Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

虫草素下调Cdk-2干扰细胞周期并通过在宫颈癌细胞中产生ROS来增加细胞凋亡:体外和计算机研究

卷 19, 期 2, 2019

页: [152 - 159] 页: 8

弟呕挨: 10.2174/1568009618666180905095356

价格: $65

摘要

背景:虫草素是一种来自药用蘑菇冬虫夏草的小分子,据报道它具有抗癌特性。目的:在本研究中,我们重点研究了虫草素对宫颈癌细胞的影响,并进一步阐明了可能的分子机制。 方法:采用细胞活力和细胞计数法检测虫草素的细胞毒作用,流式细胞术检测细胞凋亡和细胞周期,定量PCR(qPCR)和Western blotting检测靶基因的表达。分子对接和分子动力学模拟用于计算机分析虫草素对靶蛋白的亲和力。 结果:虫草素处理控制SiHa和HeLa宫颈癌细胞生长,增加其凋亡率,干扰细胞周期,特别是拉长S期。 qPCR结果表明通过虫草素处理在mRNA水平上存在细胞周期蛋白CDK-2,CYCLIN-A2和CYCLIN-E1的下调,但在促凋亡蛋白或抗凋亡蛋白中未观察到显着变化。虫草素处理细胞的细胞内活性氧(ROS)水平显着增加,这意味着ROS可能诱导细胞凋亡。蛋白质印迹分析证实虫草素可显着降低Cdk-2,并使Cyclin-E1和Cyclin-A2轻度下降,这可能是调节细胞周期的原因。分子对接表明虫草素对Cdk-2具有高结合亲和力。分子动力学模拟进一步证实,虫草素-Cdk-2复合物的对接姿势保持在结合口袋内10ns。 结论:我们的研究表明虫草素对宫颈癌细胞有效,通过细胞周期蛋白调节细胞周期,特别是下调Cdk-2,通过产生ROS诱导细胞凋亡是虫草素抗癌活性的机制之一。

关键词: 虫草素,宫颈癌,细胞凋亡,活性氧,细胞周期,Cdk-2

图形摘要
[1]
Rong, C.; Feng, Y.; Ye, Z. Notch is a critical regulator in cervical cancer by regulating Numb splicing. Oncol. Lett., 2017, 13, 2465-2470.
[2]
Lan, K.; Zhao, Y.; Fan, Y.; Ma, B.; Yang, S.; Liu, Q.; Linghu, H.; Wang, H. Sulfiredoxin May Promote Cervical Cancer Metastasis via Wnt/β-Catenin Signaling Pathway. Int. J. Mol. Sci., 2017, 18, 917.
[3]
Smith, R.A.; Andrews, K.S.; Brooks, D.; Fedewa, S.A.; Manassaram-Baptiste, D.; Saslow, D.; Brawley, O.W.; Wender, R.C. Cancer screening in the United States, 2017: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J. Clin., 2017, 67, 100-121.
[4]
Wang, W.; Li, Y.; Liu, N.; Gao, Y.; Li, L. MiR-23b controls ALDH1A1 expression in cervical cancer stem cells. BMC Cancer, 2017, 17, 292. a
[5]
Gu, J.; Hao, C.; Yan, X.; Xuan, S. Applied analysis of ultrasound-guided ilioinguinal and iliohypogastric nerve blocks in the radical surgery of aged cervical cancer. Oncol. Lett., 2017, 13, 1637-1640.
[6]
Zhang, M.; Zhang, H.; Yu, Y.; Huang, H.; Li, G.; Xu, C. Synergistic effects of a novel lipid-soluble extract from Pinelliapedatisecta Schott and cisplatin on human cervical carcinoma cell lines through the regulation of DNA damage response signaling pathway. Oncol. Lett., 2017, 13, 2121-2128.
[7]
Mizuno, T. Medicinal effects and utilization of Cordyceps (Fr.) Link (Ascomycetes) and Isaria Fr. (Mitosporic fungi) Chinese caterpillar fungi, “Tohukaso. Int. J. Med. Mushrooms, 1999, 1, 251-256.
[8]
Khan, M.A.; Tania, M.; Zhang, D.; Chen, H. Cordyceps Mushroom: A Potent Anticancer Nutraceutical. The Open Nutr. J., 2010, 3, 179-183.
[9]
Yoshikawa, N.; Nakamura, K.; Yamaguchi, Y.; Kagota, S.; Shinozuka, K.; Kunitomo, M. Antitumour activity of cordycepin in mice. Clin. Exp. Pharmacol. Physiol., 2004, 31, 51-53.
[10]
Kim, H.G.; Shrestha, B.; Lim, S.Y.; Yoon, D.H.; Chang, W.C.; Shin, D.J.; Han, S.K.; Park, S.M.; Park, J.H.; Park, H.I.; Sung, J.M.; Jang, Y.; Chung, N.; Hwang, K.C.; Kim, T.W. Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-kappaB through Akt and p38 inhibition in RAW 264.7 macrophage cells. Eur. J. Pharmacol., 2006, 545, 192-199.
[11]
Wu, W.C.; Hsiao, J.R.; Lian, Y.Y.; Lin, C.Y.; Huang, B.M. The apoptotic effect of cordycepin on human OEC-M1 oral cancer cell line. Cancer Chemother. Pharmacol., 2007, 60, 103-111.
[12]
Tuli, H.S.; Sharma, A.K.; Sandhu, S.S.; Kashyap, D. Cordycepin: a bioactive metabolite with therapeutic potential. Life Sci., 2013, 93, 863-869.
[13]
Nakamura, K.; Shinozuka, K.; Yoshikawa, N. Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensis. J. Pharmacol. Sci., 2015, 127, 53-56.
[14]
Khan, M.A.; Tania, M.; Wei, C.; Mei, Z.; Fu, S.; Cheng, J.; Xu, J.; Fu, J. Thymoquinone inhibits cancer metastasis by downregulating TWIST1 expression to reduce epithelial to mesenchymal transition. Oncotarget, 2015, 6, 19580-19591.
[15]
Khan, M.A.; Chen, H.C.; Wan, X.X.; Tania, M.; Xu, A.H.; Chen, F.Z.; Zhang, D.Z. Regulatory effects of resveratrol on antioxidant enzymes: a mechanism of growth inhibition and apoptosis induction in cancer cells. Mol. Cells, 2013, 35, 219-225.
[16]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; et al. Gaussian 09, Revision A.02. Gaussian Inc Wallingford CT 34:Wallingford CT. 2009. doi: 10.1159/000348293
[17]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31, 455-461.
[18]
DeLano, WL. The PyMOL Molecular Graphics System. Schrödinger LLC wwwpymolorg Version 1. 2002. Retrieved: http://www.pymol.org doi: citeulike-article-id:240061 (23/10/ 2017)
[19]
Dassault Systèmes, B.I.O.V.I.A. Discovery Studio Modeling Environment. Release 4.1; San Diego: Dassault Systèmes, 2015.
[20]
Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput., 2015, 11, 3696-3713.
[21]
Krieger, F.; Fierz, B.; Bieri, O.; Drewello, M.; Kiefhaber, T. Dynamics of unfolded polypeptide chains as model for the earliest steps in protein folding. J. Mol. Biol., 2003, 332, 265-274.
[22]
Krieger, E.; Darden, T.; Nabuurs, S.B.; Finkelstein, A.; Vriend, G. Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins, 2004, 57, 678-683.
[23]
Tom, D.; Darrin, Y.; Lee, P. Particle mesh Ewald: An Nṡlog(N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98, 10089-10092.
[24]
Chen, Y.Y.; Chou, P.Y.; Chien, Y.C.; Wu, C.H.; Wu, T.S.; Sheu, M.J. Ethanol extracts of fruiting bodies of Antrodia cinnamomea exhibit anti-migration action in human adenocarcinoma CL1-0 cells through the MAPK and PI3K/AKT signaling pathways. Phytomedicine, 2012, 19, 768-778.
[25]
Nakamura, K.; Konoha, K.; Yoshikawa, N.; Yamaguchi, Y.; Kagota, S.; Shinozuka, K.; Kunitomo, M. Effect of cordycepin (3′-deoxyadenosine) on hematogenic lung metastatic model mice. In Vivo, 2005, 19, 137-141.
[26]
Sato, A.; Yoshikawa, N.; Kubo, E.; Kakuda, M.; Nishiuchi, A.; Kimoto, Y.; Takahashi, Y.; Kagota, S.; Shinozuka, K.; Nakamura, K. Inhibitory effect of cordycepin on experimental hepatic metastasis of B16-F0 mouse melanoma cells. In Vivo, 2013, 27, 729-732.
[27]
Yoshikawa, N.; Kunitomo, M.; Kagota, S.; Shinozuka, K.; Nakamura, K. Inhibitory effect of cordycepin on hematogenic metastasis of B16-F1 mouse melanoma cells accelerated by adenosine-5′-diphosphate. Anticancer Res., 2009, 29, 3857-3860.
[28]
Zhang, P.; Huang, C.; Fu, C.; Tian, Y.; Hu, Y.; Wang, B.; Strasner, A.; Song, Y.; Song, E. Cordycepin (3′-deoxyadenosine) suppressed HMGA2, Twist1 and ZEB1-dependent melanoma invasion and metastasis by targeting miR-33b. Oncotarget, 2015, 6, 9834-9853.
[29]
Chaicharoenaudomrung, N.; Jaroonwitchawan, T.; Noisa, P. Cordycepin induces apoptotic cell death of human brain cancer through the modulation of autophagy. Toxicol. In Vitro, 2017, 46, 113-121.
[30]
Shao, L.W.; Huang, L.H.; Yan, S.; Jin, J.D.; Ren, S.Y. Cordycepin induces apoptosis in human liver cancer HepG2 cells through extrinsic and intrinsic signaling pathways. Oncol. Lett., 2016, 12, 995-1000.
[31]
Hwang, J.H.; Park, S.J.; Ko, W.G.; Kang, S.M.; Lee, D.B.; Bang, J.; Park, B.J.; Wee, C.B.; Kim, D.J.; Jang, I.S.; Ko, J.H. Cordycepin induces human lung cancer cell apoptosis by inhibiting nitric oxide mediated ERK/Slug signaling pathway. Am. J. Cancer Res., 2017a, 7, 417-432.
[32]
Joo, J.C.; Hwang, J.H.; Jo, E.; Kim, Y.R.; Kim, D.J.; Lee, K.B.; Park, S.J.; Jang, I.S. Cordycepin induces apoptosis by caveolin-1-mediated JNK regulation of Foxo3a in human lung adenocarcinoma. Oncotarget, 2017, 8, 12211-12224.
[33]
Wang, Z.; Wu, X.; Liang, Y.N.; Wang, L.; Song, Z.X.; Liu, J.L.; Tang, Z.S. Cordycepin Induces Apoptosis and Inhibits Proliferation of Human Lung Cancer Cell Line H1975 via Inhibiting the Phosphorylation of EGFR. Molecules, 2016, 21, E1267.
[34]
Yu, X.; Ling, J.; Liu, X.; Guo, S.; Lin, Y.; Liu, X.; Su, L. Cordycepin induces autophagy-mediated c-FLIPL degradation and leads to apoptosis in human non-small cell lung cancer cells. Oncotarget, 2017, 8, 6691-6699.
[35]
Hwang, I.H.; Oh, S.Y.; Jang, H.J.; Jo, E.; Joo, J.C.; Lee, K.B.; Yoo, H.S.; Lee, M.Y.; Park, S.J.; Jang, I.S. Cordycepin promotes apoptosis in renal carcinoma cells by activating the MKK7-JNK signaling pathway through inhibition of c-FLIPL expression. PLoS One, 2017b, 12, e0186489.
[36]
Cao, H.L.; Liu, Z.J.; Chang, Z. Cordycepin induces apoptosis in human bladder cancer cells via activation of A3 adenosine receptors. Tumour Biol., 2017, 39, 1010428317706915.
[37]
Wang, C.W.; Hsu, W.H.; Tai, C.J. Antimetastatic effects of cordycepin mediated by the inhibition of mitochondrial activity and estrogen-related receptor α in human ovarian carcinoma cells. Oncotarget, 2017b, 8, 3049-3058.
[38]
Nasser, M.I.; Masood, M.; Wei, W.; Li, X.; Zhou, Y.; Liu, B.; Li, J.; Li, X. Cordycepin induces apoptosis in SGC-7901 cells through mitochondrial extrinsic phosphorylation of PI3K/Akt by generating ROS. Int. J. Oncol., 2017, 50, 911-919.
[39]
van den Heuvel, S.; Harlow, E. Distinct roles for cyclin-dependent kinases in cell cycle control. Science, 1993, 262, 2050-2054.
[40]
Hu, B. Mitra, J.; van den Heuvel, S.; Enders, G.H. S and G2 phase roles for Cdk-2 revealed by inducible expression of a dominant-negative mutant in human cells. Mol. Cell. Biol., 2001, 21, 2755-2766.
[41]
Liao, Y.; Ling, J.; Zhang, G.; Liu, F.; Tao, S.; Han, Z.; Chen, S.; Chen, Z.; Le, H. Cordycepin induces cell cycle arrest and apoptosis by inducing DNA damage and up-regulation of p53 in Leukemia cells. Cell Cycle, 2015, 14, 761-771.
[42]
Seong da, B.; Hong, S.; Muthusami, S.; Kim, W.D.; Yu, J.R.; Park, W.Y. Cordycepin increases radiosensitivity in cervical cancer cells by overriding or prolonging radiation-induced G2/M arrest. Eur. J. Pharmacol., 2016, 771, 77-83.
[43]
Siev, M.; Weinberg, R.; Penman, S. The selective interruption of nucleolar RNA synthesis in HeLa cells by cordycepin. J. Cell Biol., 1969, 41, 510-520.
[44]
Bissantz, C.; Kuhn, B.; Stahl, M. A medicinal chemist’s guide to molecular interactions. J. Med. Chem., 2010, 53, 5061-5084.
[45]
Hunter, C.A. Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. Angew. Chem. Int. Ed. Engl., 2004, 43, 5310-5324.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy