General Review Article

糖原合酶激酶3在离子通道和细胞载体的调节中

卷 26, 期 37, 2019

页: [6817 - 6829] 页: 13

弟呕挨: 10.2174/0929867325666181009122452

价格: $65

摘要

糖原合酶激酶3(GSK-3)是高度进化保守且普遍表达的丝氨酸/苏氨酸激酶,是一种对糖原合酶(GS)特异的酶蛋白。 GSK-3参与各种细胞功能和生理过程,包括细胞增殖,分化,运动性和存活以及糖原代谢,蛋白质合成和细胞凋亡。人类GSK-3有两个同种型(分别称为GSK-3α和GSK-3β),由两个不同的基因编码。近来,已经报道了GSK-3β充当跨细胞膜的各种转运过程的有力调节剂。这种激酶GSK-3β可以直接或间接刺激或抑制许多不同类型的转运蛋白,包括离子通道和细胞载体。更具体地说,GSK-3β敏感的细胞转运调节涉及各种钙,氯,钠和钾离子通道,以及许多与Na +偶联的细胞载体,包括兴奋性氨基酸转运蛋白EAAT2、3和4,高亲和性Na +偶联的葡萄糖载体SGLT1,肌酸转运蛋白1 CreaT1和II型钠/磷酸盐共转运蛋白NaPi-IIa。 GSK-3β依赖性细胞转运规则是许多生理和病理生理过程中激酶功能的一部分。显然,还需要进行其他研究来检查GSK-3β在许多其他类型的细胞转运蛋白中的作用,以及进一步阐明GSK-3β介导的细胞转运调控的潜在机制。

关键词: GSK-3,细胞转运,离子通道,膜载体,GSK-3β敏感细胞转运,EAAT2。

« Previous
[1]
Rylatt, D.B.; Aitken, A.; Bilham, T.; Condon, G.D.; Embi, N.; Cohen, P. Glycogen synthase from rabbit skeletal muscle. Amino acid sequence at the sites phosphorylated by glycogen synthase kinase-3, and extension of the N-terminal sequence containing the site phosphorylated by phosphorylase kinase. Eur. J. Biochem., 1980, 107(2), 529-537.
[http://dx.doi.org/10.1111/j.1432-1033.1980.tb06060.x] [PMID: 6772446]
[2]
Patel, S.; Doble, B.W.; MacAulay, K.; Sinclair, E.M.; Drucker, D.J.; Woodgett, J.R. Tissue-specific role of glycogen synthase kinase 3beta in glucose homeostasis and insulin action. Mol. Cell. Biol., 2008, 28(20), 6314-6328.
[http://dx.doi.org/10.1128/MCB.00763-08] [PMID: 18694957]
[3]
Woodgett, J.R. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J., 1990, 9(8), 2431-2438.
[http://dx.doi.org/10.1002/j.1460-2075.1990.tb07419.x] [PMID: 2164470]
[4]
Lau, K.F.; Miller, C.C.; Anderton, B.H.; Shaw, P.C. Expression analysis of glycogen synthase kinase-3 in human tissues. J. Pept. Res., 1999, 54(1), 85-91.
[http://dx.doi.org/10.1034/j.1399-3011.1999.00083.x] [PMID: 10448973]
[5]
Madison, J.M.; Zhou, F.; Nigam, A.; Hussain, A.; Barker, D.D.; Nehme, R.; van der Ven, K.; Hsu, J.; Wolf, P.; Fleishman, M.; O’Dushlaine, C.; Rose, S.; Chambert, K.; Lau, F.H.; Ahfeldt, T.; Rueckert, E.H.; Sheridan, S.D.; Fass, D.M.; Nemesh, J.; Mullen, T.E.; Daheron, L.; McCarroll, S.; Sklar, P.; Perlis, R.H.; Haggarty, S.J. Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities. Mol. Psychiatry, 2015, 20(6), 703-717.
[http://dx.doi.org/10.1038/mp.2015.7] [PMID: 25733313]
[6]
Shin, S.M.; Cho, I.J.; Kim, S.G. Resveratrol protects mito-chondria against oxidative stress through AMP-activated protein kinase-mediated glycogen synthase kinase-3beta in-hibition downstream of poly(ADP-ribose)polymerase-LKB1 pathway. Mol. Pharmacol., 2009, 76(4), 884-895.
[http://dx.doi.org/10.1124/mol.109.058479] [PMID: 19620254]
[7]
Crofton, E.J.; Nenov, M.N.; Zhang, Y.; Scala, F.; Page, S.A.; McCue, D.L.; Li, D.; Hommel, J.D.; Laezza, F.; Green, T.A. Glycogen synthase kinase 3 beta alters anxiety-, depression-, and addiction-related behaviors and neuronal activity in the nucleus accumbens shell. Neuropharmacology, 2017, 117, 49-60.
[http://dx.doi.org/10.1016/j.neuropharm.2017.01.020] [PMID: 28126496]
[8]
Hsu, W.J.; Wildburger, N.C.; Haidacher, S.J.; Nenov, M.N.; Folorunso, O.; Singh, A.K.; Chesson, B.C.; Franklin, W.F.; Cortez, I.; Sadygov, R.G.; Dineley, K.T.; Rudra, J.S.; Taglialatela, G.; Lichti, C.F.; Denner, L.; Laezza, F. PPARgamma agonists rescue increased phosphorylation of FGF14 at S226 in the Tg2576 mouse model of Alzheimer’s disease. Exp. Neurol., 2017, 295, 1-17.
[http://dx.doi.org/10.1016/j.expneurol.2017.05.005] [PMID: 28522250]
[9]
Wang, W.; Gu, L.; Verkhratsky, A.; Peng, L. Ammonium increases TRPC1 expression via Cav-1/PTEN/AKT/GSK3β pathway. Neurochem. Res., 2017, 42(3), 762-776.
[http://dx.doi.org/10.1007/s11064-016-2004-z] [PMID: 27412116]
[10]
Fezai, M.; Ahmed, M.; Hosseinzadeh, Z.; Lang, F. Up-Regulation of the large-conductance Ca2+-activated K+ channel by glycogen synthase kinase GSK3β. Cell. Physiol. Biochem., 2016, 39(3), 1031-1039.
[http://dx.doi.org/10.1159/000447810] [PMID: 27537208]
[11]
Zhu, L.Q.; Liu, D.; Hu, J.; Cheng, J.; Wang, S.H.; Wang, Q.; Wang, F.; Chen, J.G.; Wang, J.Z. GSK-3 beta inhibits presynaptic vesicle exocytosis by phosphorylating P/Q-type calcium channel and interrupting SNARE complex formation. J. Neurosci., 2010, 30(10), 3624-3633.
[http://dx.doi.org/10.1523/JNEUROSCI.5223-09.2010] [PMID: 20219996]
[12]
Li, Q.; Sarna, S.K. Chronic stress targets posttranscriptional mechanisms to rapidly upregulate α1C-subunit of Cav1.2b calcium channels in colonic smooth muscle cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2011, 300(1), G154-G163.
[http://dx.doi.org/10.1152/ajpgi.00393.2010] [PMID: 21051529]
[13]
James, T.F.; Nenov, M.N.; Wildburger, N.C.; Lichti, C.F.; Luisi, J.; Vergara, F.; Panova-Electronova, N.I.; Nilsson, C.L.; Rudra, J.S.; Green, T.A.; Labate, D.; Laezza, F. The Nav1.2 channel is regulated by GSK3. Biochim. Biophys. Acta, 2015, 1850(4), 832-844.
[http://dx.doi.org/10.1016/j.bbagen.2015.01.011] [PMID: 25615535]
[14]
Jiang, L.; Kosenko, A.; Yu, C.; Huang, L.; Li, X.; Hoshi, N. Activation of m1 muscarinic acetylcholine receptor induces surface transport of KCNQ channels through a CRMP-2-mediated pathway. J. Cell Sci., 2015, 128(22), 4235-4245.
[http://dx.doi.org/10.1242/jcs.175547] [PMID: 26446259]
[15]
Scala, F.; Fusco, S.; Ripoli, C.; Piacentini, R.; Li Puma, D.D.; Spinelli, M.; Laezza, F.; Grassi, C.; D’Ascenzo, M. Intraneuronal Aβ accumulation induces hippocampal neuron hyperexcitability through A-type K(+) current inhibition mediated by activation of caspases and GSK-3. Neurobiol. Aging, 2015, 36(2), 886-900.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.10.034] [PMID: 25541422]
[16]
Schmid, E.; Yan, J.; Nurbaeva, M.K.; Russo, A.; Yang, W.; Faggio, C.; Shumilina, E.; Lang, F. Decreased store operated Ca2+ entry in dendritic cells isolated from mice expressing PKB/SGK-resistant GSK3. PLoS One, 2014, 9(2)e88637
[http://dx.doi.org/10.1371/journal.pone.0088637] [PMID: 24523925]
[17]
Abousaab, A.; Lang, F. Up-regulation of excitatory amino acid transporters EAAT3 and EAAT4 by lithium sensitive glycogen synthase kinase GSK3ß. Cell. Physiol. Biochem., 2016, 40(5), 1252-1260.
[http://dx.doi.org/10.1159/000453179] [PMID: 27978527]
[18]
Ching, J.; Amiridis, S.; Stylli, S.S.; Bjorksten, A.R.; Kountouri, N.; Zheng, T.; Paradiso, L.; Luwor, R.B.; Morokoff, A.P.; O’Brien, T.J.; Kaye, A.H. The peroxisome proliferator activated receptor gamma agonist pioglitazone increases functional expression of the glutamate transporter excitatory amino acid transporter 2 (EAAT2) in human glioblastoma cells. Oncotarget, 2015, 6(25), 21301-21314.
[http://dx.doi.org/10.18632/oncotarget.4019] [PMID: 26046374]
[19]
Rexhepaj, R.; Dërmaku-Sopjani, M.; Gehring, E.M.; Sopjani, M.; Kempe, D.S.; Föller, M.; Lang, F. Stimulation of electrogenic glucose transport by glycogen synthase kinase 3. Cell. Physiol. Biochem., 2010, 26(4-5), 641-646.
[http://dx.doi.org/10.1159/000322331] [PMID: 21063101]
[20]
Fezai, M.; Jemaà, M.; Fakhri, H.; Chen, H.; Elsir, B.; Pelzl, L.; Lang, F. Down-Regulation of the Na+,Cl- Coupled creatine transporter CreaT (SLC6A8) by glycogen synthase kinase GSK3ß. Cell. Physiol. Biochem., 2016, 40(5), 1231-1238.
[http://dx.doi.org/10.1159/000453177] [PMID: 27978525]
[21]
Föller, M.; Kempe, D.S.; Boini, K.M.; Pathare, G.; Siraskar, B.; Capuano, P.; Alesutan, I.; Sopjani, M.; Stange, G.; Mohebbi, N.; Bhandaru, M.; Ackermann, T.F.; Judenhofer, M.S.; Pichler, B.J.; Biber, J.; Wagner, C.A.; Lang, F. PKB/SGK-resistant GSK3 enhances phosphaturia and calciuria. J. Am. Soc. Nephrol., 2011, 22(5), 873-880.
[http://dx.doi.org/10.1681/ASN.2010070757] [PMID: 21493770]
[22]
Jiménez, E.; Núñez, E.; Ibáñez, I.; Draffin, J.E.; Zafra, F.; Giménez, C. Differential regulation of the glutamate transporters GLT-1 and GLAST by GSK3β. Neurochem. Int., 2014, 79, 33-43.
[http://dx.doi.org/10.1016/j.neuint.2014.10.003] [PMID: 25454285]
[23]
Dërmaku-Sopjani, M.; Kolgeci, S.; Abazi, S.; Sopjani, M. Significance of the anti-aging protein Klotho. Mol. Membr. Biol., 2013, 30(8), 369-385.
[http://dx.doi.org/10.3109/09687688.2013.837518] [PMID: 24124751]
[24]
Sopjani, M.; Rinnerthaler, M.; Almilaji, A.; Ahmeti, S.; Dermaku-Sopjani, M. Regulation of cellular transport by klotho protein. Curr. Protein Pept. Sci., 2014, 15(8), 828-835.
[http://dx.doi.org/10.2174/138920371508141128152429] [PMID: 25466545]
[25]
Sopjani, M.; Dërmaku-Sopjani, M. Klotho-dependent cellular transport regulation. Vitam. Horm., 2016, 101, 59-84.
[http://dx.doi.org/10.1016/bs.vh.2016.02.003] [PMID: 27125738]
[26]
Sopjani, M.; Konjufca, V.; Rinnerthaler, M.; Rexhepaj, R.; Dërmaku-Sopjani, M. The relevance of JAK2 in the regulation of cellular transport. Curr. Med. Chem., 2016, 23(6), 578-588.
[http://dx.doi.org/10.2174/0929867323666151207111707] [PMID: 26639094]
[27]
Sopjani, M.; Thaçi, S.; Krasniqi, B.; Selmonaj, M.; Rinnerthaler, M.; Dërmaku-Sopjani, M. Regulation of ion channels, cellular carriers and Na(+)/K(+)/ATPase by janus kinase 3. Curr. Med. Chem., 2017, 24(21), 2251-2260.
[http://dx.doi.org/10.2174/0929867324666170203122625] [PMID: 28164762]
[28]
Dërmaku-Sopjani, M.; Abazi, S.; Faggio, C.; Kolgeci, J.; Sopjani, M. AMPK-sensitive cellular transport. J. Biochem., 2014, 155(3), 147-158.
[http://dx.doi.org/10.1093/jb/mvu002] [PMID: 24440827]
[29]
Sopjani, M.; Rinnerthaler, M.; Kruja, J.; Dermaku-Sopjani, M. Intracellular signaling of the aging suppressor protein Klotho. Curr. Mol. Med., 2015, 15(1), 27-37.
[http://dx.doi.org/10.2174/1566524015666150114111258] [PMID: 25601466]
[30]
Shumilina, E.; Huber, S.M.; Lang, F. Ca2+ signaling in the regulation of dendritic cell functions. Am. J. Physiol. Cell Physiol., 2011, 300(6), C1205-C1214.
[http://dx.doi.org/10.1152/ajpcell.00039.2011] [PMID: 21451105]
[31]
Russo, A.; Schmid, E.; Nurbaeva, M.K.; Yang, W.; Yan, J.; Bhandaru, M.; Faggio, C.; Shumilina, E.; Lang, F. PKB/SGK-dependent GSK3-phosphorylation in the regulation of LPS-induced Ca2+ increase in mouse dendritic cells. Biochem. Biophys. Res. Commun., 2013, 437(3), 336-341.
[http://dx.doi.org/10.1016/j.bbrc.2013.06.075] [PMID: 23817039]
[32]
Ohtani, M.; Nagai, S.; Kondo, S.; Mizuno, S.; Nakamura, K.; Tanabe, M.; Takeuchi, T.; Matsuda, S.; Koyasu, S. Mammalian target of rapamycin and glycogen synthase kinase 3 differentially regulate lipopolysaccharide-induced interleukin-12 production in dendritic cells. Blood, 2008, 112(3), 635-643.
[http://dx.doi.org/10.1182/blood-2008-02-137430] [PMID: 18492954]
[33]
Huang, S.; Turlova, E.; Li, F.; Bao, M.H.; Szeto, V.; Wong, R.; Abussaud, A.; Wang, H.; Zhu, S.; Gao, X.; Mori, Y.; Feng, Z.P.; Sun, H.S. Transient receptor potential melastatin 2 channels (TRPM2) mediate neonatal hypoxic-ischemic brain injury in mice. Exp. Neurol., 2017, 296, 32-40.
[http://dx.doi.org/10.1016/j.expneurol.2017.06.023] [PMID: 28668375]
[34]
Catterall, W.A. Voltage-gated calcium channels. Cold Spring Harb. Perspect. Biol., 2011, 3(8)a003947
[http://dx.doi.org/10.1101/cshperspect.a003947] [PMID: 21746798]
[35]
Ko, M.L.; Shi, L.; Grushin, K.; Nigussie, F.; Ko, G.Y. Circadian profiles in the embryonic chick heart: L-type voltage-gated calcium channels and signaling pathways. Chronobiol. Int., 2010, 27(9-10), 1673-1696.
[http://dx.doi.org/10.3109/07420528.2010.514631] [PMID: 20969517]
[36]
Du, S.; Yang, L. ClC-3 chloride channel modulates the proliferation and migration of osteosarcoma cells via AKT/GSK3β signaling pathway. Int. J. Clin. Exp. Pathol., 2015, 8(2), 1622-1630.
[PMID: 25973047]
[37]
Hong, S.; Bi, M.; Wang, L.; Kang, Z.; Ling, L.; Zhao, C. CLC-3 channels in cancer (review). Oncol. Rep., 2015, 33(2), 507-514.
[http://dx.doi.org/10.3892/or.2014.3615] [PMID: 25421907]
[38]
Yanagita, T.; Maruta, T.; Nemoto, T.; Uezono, Y.; Matsuo, K.; Satoh, S.; Yoshikawa, N.; Kanai, T.; Kobayashi, H.; Wada, A. Chronic lithium treatment up-regulates cell surface Na(V)1.7 sodium channels via inhibition of glycogen synthase kinase-3 in adrenal chromaffin cells: enhancement of Na(+) influx, Ca(2+) influx and catecholamine secretion after lithium withdrawal. Neuropharmacology, 2009, 57(3), 311-321.
[http://dx.doi.org/10.1016/j.neuropharm.2009.05.006] [PMID: 19486905]
[39]
Nemoto, T.; Yanagita, T.; Maruta, T.; Sugita, C.; Satoh, S.; Kanai, T.; Wada, A.; Murakami, M. Endothelin-1-induced down-regulation of NaV1.7 expression in adrenal chromaffin cells: attenuation of catecholamine secretion and tau dephosphorylation. FEBS Lett., 2013, 587(7), 898-905.
[http://dx.doi.org/10.1016/j.febslet.2013.02.013] [PMID: 23434582]
[40]
Shavkunov, A.S.; Wildburger, N.C.; Nenov, M.N.; James, T.F.; Buzhdygan, T.P.; Panova-Elektronova, N.I.; Green, T.A.; Veselenak, R.L.; Bourne, N.; Laezza, F. The fibroblast growth factor 14·voltage-gated sodium channel complex is a new target of glycogen synthase kinase 3 (GSK3). J. Biol. Chem., 2013, 288(27), 19370-19385.
[http://dx.doi.org/10.1074/jbc.M112.445924] [PMID: 23640885]
[41]
Hsu, W.C.; Nenov, M.N.; Shavkunov, A.; Panova, N.; Zhan, M.; Laezza, F. Identifying a kinase network regulating FGF14:Nav1.6 complex assembly using split-luciferase complementation. PLoS One, 2015, 10(2) e0117246
[http://dx.doi.org/10.1371/journal.pone.0117246] [PMID: 25659151]
[42]
Scala, F.; Nenov, M.N.; Crofton, E.J.; Singh, A.K.; Folorunso, O.; Zhang, Y.; Chesson, B.C.; Wildburger, N.C.; James, T.F.; Alshammari, M.A.; Alshammari, T.K.; Elfrink, H.; Grassi, C.; Kasper, J.M.; Smith, A.E.; Hommel, J.D.; Lichti, C.F.; Rudra, J.S.; D’Ascenzo, M.; Green, T.A.; Laezza, F. Environmental enrichment and social isolation mediate neuroplasticity of medium spiny neurons through the GSK3 pathway. Cell Rep., 2018, 23(2), 555-567.
[http://dx.doi.org/10.1016/j.celrep.2018.03.062] [PMID: 29642012]
[43]
Boini, K.M.; Bhandaru, M.; Mack, A.; Lang, F. Steroid hormone release as well as renal water and electrolyte excretion of mice expressing PKB/SGK-resistant GSK3. Pflugers Arch., 2008, 456(6), 1207-1216.
[http://dx.doi.org/10.1007/s00424-008-0483-8] [PMID: 18369660]
[44]
Menniti, M.; Iuliano, R.; Föller, M.; Sopjani, M.; Alesutan, I.; Mariggiò, S.; Nofziger, C.; Perri, A.M.; Amato, R.; Blazer-Yost, B.; Corda, D.; Lang, F.; Perrotti, N. 60kDa lysophospholipase, a new Sgk1 molecular partner involved in the regulation of ENaC. Cell. Physiol. Biochem., 2010, 26(4-5), 587-596.
[http://dx.doi.org/10.1159/000322326] [PMID: 21063096]
[45]
Hosseinzadeh, Z.; Luo, D.; Sopjani, M.; Bhavsar, S.K.; Lang, F. Down-regulation of the epithelial Na+ channel ENaC by Janus kinase 2. J. Membr. Biol., 2014, 247(4), 331-338.
[http://dx.doi.org/10.1007/s00232-014-9636-1] [PMID: 24562791]
[46]
Tyan, L.; Sopjani, M.; Dërmaku-Sopjani, M.; Schmid, E.; Yang, W.; Xuan, N.T.; Shumilina, E.; Lang, F. Inhibition of voltage-gated K+ channels in dendritic cells by rapamycin. Am. J. Physiol. Cell Physiol., 2010, 299(6), C1379-C1385.
[http://dx.doi.org/10.1152/ajpcell.00367.2010] [PMID: 20926775]
[47]
Almilaji, A.; Pakladok, T.; Muñoz, C.; Elvira, B.; Sopjani, M.; Lang, F. Upregulation of KCNQ1/KCNE1 K+ channels by Klotho. Channels (Austin), 2014, 8(3), 222-229.
[http://dx.doi.org/10.4161/chan.27662] [PMID: 24457979]
[48]
Hosseinzadeh, Z.; Sopjani, M.; Pakladok, T.; Bhavsar, S.K.; Lang, F. Downregulation of KCNQ4 by Janus kinase 2. J. Membr. Biol., 2013, 246(4), 335-341.
[http://dx.doi.org/10.1007/s00232-013-9537-8] [PMID: 23543186]
[49]
Zhu, X.R.; Wulf, A.; Schwarz, M.; Isbrandt, D.; Pongs, O. Characterization of human Kv4.2 mediating a rapidly-inactivating transient voltage-sensitive K+ current. Receptors Channels, 1999, 6(5), 387-400.
[PMID: 10551270]
[50]
Wilmes, J.; Haddad-Tóvolli, R.; Alesutan, I.; Munoz, C.; Sopjani, M.; Pelzl, L.; Bogatikov, E.; Fedele, G.; Faggio, C.; Seebohm, G.; Föller, M.; Lang, F. Regulation of KCNQ1/KCNE1 by β-catenin. Mol. Membr. Biol., 2012, 29(3-4), 87-94.
[http://dx.doi.org/10.3109/09687688.2012.678017] [PMID: 22583083]
[51]
Aceto, G.; Re, A.; Mattera, A.; Leone, L.; Colussi, C.; Rinaudo, M.; Scala, F.; Gironi, K.; Barbati, S.A.; Fusco, S.; Green, T.; Laezza, F.; D’Ascenzo, M.; Grassi, C. GSK3β modulates timing-dependent long-term depression through direct phosphorylation of Kv4.2 channels. Cereb. Cortex, 2019, 29(5), 1851-1865.
[http://dx.doi.org/10.1093/cercor/bhy042] [PMID: 29790931]
[52]
Kim, M.S.; Shutov, L.P.; Gnanasekaran, A.; Lin, Z.; Rysted, J.E.; Ulrich, J.D.; Usachev, Y.M. Nerve growth factor (NGF) regulates activity of nuclear factor of activated T-cells (NFAT) in neurons via the phosphatidylinositol 3-kinase (PI3K)-Akt-glycogen synthase kinase 3β (GSK3β) pathway. J. Biol. Chem., 2014, 289(45), 31349-31360.
[http://dx.doi.org/10.1074/jbc.M114.587188] [PMID: 25231981]
[53]
Gruson, D.; Ginion, A.; Decroly, N.; Lause, P.; Vanoverschelde, J.L.; Ketelslegers, J.M.; Bertrand, L.; Thissen, J.P. Urocortin-induced cardiomyocytes hypertrophy is associated with regulation of the GSK-3β pathway. Heart Vessels, 2012, 27(2), 202-207.
[http://dx.doi.org/10.1007/s00380-011-0141-5] [PMID: 21505854]
[54]
Lang, F. Mechanisms and significance of cell volume regulation. J. Am. Coll. Nutr., 2007, 26(5)(Suppl.), 613S-623S.
[http://dx.doi.org/10.1080/07315724.2007.10719667] [PMID: 17921474]
[55]
Fedorenko, O.; Tang, C.; Sopjani, M.; Föller, M.; Gehring, E.M.; Strutz-Seebohm, N.; Ureche, O.N.; Ivanova, S.; Semke, A.; Lang, F.; Seebohm, G.; Lang, U.E. PIP5K2A-dependent regulation of excitatory amino acid transporter EAAT3. Psychopharmacology (Berl.), 2009, 206(3), 429-435.
[http://dx.doi.org/10.1007/s00213-009-1621-5] [PMID: 19644675]
[56]
Hosseinzadeh, Z.; Bhavsar, S.K.; Sopjani, M.; Alesutan, I.; Saxena, A.; Dërmaku-Sopjani, M.; Lang, F. Regulation of the glutamate transporters by JAK2. Cell. Physiol. Biochem., 2011, 28(4), 693-702.
[http://dx.doi.org/10.1159/000335763] [PMID: 22178881]
[57]
Sopjani, M.; Alesutan, I.; Dërmaku-Sopjani, M.; Fraser, S.; Kemp, B.E.; Föller, M.; Lang, F. Down-regulation of Na+-coupled glutamate transporter EAAT3 and EAAT4 by AMP-activated protein kinase. J. Neurochem., 2010, 113(6), 1426-1435.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06678.x] [PMID: 20218975]
[58]
Beart, P.M.; O’Shea, R.D. Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br. J. Pharmacol., 2007, 150(1), 5-17.
[http://dx.doi.org/10.1038/sj.bjp.0706949] [PMID: 17088867]
[59]
Gegelashvili, G.; Robinson, M.B.; Trotti, D.; Rauen, T. Regulation of glutamate transporters in health and disease. Prog. Brain Res., 2001, 132, 267-286.
[http://dx.doi.org/10.1016/S0079-6123(01)32082-4] [PMID: 11544995]
[60]
Bianchi, M.G.; Bardelli, D.; Chiu, M.; Bussolati, O. Changes in the expression of the glutamate transporter EAAT3/EAAC1 in health and disease. Cell. Mol. Life Sci., 2014, 71(11), 2001-2015.
[http://dx.doi.org/10.1007/s00018-013-1484-0] [PMID: 24162932]
[61]
Atkins, R.J.; Dimou, J.; Paradiso, L.; Morokoff, A.P.; Kaye, A.H.; Drummond, K.J.; Hovens, C.M. Regulation of glycogen synthase kinase-3 beta (GSK-3β) by the Akt pathway in gliomas. J. Clin. Neurosci., 2012, 19(11), 1558-1563.
[http://dx.doi.org/10.1016/j.jocn.2012.07.002] [PMID: 22999562]
[62]
Leiprecht, N.; Munoz, C.; Alesutan, I.; Siraskar, G.; Sopjani, M.; Föller, M.; Stubenrauch, F.; Iftner, T.; Lang, F. Regulation of Na(+)-coupled glucose carrier SGLT1 by human papillomavirus 18 E6 protein. Biochem. Biophys. Res. Commun., 2011, 404(2), 695-700.
[http://dx.doi.org/10.1016/j.bbrc.2010.12.044] [PMID: 21156162]
[63]
Sopjani, M.; Alesutan, I.; Wilmes, J.; Dërmaku-Sopjani, M.; Lam, R.S.; Koutsouki, E.; Jakupi, M.; Föller, M.; Lang, F. Stimulation of Na+/K+ ATPase activity and Na+ coupled glucose transport by β-catenin. Biochem. Biophys. Res. Commun., 2010, 402(3), 467-470.
[http://dx.doi.org/10.1016/j.bbrc.2010.10.049] [PMID: 20951116]
[64]
Almilaji, A.; Sopjani, M.; Elvira, B.; Borras, J.; Dërmaku-Sopjani, M.; Munoz, C.; Warsi, J.; Lang, U.E.; Lang, F. Upregulation of the creatine transporter Slc6A8 by Klotho. Kidney Blood Press. Res., 2014, 39(6), 516-525.
[http://dx.doi.org/10.1159/000368462] [PMID: 25531216]
[65]
Kato, H.; Miyake, F.; Shimbo, H.; Ohya, M.; Sugawara, H.; Aida, N.; Anzai, R.; Takagi, M.; Okuda, M.; Takano, K.; Wada, T.; Iai, M.; Yamashita, S.; Osaka, H. Urine screening for patients with developmental disabilities detected a patient with creatine transporter deficiency due to a novel missense mutation in SLC6A8. Brain Dev., 2014, 36(7), 630-633.
[http://dx.doi.org/10.1016/j.braindev.2013.08.004] [PMID: 24045174]
[66]
Dërmaku-Sopjani, M.; Sopjani, M.; Saxena, A.; Shojaiefard, M.; Bogatikov, E.; Alesutan, I.; Eichenmüller, M.; Lang, F. Downregulation of NaPi-IIa and NaPi-IIb Na-coupled phosphate transporters by coexpression of Klotho. Cell. Physiol. Biochem., 2011, 28(2), 251-258.
[http://dx.doi.org/10.1159/000331737] [PMID: 21865732]
[67]
Villa-Bellosta, R.; Ravera, S.; Sorribas, V.; Stange, G.; Levi, M.; Murer, H.; Biber, J.; Forster, I.C. The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi. Am. J. Physiol. Renal Physiol., 2009, 296(4), F691-F699.
[http://dx.doi.org/10.1152/ajprenal.90623.2008] [PMID: 19073637]
[68]
Segawa, H.; Yamanaka, S.; Ohno, Y.; Onitsuka, A.; Shiozawa, K.; Aranami, F.; Furutani, J.; Tomoe, Y.; Ito, M.; Kuwahata, M.; Imura, A.; Nabeshima, Y.; Miyamoto, K. Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice. Am. J. Physiol. Renal Physiol., 2007, 292(2), F769-F779.
[http://dx.doi.org/10.1152/ajprenal.00248.2006] [PMID: 16985213]
[69]
Moe, O.W. PiT-2 coming out of the pits. Am. J. Physiol. Renal Physiol., 2009, 296(4), F689-F690.
[http://dx.doi.org/10.1152/ajprenal.00007.2009] [PMID: 19193727]
[70]
Hatou, S.; Yoshida, S.; Higa, K.; Miyashita, H.; Inagaki, E.; Okano, H.; Tsubota, K.; Shimmura, S. Functional corneal endothelium derived from corneal stroma stem cells of neural crest origin by retinoic acid and Wnt/β-catenin signaling. Stem Cells Dev., 2013, 22(5), 828-839.
[http://dx.doi.org/10.1089/scd.2012.0286] [PMID: 22974347]
[71]
Sopjani, M.; Alesutan, I.; Dërmaku-Sopjani, M.; Gu, S.; Zelenak, C.; Munoz, C.; Velic, A.; Föller, M.; Rosenblatt, K.P.; Kuro-o, M.; Lang, F. Regulation of the Na+/K+ ATPase by Klotho. FEBS Lett., 2011, 585(12), 1759-1764.
[http://dx.doi.org/10.1016/j.febslet.2011.05.021] [PMID: 21605558]
[72]
Alesutan, I.; Munoz, C.; Sopjani, M.; Dërmaku-Sopjani, M.; Michael, D.; Fraser, S.; Kemp, B.E.; Seebohm, G.; Föller, M.; Lang, F. Inhibition of Kir2.1 (KCNJ2) by the AMP-activated protein kinase. Biochem. Biophys. Res. Commun., 2011, 408(4), 505-510.
[http://dx.doi.org/10.1016/j.bbrc.2011.04.015] [PMID: 21501591]
[73]
Alesutan, I.; Sopjani, M.; Munoz, C.; Fraser, S.; Kemp, B.E.; Föller, M.; Lang, F. Inhibition of connexin 26 by the AMP-activated protein kinase. J. Membr. Biol., 2011, 240(3), 151-158.
[http://dx.doi.org/10.1007/s00232-011-9353-y] [PMID: 21400101]
[74]
Murray, J.T.; Campbell, D.G.; Morrice, N.; Auld, G.C.; Shpiro, N.; Marquez, R.; Peggie, M.; Bain, J.; Bloomberg, G.B.; Grahammer, F.; Lang, F.; Wulff, P.; Kuhl, D.; Cohen, P. Exploitation of KESTREL to identify NDRG family members as physiological substrates for SGK1 and GSK3. Biochem. J., 2004, 384(Pt 3), 477-488.
[http://dx.doi.org/10.1042/BJ20041057] [PMID: 15461589]
[75]
Ackermann, T.F.; Kempe, D.S.; Lang, F.; Lang, U.E. Hyperactivity and enhanced curiosity of mice expressing PKB/SGK-resistant glycogen synthase kinase-3 (GSK-3). Cell. Physiol. Biochem., 2010, 25(6), 775-786.
[http://dx.doi.org/10.1159/000315097] [PMID: 20511724]
[76]
Fajol, A.; Chen, H.; Umbach, A.T.; Quarles, L.D.; Lang, F.; Föller, M. Enhanced FGF23 production in mice expressing PI3K-insensitive GSK3 is normalized by β-blocker treatment. FASEB J., 2016, 30(2), 994-1001.
[http://dx.doi.org/10.1096/fj.15-279943] [PMID: 26527066]
[77]
Gu, S.; Honisch, S.; Kounenidakis, M.; Alkahtani, S.; Alarifi, S.; Alevizopoulos, K.; Stournaras, C.; Lang, F. Membrane androgen receptor down-regulates c-src-activity and beta-catenin transcription and triggers GSK-3beta-phosphorylation in colon tumor cells. Cell. Physiol. Biochem., 2014, 34(4), 1402-1412.
[http://dx.doi.org/10.1159/000366346] [PMID: 25301365]
[78]
Rotte, A.; Pasham, V.; Eichenmüller, M.; Yang, W.; Qadri, S.M.; Bhandaru, M.; Lang, F. Regulation of basal gastric acid secretion by the glycogen synthase kinase GSK3. J. Gastroenterol., 2010, 45(10), 1022-1032.
[http://dx.doi.org/10.1007/s00535-010-0260-2] [PMID: 20552232]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy