? Am. J. Obstet. Gynecol., 1990, 162(2), 311-316.
[81]
Walker, J.J. Severe pre-eclampsia and eclampsia. Bailliere's best practice & research. Clin. Obstet. Gynaecol., 2000, 14(1), 57-71.
[82]
Bosio, P.M.; McKenna, P.J.; Conroy, R.; O’Herlihy, C. Maternal central hemodynamics in hypertensive disorders of pregnancy. Obstet. Gynecol., 1999, 94(6), 978-984.
[83]
Duley, L. The global impact of pre-eclampsia and eclampsia. Semin. Perinatol., 2009, 33(3), 130-137.
[84]
Livingston, J.C.; Livingston, L.W.; Ramsey, R.; Mabie, B.C.; Sibai, B.M. Magnesium sulfate in women with mild preeclampsia: A randomized controlled trial. Obstet. Gynecol., 2003, 101(2), 217-220.
[85]
Schutte, J.M.; Steegers, E.A.; Schuitemaker, N.W.; Santema, J.G.; de Boer, K.; Pel, M.; Vermeulen, G.; Visser, W.; van Roosmalen, J.; Netherlands Maternal Mortality, C. Rise in maternal mortality in the Netherlands. BJOG: An Intl. J. Obstet. Gynaecol., 2010, 117(4), 399-406.
[86]
Moore-Maxwell, C.A.; Robboy, S.J. Placental site trophoblastic tumor arising from antecedent molar pregnancy. Gynecol. Oncol., 2004, 92(2), 708-712.
[87]
Pijnenborg, R.; Vercruysse, L.; Hanssens, M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta, 2006, 27(9-10), 939-958.
[88]
Meekins, J.W.; Pijnenborg, R.; Hanssens, M.; Mcfadyen, I.R.; Vanasshe, A. A study of placental bed spiral arteries and trophoblast invasion in normal and severe preeclamptic pregnancies. Br. J. Obstet. Gynaecol., 1994, 101(8), 669-674.
[89]
Cnattingius, S.; Reilly, M.; Pawitan, Y.; Lichtenstein, P. Maternal and fetal genetic factors account for most of familial aggregation of preeclampsia: A population-based Swedish cohort study. Am. J. Med. Genet. A., 2004, 130a(4), 365-371.
[90]
Wang, J.X.; Knottnerus, A.M.; Schuit, G.; Norman, R.J.; Chan, A.; Dekker, G.A. Surgically obtained sperm, and risk of gestational hypertension and pre-eclampsia. Lancet, 2002, 359(9307), 673-674.
[91]
Kaya, H.; Taysi, S.; Kaya, A.; Boyuk, A.; Dursun, H.; Islamoglu, Y.; Tastekin, D.; Cikman, O. Investigation of free radical scavenging enzyme activities and lipid peroxidation in liver tissue of zinc deficient rats. Asian J. Chem., 2008, 20(2), 1068-1074.
[92]
Cikman, O.; Ozkan, A.; Aras, A.B.; Soylemez, O.; Alkis, H.; Taysi, S.; Karaayvaz, M. Radioprotective effects of Nigella sativa oil against oxidative stress in liver tissue of rats exposed to total head irradiation. J. Invest. Surg., 2014, 27(5), 262-266.
[93]
Taysi, S.; Okumus, S.; Akyuz, M.; Uzun, N.; Aksoy, A.; Demir, E.; Orkmez, M.; Tarakcioglu, M.; Adli, M. Zinc administration modulates radiation-induced oxidative injury in lens of rat. Pharmacogn. Mag., 2012, 8(32), 245-249.
[94]
Kara, M.I.; Yanik, S.; Keskinruzgar, A.; Taysi, S.; Copoglu, S.; Orkmez, M.; Nalcaci, R. Oxidative imbalance and anxiety in patients with sleep bruxism. Oral Surg. Oral Med. Oral Pathol. Oral Radiol., 2012, 114(5), 604-609.
[95]
Sagdicoglu Celep, G.; Marotta, F. Oxidants and antioxidants in health and disease. Oxid. Antioxid. Med. Sci., 2014, 3(1), 5-8.
[96]
Baysal, E.; Aksoy, N.; Kara, F.; Taysi, S.; Taskin, A.; Bilinc, H.; Cevik, C.; Celenk, F.; Kanlikama, M. Oxidative stress in chronic otitis media. Europ. Arch. Oto-rhino-laryngology: Official J. Europ. Federat. Oto-Rhino-Laryngological Soc., 2013, 270(4), 1203-1208.
[97]
Baysal, E.; Taysi, S.; Aksoy, N.; Uyar, M.; Celenk, F.; Karatas, Z.A.; Tarakcioglu, M.; Bilinc, H.; Mumbuc, S.; Kanlikama, M. Serum paraoxonase, arylesterase activity and oxidative status in patients with obstructive sleep apnea syndrome (OSAS). Eur. Rev. Med. Pharmacol. Sci., 2012, 16(6), 770-774.
[98]
Memisogullari, R.; Taysi, S.; Bakan, E.; Capoglu, I. Antioxidant status and lipid peroxidation in type II diabetes mellitus. Cell Biochem. Funct., 2003, 21(3), 291-296.
[99]
Ertekin, M.V.; Kocer, I.; Karslioglu, I.; Taysi, S.; Gepdiremen, A.; Sezen, O.; Balci, E.; Bakan, N. Effects of oral Ginkgo biloba supplementation on cataract formation and oxidative stress occurring in lenses of rats exposed to total cranium radiotherapy. Jpn. J. Ophthalmol., 2004, 48(5), 499-502.
[100]
Taysi, S.; Demircan, B.; Akdeniz, N.; Atasoy, M.; Sari, R.A. Oxidant/antioxidant status in men with Behcet’s disease. Clin. Rheumatol., 2007, 26(3), 418-422.
[101]
Sezer, U.; Erciyas, K.; Ustun, K.; Pehlivan, Y.; Senyurt, S.Z.; Aksoy, N.; Tarakcioglu, M.; Taysi, S.; Onat, A.M. Effect of chronic periodontitis on oxidative status in patients with rheumatoid arthritis. J. Periodontol., 2013, 84(6), 785-792.
[102]
Taysi, S.; Abdulrahman, Z.K.; Okumus, S.; Demir, E.; Demir, T.; Akan, M.; Saricicek, E.; Saricicek, V.; Aksoy, A.; Tarakcioglu, M. The radioprotective effect of Nigella sativa on nitrosative stress in lens tissue in radiation-induced cataract in rat. Cutan. Ocul. Toxicol., 2015, 34(2), 101-106.
[103]
Cikman, O.; Taysi, S.; Gulsen, M.T.; Demir, E.; Akan, M.; Diril, H.; Kiraz, H.A.; Karaayvaz, M.; Tarakcioglu, M. The radio-protective effects of caffeic acid phenethyl ester and thymoquinone in rats exposed to total head irradiation. Wien. Klin. Wochenschr., 2015, 127(3-4), 103-108.
[104]
Demir, E.; Taysi, S.; Al, B.; Demir, T.; Okumus, S.; Saygili, O.; Saricicek, E.; Dirier, A.; Akan, M.; Tarakcioglu, M.; Bagci, C. The effects of Nigella sativa oil, thymoquinone, propolis, and caffeic acid phenethyl ester on radiation-induced cataract. Wien. Klin. Wochenschr., 2015.
[105]
Stone, J.L.; Lockwood, C.J.; Berkowitz, G.S.; Alvarez, M.; Lapinski, R.; Berkowitz, R.L. Risk factors for severe preeclampsia. Obstet. Gynecol., 1994, 83(3), 357-361.
[106]
Atrash, H.K.; Koonin, L.M.; Lawson, H.W.; Franks, A.L.; Smith, J.C. Maternal mortality in the United States, 1979-1986. Obstet. Gynecol., 1990, 76(6), 1055-1060.
[107]
Coral-Vazquez, R.M.; Romero Arauz, J.F.; Canizales-Quinteros, S.; Coronel, A.; Valencia Villalvazo, E.Y.; Hernandez Rivera, J.; Ramirez Regalado, B.; Rojano Mejia, D.; Canto, P. Analysis of polymorphisms and haplotypes in genes associated with vascular tone, hypertension and oxidative stress in Mexican-Mestizo women with severe preeclampsia. Clin. Biochem., 2013, 46(7-8), 627-632.
[108]
Aksoy, H.; Taysi, S.; Altinkaynak, K.; Bakan, E.; Bakan, N.; Kumtepe, Y. Antioxidant potential and transferrin, ceruloplasmin, and lipid peroxidation levels in women with preeclampsia. J. Investig. Med., 2003, 51(5), 284-287.
[109]
Davidge, S.T.; Stranko, C.P.; Roberts, J.M. Urine but not plasma nitric oxide metabolites are decreased in women with preeclampsia. Am. J. Obstet. Gynecol., 1996, 174(3), 1008-1013.
[110]
Bartha, J.L.; Comino-Delgado, R. Lymphocyte subpopulations in intrauterine growth retardation in women with or without previous pregnancies. Eur. J. Obstet. Gynecol. Reprod. Biol., 1999, 82(1), 23-27.
[111]
Pijnenborg, R.; Bland, J.M.; Robertson, W.B.; Brosens, I. Uteroplacental arterial changes related to interstitial trophoblast migration in early human pregnancy. Placenta, 1983, 4(4), 397-413.
[112]
Taysi, S.; Kocer, I.; Memisogullari, R.; Kiziltunc, A. Serum oxidant/antioxidant status in patients with Behcet’s disease. Ann. Clin. Lab. Sci., 2002, 32(4), 377-382.
[113]
Taysi, S.; Gul, M.; Sari, R.A.; Akcay, F.; Bakan, N. Serum oxidant/antioxidant status of patients with systemic lupus erythematosus. Clin. Chem. Lab. Med., 2002, 40(7), 684-688.
[114]
Taysi, S.; Polat, F.; Gul, M.; Sari, R.A.; Bakan, E. Lipid peroxidation, some extracellular antioxidants, and antioxidant enzymes in serum of patients with rheumatoid arthritis. Rheumatol. Int., 2002, 21(5), 200-204.
[115]
Gross, S.S.; Wolin, M.S. Nitric oxide: pathophysiological mechanisms. Annu. Rev. Physiol., 1995, 57, 737-769.
[116]
Khazan, M.; Hdayati, M. The Role of Nitric Oxide in Health and Diseases; Scimetr, 2015.
[117]
Moncada, S.; Palmer, R.M.; Higgs, E.A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev., 1991, 43(2), 109-142.
[118]
Coleman, J.W. Nitric oxide in immunity and inflammation. Int. Immunopharmacol., 2001, 1(8), 1397-1406.
[119]
Szabo, C. Role of poly(ADP-ribose)synthetase in inflammation. Eur. J. Pharmacol., 1998, 350(1), 1-19.
[120]
Crocker, I.P.; Kenny, L.C.; Thornton, W.A.; Szabo, C.; Baker, P.N. Excessive stimulation of poly(ADP-ribosyl)ation contributes to endothelial dysfunction in pre-eclampsia. Br. J. Pharmacol., 2005, 144(6), 772-780.
[121]
Cikman, O.; Soylemez, O.; Ozkan, O.F.; Kiraz, H.A.; Sayar, I.; Ademoglu, S.; Taysi, S.; Karaayvaz, M. Antioxidant activity of syringic acid prevents oxidative stress in l-arginine-Induced acute pancreatitis: an experimental study on rats. Int. Surg., 2015, 100(5), 891-896.
[122]
Parra, M. Preeclampsia.In Oxidative Stress And Antioxidants: Their Role In Human Disease, First ed; Rodrigo, R., Ed.; Nova Science Publishers, Inc.: New York, 2009, pp. 135-157.
[123]
Lee, V.M.; Quinn, P.A.; Jennings, S.C.; Ng, L.L. NADPH oxidase activity in preeclampsia with immortalized lymphoblasts used as models. Hypertension, 2003, 41(4), 925-931.
[124]
Matsubara, K.; Higaki, T.; Matsubara, Y.; Nawa, A. Nitric oxide and reactive oxygen species in the pathogenesis of preeclampsia. Int. J. Mol. Sci., 2015, 16(3), 4600-4614.
[125]
Matsubara, K.; Matsubara, Y.; Hyodo, S.; Katayama, T.; Ito, M. Role of nitric oxide and reactive oxygen species in the pathogenesis of preeclampsia. J. Obstet. Gynaecol. Res., 2010, 36(2), 239-247.
[126]
Zhang, D.X.; Gutterman, D.D. Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am. J. Physiol. Heart Circ. Physiol., 2007, 292(5), H2023-H2031.
[127]
Li, H.; Horke, S.; Forstermann, U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis, 2014, 237(1), 208-219.
[128]
Salles, A.M.; Galvao, T.F.; Silva, M.T.; Motta, L.C.; Pereira, M.G. Antioxidants for preventing preeclampsia: A systematic review. Scientif. World J., 2012, 2012, 243476.
[129]
Rossi, A.C.; Mullin, P.M. Prevention of pre-eclampsia with low-dose aspirin or vitamins C and E in women at high or low risk: a systematic review with meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol., 2011, 158(1), 9-16.
[130]
Wibowo, N.; Purwosunu, Y.; Sekizawa, A.; Farina, A.; Idriansyah, L.; Fitriana, I. Antioxidant supplementation in pregnant women with low antioxidant status. J. Obstet. Gynaecol. Res., 2012, 38(9), 1152-1161.
[131]
Rayman, M.P.; Searle, E.; Kelly, L.; Johnsen, S.; Bodman-Smith, K.; Bath, S.C.; Mao, J.; Redman, C.W. Effect of selenium on markers of risk of pre-eclampsia in UK pregnant women: a randomised, controlled pilot trial. Br. J. Nutr., 2014, 112(1), 99-111.
[132]
Bezerra Maia, E.H.M.S.; Marques Lopes, L.; Murthi, P.; da Silva Costa, F. Prevention of preeclampsia. J. Pregnancy, 2012, 2012, 435090.
[133]
Dalle-Donne, I.; Rossi, R.; Colombo, R.; Giustarini, D.; Milzani, A. Biomarkers of oxidative damage in human disease. Clin. Chem., 2006, 52(4), 601-623.
[134]
Dalle-Donne, I.; Scaloni, A.; Giustarini, D.; Cavarra, E.; Tell, G.; Lungarella, G.; Colombo, R.; Rossi, R.; Milzani, A. Proteins as biomarkers of oxidative/nitrosative stress in diseases: The contribution of redox proteomics. Mass Spectrom. Rev., 2005, 24(1), 55-99.
[135]
Huie, R.E.; Padmaja, S. The reaction of no with superoxide. Free Radic. Res. Commun., 1993, 18(4), 195-199.
[136]
Serdar, Z.; Gur, E.; Develioglu, O. Serum iron and copper status and oxidative stress in severe and mild preeclampsia. Cell Biochem. Funct., 2006, 24(3), 209-215.
[137]
Chappell, L.C.; Seed, P.T.; Briley, A.; Kelly, F.J.; Hunt, B.J.; Charnock-Jones, D.S.; Mallet, A.I.; Poston, L. A longitudinal study of biochemical variables in women at risk of preeclampsia. Am. J. Obstet. Gynecol., 2002, 187(1), 127-136.
[138]
Pastore, A.; Federici, G.; Bertini, E.; Piemonte, F. Analysis of glutathione: Implication in redox and detoxification. Clin. Chim. Acta, 2003, 333(1), 19-39.
[139]
Joshee, N.; Tascan, A. Medina- Bolivar, F.; Parajuli, P.; Rimando, A.; Shannon, A.; Adelberg, J. Scutellaria: Biotechnology, phytochemistry and its potential as a commercial medicinal crop. biotechnology for medicinal plants: Micropropagation and improvement. Chandra, S.; Lata, H; Varma, A., Ed.; Springer-Verlag: Heidelberg, Germany, 2012, pp. 69-99.
[140]
Li, L.; Sun, T.; Tian, J.; Yang, K.; Yi, K.; Zhang, P. Garlic in clinical practice: an evidence-based overview. Crit. Rev. Food Sci. Nutr., 2013, 53(7), 670-681.
[141]
Pawlowicz, P.; Wilczynski, J.; Stachowiak, G. Comparative analysis of modification of Misgav-Ladach and Pfannenstiel methods for cesarean section in the material of Fetal-Maternal Clinical Department PMMH-RI between 1994-1999. Ginekol. Pol., 2000, 71(4), 327-332.
[142]
Liu, S.Y.; Xu, Y.Y.; Zhu, J.Y. The effects of Salvia miltiorrhizae Bge and Ligustrazine on thromboxane A2 and prostacyclin in pregnancy induced hypertension. Zhonghua Fu Chan Ke Za Zhi, 1994, 29(11), 648-650, 697.
[143]
Zhang, W.Y.; Teng, H.; Zheng, Y. [Ginseng saponin treatment for intrauterine growth retardation]. Zhonghua Yi Xue Za Zhi, 1994, 74(10), 608-610, 646.
[144]
Zhang, Z.J.; Cheng, W.W.; Yang, Y.M. Low-dose of processed rhubarb in preventing pregnancy induced hypertension. Zhonghua Fu Chan Ke Za Zhi, 1994, 29(8), 463-464, 509.
[145]
Vlk, R.; Matecha, J.; Drochytek, V. Prevention of preeclampsia - review. Ceska Gynekol., 2015, 80(3), 229-235.
[146]
Zabul, P.; Wozniak, M.; Slominski, A.T.; Preis, K.; Gorska, M.; Korozan, M.; Wieruszewski, J.; Zmijewski, M.A.; Zabul, E.; Tuckey, R.; Kuban-Jankowska, A.; Mickiewicz, W.; Knap, N. A Proposed Molecular Mechanism of High-Dose Vitamin D3 Supplementation in Prevention and Treatment of Preeclampsia. Int. J. Mol. Sci., 2015, 16(6), 13043-13064.
[147]
Jiang, N.; Liu, Q.; Liu, L.; Yang, W.W.; Zeng, Y. The effect of calcium channel blockers on prevention of preeclampsia in pregnant women with chronic hypertension. Clin. Exp. Obstet. Gynecol., 2015, 42(1), 79-81.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy