Review Article

癌症相关的恶病质,活性氧和营养疗法

卷 26, 期 31, 2019

页: [5728 - 5744] 页: 17

弟呕挨: 10.2174/0929867325666180629123817

价格: $65

摘要

癌症相关的恶病质(CAC)是一种在许多癌症患者中发生的综合征,对他们的生存有不利影响。 最近的报道概述了该综合征可能部分是由于活性氧(ROS)的有害和促炎作用所致。 这篇综述着重于理论上可以抵消肿瘤细胞氧化应激的营养素,这主要是由于其抗氧化活性。 根据CAC的病理生理学,讨论了营养元素硒,褪黑素,牛磺酸,肌肽,辅酶Q10(泛醌)和omega-3多不饱和脂肪酸(PUFA''s)的临床前和临床结果。 这应表明它们是可行的CAC治疗候选药物,其最终目标是提高患者生存率。 在新型药物ghrelin(一种具有抗炎特性的激素)中添加了饮食调节疗法,这是一个很有前途的概念。

关键词: 癌症,恶病质,活性氧,营养,微量营养素,生长素释放肽。

[1]
Baracos, V.E.; Martin, L.; Korc, M.; Guttridge, D.C.; Fearon, K.C.H. Cancer-associated cachexia. Nat. Rev. Dis. Primers, 2018, 4, 17105.
[http://dx.doi.org/10.1038/nrdp.2017.105] [PMID: 29345251]
[2]
Berry, D.L.; Blonquist, T.; Nayak, M.M.; Roper, K.; Hilton, N.; Lombard, H.; Hester, A.; Chiavacci, A.; Meyers, S.; McManus, K. Cancer Anorexia and Cachexia: Screening in an Ambulatory Infusion Service and Nutrition Consultation
. Clin. J. Oncol. Nurs., 2018, 22(1), 63-68.
[http://dx.doi.org/10.1188/18.CJON.63-68] [PMID: 29350696]
[3]
Dewey, A.; Baughan, C.; Dean, T.; Higgins, B.; Johnson, I. Eicosapentaenoic acid (EPA, an omega-3 fatty acid from fish oils) for the treatment of cancer cachexia. Cochrane Database Syst. Rev., 2007, (1)CD004597
[http://dx.doi.org/10.1002/14651858.CD004597.pub2] [PMID: 17253515]
[4]
Fearon, K.; Arends, J.; Baracos, V. Understanding the mechanisms and treatment options in cancer cachexia. Nat. Rev. Clin. Oncol., 2013, 10(2), 90-99.
[http://dx.doi.org/10.1038/nrclinonc.2012.209] [PMID: 23207794]
[5]
Anderson, L.J.; Albrecht, E.D.; Garcia, J.M. Update on management of cancer-related cachexia. Curr. Oncol. Rep., 2017, 19(1), 3.
[http://dx.doi.org/10.1007/s11912-017-0562-0] [PMID: 28138933]
[6]
Martin, L.; Birdsell, L.; Macdonald, N.; Reiman, T.; Clandinin, M.T.; McCargar, L.J.; Murphy, R.; Ghosh, S.; Sawyer, M.B.; Baracos, V.E. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J. Clin. Oncol., 2013, 31(12), 1539-1547.
[http://dx.doi.org/10.1200/JCO.2012.45.2722] [PMID: 23530101]
[7]
Laviano, A.; Koverech, A.; Mari, A. Cachexia: clinical features when inflammation drives malnutrition. Proc. Nutr. Soc., 2015, 74(4), 348-354.
[http://dx.doi.org/10.1017/S0029665115000117] [PMID: 25809872]
[8]
Homsi, J.; Luong, D. Symptoms and survival in patients with advanced disease. J. Palliat. Med., 2007, 10(4), 904-909.
[http://dx.doi.org/10.1089/jpm.2007.0004] [PMID: 17803412]
[9]
Utech, A.E.; Tadros, E.M.; Hayes, T.G.; Garcia, J.M. Predicting survival in cancer patients: the role of cachexia and hormonal, nutritional and inflammatory markers. J. Cachexia Sarcopenia Muscle, 2012, 3(4), 245-251.
[http://dx.doi.org/10.1007/s13539-012-0075-5] [PMID: 22648739]
[10]
Mondello, P.; Mian, M.; Aloisi, C.; Famà, F.; Mondello, S.; Pitini, V. Cancer cachexia syndrome: pathogenesis, diagnosis, and new therapeutic options. Nutr. Cancer, 2015, 67(1), 12-26.
[http://dx.doi.org/10.1080/01635581.2015.976318] [PMID: 25513730]
[11]
Lindsey, A.M. In Semin. Oncol. Nurs; Elsevier, 1986, Vol. 2, pp. 19-29.
[12]
Tisdale, M.J. Inhibition of lipolysis and muscle protein degradation by EPA in cancer cachexia. Nutrition, 1996, 12(1)(Suppl.), S31-S33.
[http://dx.doi.org/10.1016/0899-9007(95)00066-6] [PMID: 8850217]
[13]
Laviano, A.; Meguid, M.M. Nutritional issues in cancer management. Nutrition, 1996, 12(5), 358-371.
[http://dx.doi.org/10.1016/S0899-9007(96)80061-X] [PMID: 8875522]
[14]
Argilés, J.M.; Busquets, S.; Stemmler, B.; López-Soriano, F. J. Cancer cachexia: understanding the molecular basis. Nat. Rev. Cancer, 2014, 14(11), 754-762.
[http://dx.doi.org/10.1038/nrc3829] [PMID: 25291291]
[15]
Bing, C.; Bao, Y.; Jenkins, J.; Sanders, P.; Manieri, M.; Cinti, S.; Tisdale, M.J.; Trayhurn, P. Zinc-α2-glycoprotein, a lipid mobilizing factor, is expressed in adipocytes and is up-regulated in mice with cancer cachexia. Proc. Natl. Acad. Sci. USA, 2004, 101(8), 2500-2505.
[http://dx.doi.org/10.1073/pnas.0308647100] [PMID: 14983038]
[16]
Russell, S.T.; Tisdale, M.J. The role of glucocorticoids in the induction of zinc-α2-glycoprotein expression in adipose tissue in cancer cachexia. Br. J. Cancer, 2005, 92(5), 876-881.
[http://dx.doi.org/10.1038/sj.bjc.6602404] [PMID: 15714206]
[17]
Tisdale, M.J. Zinc-α2-glycoprotein in cachexia and obesity. Curr. Opin. Support. Palliat. Care, 2009, 3(4), 288-293.
[http://dx.doi.org/10.1097/SPC.0b013e328331c897] [PMID: 19823091]
[18]
Cabassi, A.; Tedeschi, S. Zinc-α2-glycoprotein as a marker of fat catabolism in humans. Curr. Opin. Clin. Nutr. Metab. Care, 2013, 16(3), 267-271.
[http://dx.doi.org/10.1097/MCO.0b013e32835f816c] [PMID: 23448999]
[19]
Tisdale, M.J. Catabolic mediators of cancer cachexia. Curr. Opin. Support. Palliat. Care, 2008, 2(4), 256-261.
[http://dx.doi.org/10.1097/SPC.0b013e328319d7fa] [PMID: 19069310]
[20]
Wang, Q.; Lu, J-B.; Wu, B.; Hao, L-Y. Expression and clinicopathologic significance of proteolysis-inducing factor in non-small-cell lung cancer: an immunohistochemical analysis. Clin. Lung Cancer, 2010, 11(5), 346-351.
[http://dx.doi.org/10.3816/CLC.2010.n.044] [PMID: 20837461]
[21]
Mirza, K.A.; Wyke, S.M.; Tisdale, M.J. Attenuation of muscle atrophy by an N-terminal peptide of the receptor for proteolysis-inducing factor (PIF). Br. J. Cancer, 2011, 105(1), 83-88.
[http://dx.doi.org/10.1038/bjc.2011.216] [PMID: 21673682]
[22]
Mirza, K.A.; Tisdale, M.J. Role of Ca2+ in proteolysis-inducing factor (PIF)-induced atrophy of skeletal muscle. Cell. Signal., 2012, 24(11), 2118-2122.
[http://dx.doi.org/10.1016/j.cellsig.2012.07.016] [PMID: 22820507]
[23]
Lokireddy, S.; Wijesoma, I.W.; Bonala, S.; Wei, M.; Sze, S.K.; McFarlane, C.; Kambadur, R.; Sharma, M. Myostatin is a novel tumoral factor that induces cancer cachexia. Biochem. J., 2012, 446(1), 23-36.
[http://dx.doi.org/10.1042/BJ20112024] [PMID: 22621320]
[24]
MacKenzie, M.G.; Hamilton, D.L.; Pepin, M.; Patton, A.; Baar, K. Inhibition of myostatin signaling through Notch activation following acute resistance exercise. PLoS One, 2013, 8(7)e68743
[http://dx.doi.org/10.1371/journal.pone.0068743] [PMID: 23844238]
[25]
Li, Y-P.; Reid, M.B. NF-kappaB mediates the protein loss induced by TNF-α in differentiated skeletal muscle myotubes. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2000, 279(4), R1165-R1170.
[http://dx.doi.org/10.1152/ajpregu.2000.279.4.R1165] [PMID: 11003979]
[26]
Ladner, K.J.; Caligiuri, M.A.; Guttridge, D.C. Tumor necrosis factor-regulated biphasic activation of NF-κ B is required for cytokine-induced loss of skeletal muscle gene products. J. Biol. Chem., 2003, 278(4), 2294-2303.
[http://dx.doi.org/10.1074/jbc.M207129200] [PMID: 12431991]
[27]
Di Marco, S.; Mazroui, R.; Dallaire, P.; Chittur, S.; Tenenbaum, S.A.; Radzioch, D.; Marette, A.; Gallouzi, I-E. NF-κ B-mediated MyoD decay during muscle wasting requires nitric oxide synthase mRNA stabilization, HuR protein, and nitric oxide release. Mol. Cell. Biol., 2005, 25(15), 6533-6545.
[http://dx.doi.org/10.1128/MCB.25.15.6533-6545.2005] [PMID: 16024790]
[28]
Guttridge, D.C.; Mayo, M.W.; Madrid, L.V.; Wang, C-Y.; Baldwin, A.S. Jr. NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science, 2000, 289(5488), 2363-2366.
[http://dx.doi.org/10.1126/science.289.5488.2363] [PMID: 11009425]
[29]
Liu, Y.; Chakroun, I.; Yang, D.; Horner, E.; Liang, J.; Aziz, A.; Chu, A.; De Repentigny, Y.; Dilworth, F.J.; Kothary, R.; Blais, A. Six1 regulates MyoD expression in adult muscle progenitor cells. PLoS One, 2013, 8(6)e67762
[http://dx.doi.org/10.1371/journal.pone.0067762] [PMID: 23840772]
[30]
Fermoselle, C.; García-Arumí, E.; Puig-Vilanova, E.; Andreu, A.L.; Urtreger, A.J.; de Kier Joffé, E.D.B.; Tejedor, A.; Puente-Maestu, L.; Barreiro, E. Mitochondrial dysfunction and therapeutic approaches in respiratory and limb muscles of cancer cachectic mice. Exp. Physiol., 2013, 98(9), 1349-1365.
[http://dx.doi.org/10.1113/expphysiol.2013.072496] [PMID: 23625954]
[31]
Judge, A.R.; Koncarevic, A.; Hunter, R.B.; Liou, H-C.; Jackman, R.W.; Kandarian, S.C. Role for IkappaBalpha, but not c-Rel, in skeletal muscle atrophy. Am. J. Physiol. Cell Physiol., 2007, 292(1), C372-C382.
[http://dx.doi.org/10.1152/ajpcell.00293.2006] [PMID: 16928772]
[32]
Jackman, R.W.; Cornwell, E.W.; Wu, C.L.; Kandarian, S.C. Nuclear factor-κB signalling and transcriptional regulation in skeletal muscle atrophy. Exp. Physiol., 2013, 98(1), 19-24.
[http://dx.doi.org/10.1113/expphysiol.2011.063321] [PMID: 22848079]
[33]
Bar-Shai, M.; Reznick, A.Z. Peroxynitrite induces an alternative NF-κB activation pathway in L8 rat myoblasts. Antioxid. & Redox Signal., 2006, 8(3-4), 639-652.
[http://dx.doi.org/10.1089/ars.2006.8.639] [PMID: 16677107]
[34]
Bar-Shai, M.; Reznick, A.Z. Reactive nitrogen species induce nuclear factor-kappaB-mediated protein degradation in skeletal muscle cells. Free Radic. Biol. Med., 2006, 40(12), 2112-2125.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.02.009] [PMID: 16785025]
[35]
Sabharwal, S.S.; Schumacker, P.T. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat. Rev. Cancer, 2014, 14(11), 709-721.
[http://dx.doi.org/10.1038/nrc3803] [PMID: 25342630]
[36]
Block, K.; Gorin, Y. Aiding and abetting roles of NOX oxidases in cellular transformation. Nat. Rev. Cancer, 2012, 12(9), 627-637.
[http://dx.doi.org/10.1038/nrc3339] [PMID: 22918415]
[37]
Hole, P.S.; Darley, R.L.; Tonks, A. Do reactive oxygen species play a role in myeloid leukemias? Blood, 2011, 117(22), 5816-5826.
[http://dx.doi.org/10.1182/blood-2011-01-326025] [PMID: 21398578]
[38]
Suzuki, H.; Asakawa, A.; Amitani, H.; Nakamura, N.; Inui, A. Cancer cachexia--pathophysiology and management. J. Gastroenterol., 2013, 48(5), 574-594.
[http://dx.doi.org/10.1007/s00535-013-0787-0] [PMID: 23512346]
[39]
Assi, M.; Derbré, F.; Lefeuvre-Orfila, L.; Rébillard, A. Antioxidant supplementation accelerates cachexia development by promoting tumor growth in C26 tumor-bearing mice. Free Radic. Biol. Med., 2016, 91, 204-214.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.12.019] [PMID: 26708754]
[40]
Del Fabbro, E.; Hui, D.; Nooruddin, Z.I.; Dalal, S.; Dev, R.; Freer, G.; Roberts, L.; Palmer, J.L.; Bruera, E. Associations among hypogonadism, C-reactive protein, symptom burden, and survival in male cancer patients with cachexia: a preliminary report. J. Pain Symptom Manage., 2010, 39(6), 1016-1024.
[http://dx.doi.org/10.1016/j.jpainsymman.2009.09.021] [PMID: 20457506]
[41]
Garcia, J.M.; Li, H.; Mann, D.; Epner, D.; Hayes, T.G.; Marcelli, M.; Cunningham, G.R. Hypogonadism in male patients with cancer. Cancer, 2006, 106(12), 2583-2591.
[http://dx.doi.org/10.1002/cncr.21889] [PMID: 16688773]
[42]
Ali, S.; Chen, J.A.; Garcia, J.M. Clinical development of ghrelin axis-derived molecules for cancer cachexia treatment. Curr. Opin. Support. Palliat. Care, 2013, 7(4), 368-375.
[http://dx.doi.org/10.1097/SPC.0000000000000012] [PMID: 24145681]
[43]
Batista, M.L., Jr; Peres, S.B.; McDonald, M.E.; Alcântara, P.S.; Olivan, M.; Otoch, J.P.; Farmer, S.R.; Seelaender, M. Adipose tissue inflammation and cancer cachexia: possible role of nuclear transcription factors. Cytokine, 2012, 57(1), 9-16.
[http://dx.doi.org/10.1016/j.cyto.2011.10.008] [PMID: 22099872]
[44]
Plata-Salaman, C.R. Academic Press; , 2001.
[45]
Quinten, C.; Coens, C.; Mauer, M.; Comte, S.; Sprangers, M.A.; Cleeland, C.; Osoba, D.; Bjordal, K.; Bottomley, A. Baseline quality of life as a prognostic indicator of survival: a meta-analysis of individual patient data from EORTC clinical trials. Lancet Oncol., 2009, 10(9), 865-871.
[http://dx.doi.org/10.1016/S1470-2045(09)70200-1] [PMID: 19695956]
[46]
Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G.; Davis, M.; Muscaritoli, M.; Ottery, F.; Radbruch, L.; Ravasco, P.; Walsh, D.; Wilcock, A.; Kaasa, S.; Baracos, V.E. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol., 2011, 12(5), 489-495.
[http://dx.doi.org/10.1016/S1470-2045(10)70218-7] [PMID: 21296615]
[47]
Mantovani, G.; Madeddu, C.; Macciò, A.; Gramignano, G.; Lusso, M.R.; Massa, E.; Astara, G.; Serpe, R. Cancer-related anorexia/cachexia syndrome and oxidative stress: an innovative approach beyond current treatment. Cancer Epidemiol. Biomarkers Prev., 2004, 13(10), 1651-1659.
[PMID: 15466983]
[48]
Sukhanov, S.; Semprun-Prieto, L.; Yoshida, T.; Michael Tabony, A.; Higashi, Y.; Galvez, S.; Delafontaine, P. Angiotensin II, oxidative stress and skeletal muscle wasting. Am. J. Med. Sci., 2011, 342(2), 143-147.
[http://dx.doi.org/10.1097/MAJ.0b013e318222e620] [PMID: 21747283]
[49]
Barreiro, E.; de la Puente, B.; Busquets, S.; López-Soriano, F.J.; Gea, J.; Argilés, J.M. Both oxidative and nitrosative stress are associated with muscle wasting in tumour-bearing rats. FEBS Lett., 2005, 579(7), 1646-1652.
[http://dx.doi.org/10.1016/j.febslet.2005.02.017] [PMID: 15757655]
[50]
Powers, S.K.; Kavazis, A.N.; DeRuisseau, K.C. Mechanisms of disuse muscle atrophy: role of oxidative stress. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2005, 288(2), R337-R344.
[http://dx.doi.org/10.1152/ajpregu.00469.2004] [PMID: 15637170]
[51]
McClung, J.M.; Judge, A.R.; Powers, S.K.; Yan, Z. p38 MAPK links oxidative stress to autophagy-related gene expression in cachectic muscle wasting. Am. J. Physiol. Cell Physiol., 2010, 298(3), C542-C549.
[http://dx.doi.org/10.1152/ajpcell.00192.2009] [PMID: 19955483]
[52]
Fukawa, T.; Yan-Jiang, B.; Kanayama, H-O.; Teh, B.; Shyh-Chang, N. Transcriptomic-metabolomic profiling revealed that fatty acid oxidation-induced stress causes cancer Cachexia. Eur. Urol. Suppl., 2017, 16(3), e1487-e1488.
[http://dx.doi.org/10.1016/S1569-9056(17)30906-5]
[53]
Gomes-Marcondes, M.C.C.; Tisdale, M.J. Induction of protein catabolism and the ubiquitin-proteasome pathway by mild oxidative stress. Cancer Lett., 2002, 180(1), 69-74.
[http://dx.doi.org/10.1016/S0304-3835(02)00006-X] [PMID: 11911972]
[54]
Laviano, A.; Meguid, M.M.; Preziosa, I.; Rossi Fanelli, F. Oxidative stress and wasting in cancer. Curr. Opin. Clin. Nutr. Metab. Care, 2007, 10(4), 449-456.
[http://dx.doi.org/10.1097/MCO.0b013e328122db94] [PMID: 17563463]
[55]
Puig-Vilanova, E.; Rodriguez, D.A.; Lloreta, J.; Ausin, P.; Pascual-Guardia, S.; Broquetas, J.; Roca, J.; Gea, J.; Barreiro, E. Oxidative stress, redox signaling pathways, and autophagy in cachectic muscles of male patients with advanced COPD and lung cancer. Free Radic. Biol. Med., 2015, 79, 91-108.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.11.006] [PMID: 25464271]
[56]
Chacon-Cabrera, A.; Mateu-Jimenez, M.; Langohr, K.; Fermoselle, C.; García-Arumí, E.; Andreu, A.L.; Yelamos, J.; Barreiro, E. Role of PARP activity in lung cancer-induced cachexia: Effects on muscle oxidative stress, proteolysis, anabolic markers, and phenotype. J. Cell. Physiol., 2017, 232(12), 3744-3761.
[http://dx.doi.org/10.1002/jcp.25851] [PMID: 28177129]
[57]
Deminice, R.; Cella, P.S.; Padilha, C.S.; Borges, F.H.; da Silva, L.E.C.M.; Campos-Ferraz, P.L.; Jordao, A.A.; Robinson, J.L.; Bertolo, R.F.; Cecchini, R.; Guarnier, F.A. Creatine supplementation prevents hyperhomocysteinemia, oxidative stress and cancer-induced cachexia progression in Walker-256 tumor-bearing rats. Amino Acids, 2016, 48(8), 2015-2024.
[http://dx.doi.org/10.1007/s00726-016-2172-9] [PMID: 26781304]
[58]
Fukawa, T.; Yan-Jiang, B.C.; Min-Wen, J.C.; Jun-Hao, E.T.; Huang, D.; Qian, C-N.; Ong, P.; Li, Z.; Chen, S.; Mak, S.Y.; Lim, W.J.; Kanayama, H.O.; Mohan, R.E.; Wang, R.R.; Lai, J.H.; Chua, C.; Ong, H.S.; Tan, K.K.; Ho, Y.S.; Tan, I.B.; Teh, B.T.; Shyh-Chang, N. Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia. Nat. Med., 2016, 22(6), 666-671.
[http://dx.doi.org/10.1038/nm.4093] [PMID: 27135739]
[59]
De Waele, E.; Mattens, S.; Honoré, P.M.; Spapen, H.; De Grève, J.; Pen, J.J. Nutrition therapy in cachectic cancer patients. The Tight Caloric Control (TiCaCo) pilot trial. Appetite, 2015, 91, 298-301.
[http://dx.doi.org/10.1016/j.appet.2015.04.049] [PMID: 25912786]
[60]
De Waele, E.; Nguyen, D.; De Bondt, K.; La Meir, M.; Diltoer, M.; Honoré, P.M.; Spapen, H.; Pen, J.J. The CoCoS trial: Caloric Control in Cardiac Surgery patients promotes survival, an interventional trial with retrospective control. Clin. Nutr., 2017.
[http://dx.doi.org/10.1016/j.clnu.2017.03.007] [PMID: 28365080]
[61]
Yun, C-H.; Yang, J.S.; Kang, S-S.; Yang, Y.; Cho, J.H.; Son, C.G.; Han, S.H. NF-kappaB signaling pathway, not IFN-β/STAT1, is responsible for the selenium suppression of LPS-induced nitric oxide production. Int. Immunopharmacol., 2007, 7(9), 1192-1198.
[http://dx.doi.org/10.1016/j.intimp.2007.05.002] [PMID: 17630198]
[62]
Stahle, J.A.; Vunta, H.; Channa Reddy, C.; Sandeep Prabhu, K. Regulation of expression of apolipoprotein A-I by selenium status in human liver hepatoblastoma cells. Eur. J. Nutr., 2009, 48(5), 283-290.
[http://dx.doi.org/10.1007/s00394-009-0012-3] [PMID: 19294445]
[63]
Yang, H.; Jia, X.; Chen, X.; Yang, C.S.; Li, N. Time-selective chemoprevention of vitamin E and selenium on esophageal carcinogenesis in rats: the possible role of nuclear factor kappaB signaling pathway. Int. J. Cancer, 2012, 131(7), 1517-1527.
[http://dx.doi.org/10.1002/ijc.27423] [PMID: 22223226]
[64]
Dröge, W.; Schulze-Osthoff, K.; Mihm, S.; Galter, D.; Schenk, H.; Eck, H.P.; Roth, S.; Gmünder, H. Functions of glutathione and glutathione disulfide in immunology and immunopathology. FASEB J., 1994, 8(14), 1131-1138.
[http://dx.doi.org/10.1096/fasebj.8.14.7958618] [PMID: 7958618]
[65]
Chen, Y-C.; Prabhu, K.S.; Mastro, A.M. Is selenium a potential treatment for cancer metastasis? Nutrients, 2013, 5(4), 1149-1168.
[http://dx.doi.org/10.3390/nu5041149] [PMID: 23567478]
[66]
Lippman, S.M.; Klein, E.A.; Goodman, P.J.; Lucia, M.S.; Thompson, I.M.; Ford, L.G.; Parnes, H.L.; Minasian, L.M.; Gaziano, J.M.; Hartline, J.A.; Parsons, J.K.; Bearden, J.D., III; Crawford, E.D.; Goodman, G.E.; Claudio, J.; Winquist, E.; Cook, E.D.; Karp, D.D.; Walther, P.; Lieber, M.M.; Kristal, A.R.; Darke, A.K.; Arnold, K.B.; Ganz, P.A.; Santella, R.M.; Albanes, D.; Taylor, P.R.; Probstfield, J.L.; Jagpal, T.J.; Crowley, J.J.; Meyskens, F.L., Jr; Baker, L.H.; Coltman, C.A., Jr Effect of selenium and vitamin E on risk of prostate cancer and other cancers: The Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA, 2009, 301(1), 39-51.
[http://dx.doi.org/10.1001/jama.2008.864] [PMID: 19066370]
[67]
Klein, E.A.; Thompson, I.M., Jr; Tangen, C.M.; Crowley, J.J.; Lucia, M.S.; Goodman, P.J.; Minasian, L.M.; Ford, L.G.; Parnes, H.L.; Gaziano, J.M.; Karp, D.D.; Lieber, M.M.; Walther, P.J.; Klotz, L.; Parsons, J.K.; Chin, J.L.; Darke, A.K.; Lippman, S.M.; Goodman, G.E.; Meyskens, F.L., Jr; Baker, L.H. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA, 2011, 306(14), 1549-1556.
[http://dx.doi.org/10.1001/jama.2011.1437] [PMID: 21990298]
[68]
Vinceti, M.; Dennert, G.; Crespi, C.M.; Zwahlen, M.; Brinkman, M.; Zeegers, M.P.; Horneber, M.; D’Amico, R.; Del Giovane, C. Selenium for preventing cancer. Cochrane Database Syst. Rev., 2014, (3)CD005195
[PMID: 24683040]
[69]
Rocourt, C.R.; Cheng, W-H. Selenium supranutrition: are the potential benefits of chemoprevention outweighed by the promotion of diabetes and insulin resistance? Nutrients, 2013, 5(4), 1349-1365.
[http://dx.doi.org/10.3390/nu5041349] [PMID: 23603996]
[70]
Wang, H.; Li, T-L.; Hsia, S.; Su, I-L.; Chan, Y-L.; Wu, C-J. Skeletal muscle atrophy is attenuated in tumor-bearing mice under chemotherapy by treatment with fish oil and selenium. Oncotarget, 2015, 6(10), 7758-7773.
[http://dx.doi.org/10.18632/oncotarget.3483] [PMID: 25797259]
[71]
Barreto, R.; Waning, D.L.; Gao, H.; Liu, Y.; Zimmers, T.A.; Bonetto, A. Chemotherapy-related cachexia is associated with mitochondrial depletion and the activation of ERK1/2 and p38 MAPKs. Oncotarget, 2016, 7(28), 43442-43460.
[http://dx.doi.org/10.18632/oncotarget.9779] [PMID: 27259276]
[72]
Tapiero, H.; Townsend, D.M.; Tew, K.D. The antioxidant role of selenium and seleno-compounds. Biomed. Pharmacother., 2003, 57(3-4), 134-144.
[http://dx.doi.org/10.1016/S0753-3322(03)00035-0] [PMID: 12818475]
[73]
Schrauzer, G.N. Anticarcinogenic effects of selenium. Cell. Mol. Life Sci., 2000, 57(13-14), 1864-1873.
[http://dx.doi.org/10.1007/PL00000668] [PMID: 11215513]
[74]
Molanouri Shamsi, M.; Chekachak, S.; Soudi, S.; Quinn, L.S.; Ranjbar, K.; Chenari, J.; Yazdi, M.H.; Mahdavi, M. Combined effect of aerobic interval training and selenium nanoparticles on expression of IL-15 and IL-10/TNF-α ratio in skeletal muscle of 4T1 breast cancer mice with cachexia. Cytokine, 2017, 90, 100-108.
[http://dx.doi.org/10.1016/j.cyto.2016.11.005] [PMID: 27863332]
[75]
Danielsson, B.R.; Danielson, M.; Khayat, A.; Wide, M. Comparative embryotoxicity of selenite and selenate: uptake in murine embryonal and fetal tissues and effects on blastocysts and embryonic cells in vitro. Toxicology, 1990, 63(2), 123-136.
[http://dx.doi.org/10.1016/0300-483X(90)90037-H] [PMID: 2169079]
[76]
Reid, M.E.; Stratton, M.S.; Lillico, A.J.; Fakih, M.; Natarajan, R.; Clark, L.C.; Marshall, J.R. A report of high-dose selenium supplementation: response and toxicities. J. Trace Elem. Med. Biol., 2004, 18(1), 69-74.
[http://dx.doi.org/10.1016/j.jtemb.2004.03.004] [PMID: 15487766]
[77]
Wei, J.; Zeng, C.; Gong, Q.Y.; Yang, H.B.; Li, X.X.; Lei, G.H.; Yang, T.B. The association between dietary selenium intake and diabetes: a cross-sectional study among middle-aged and older adults. Nutr. J., 2015, 14(1), 18.
[http://dx.doi.org/10.1186/s12937-015-0007-2] [PMID: 25880386]
[78]
Vinceti, M.; Filippini, T.; Del Giovane, C.; Dennert, G.; Zwahlen, M.; Brinkman, M.; Zeegers, M.P.; Horneber, M.; D’Amico, R.; Crespi, C.M. Selenium for preventing cancer. Cochrane Database Syst. Rev., 2018, 1CD005195
[http://dx.doi.org/10.1002/14651858.CD005195.pub4] [PMID: 29376219]
[79]
Cutando, A.; López-Valverde, A.; Arias-Santiago, S.D.E.; Vicente, J.D.E.; Diego, R.G. Role of melatonin in cancer treatment. Anticancer Res., 2012, 32(7), 2747-2753.
[PMID: 22753734]
[80]
Lissoni, P.; Paolorossi, F.; Tancini, G.; Barni, S.; Ardizzoia, A.; Brivio, F.; Zubelewicz, B.; Chatikhine, V. Is there a role for melatonin in the treatment of neoplastic cachexia? Eur. J. Cancer, 1996, 32A(8), 1340-1343.
[http://dx.doi.org/10.1016/0959-8049(96)00136-0] [PMID: 8869096]
[81]
Blask, D.E.; Dauchy, R.T.; Dauchy, E.M.; Mao, L.; Hill, S.M.; Greene, M.W.; Belancio, V.P.; Sauer, L.A.; Davidson, L. Light exposure at night disrupts host/cancer circadian regulatory dynamics: impact on the Warburg effect, lipid signaling and tumor growth prevention. PLoS One, 2014, 9(8)e102776
[http://dx.doi.org/10.1371/journal.pone.0102776] [PMID: 25099274]
[82]
Dauchy, R.T.; Xiang, S.; Mao, L.; Brimer, S.; Wren, M.A.; Yuan, L.; Anbalagan, M.; Hauch, A.; Frasch, T.; Rowan, B.G.; Blask, D.E.; Hill, S.M. Circadian and melatonin disruption by exposure to light at night drives intrinsic resistance to tamoxifen therapy in breast cancer. Cancer Res., 2014, 74(15), 4099-4110.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3156] [PMID: 25062775]
[83]
Fischer, T.W.; Kleszczyński, K.; Hardkop, L.H.; Kruse, N.; Zillikens, D. Melatonin enhances antioxidative enzyme gene expression (CAT, GPx, SOD), prevents their UVR-induced depletion, and protects against the formation of DNA damage (8-hydroxy-2′-deoxyguanosine) in ex vivo human skin. J. Pineal Res., 2013, 54(3), 303-312.
[http://dx.doi.org/10.1111/jpi.12018] [PMID: 23110400]
[84]
Zhang, H.; Liu, D.; Wang, X.; Chen, X.; Long, Y.; Chai, W.; Zhou, X.; Rui, X.; Zhang, Q.; Wang, H.; Yang, Q. Melatonin improved rat cardiac mitochondria and survival rate in septic heart injury. J. Pineal Res., 2013, 55(1), 1-6.
[http://dx.doi.org/10.1111/jpi.12033] [PMID: 23330702]
[85]
Yang, Y.; Duan, W.; Jin, Z.; Yi, W.; Yan, J.; Zhang, S.; Wang, N.; Liang, Z.; Li, Y.; Chen, W.; Yi, D.; Yu, S. JAK2/STAT3 activation by melatonin attenuates the mitochondrial oxidative damage induced by myocardial ischemia/reperfusion injury. J. Pineal Res., 2013, 55(3), 275-286.
[http://dx.doi.org/10.1111/jpi.12070] [PMID: 23796350]
[86]
Parameyong, A.; Charngkaew, K.; Govitrapong, P.; Chetsawang, B. Melatonin attenuates methamphetamine-induced disturbances in mitochondrial dynamics and degeneration in neuroblastoma SH-SY5Y cells. J. Pineal Res., 2013, 55(3), 313-323.
[http://dx.doi.org/10.1111/jpi.12078] [PMID: 23889188]
[87]
Huang, W-Y.; Jou, M-J.; Peng, T.I. mtDNA T8993G mutation-induced F1F0-ATP synthase defect augments mitochondrial dysfunction associated with hypoxia/reoxygenation: the protective role of melatonin. PLoS One, 2013, 8(11)e81546
[http://dx.doi.org/10.1371/journal.pone.0081546] [PMID: 24312318]
[88]
Chen, J.; Wang, L.; Wu, C.; Hu, Q.; Gu, C.; Yan, F.; Li, J.; Yan, W.; Chen, G. Melatonin-enhanced autophagy protects against neural apoptosis via a mitochondrial pathway in early brain injury following a subarachnoid hemorrhage. J. Pineal Res., 2014, 56(1), 12-19.
[http://dx.doi.org/10.1111/jpi.12086] [PMID: 24033352]
[89]
Jimenéz-Aranda, A.; Fernández-Vázquez, G. Mohammad A-Serrano, M.; Reiter, R.J.; Agil, A.; Agil, A. Melatonin improves mitochondrial function in inguinal white adipose tissue of Zücker diabetic fatty rats. J. Pineal Res., 2014, 57(1), 103-109.
[http://dx.doi.org/10.1111/jpi.12147] [PMID: 24867433]
[90]
Chahbouni, M.; Escames, G.; Venegas, C.; Sevilla, B.; García, J.A.; López, L.C.; Muñoz-Hoyos, A.; Molina-Carballo, A.; Acuña-Castroviejo, D. Melatonin treatment normalizes plasma pro-inflammatory cytokines and nitrosative/oxidative stress in patients suffering from Duchenne muscular dystrophy. J. Pineal Res., 2010, 48(3), 282-289.
[http://dx.doi.org/10.1111/j.1600-079X.2010.00752.x] [PMID: 20210854]
[91]
Wang, W.Z.; Fang, X-H.; Stephenson, L.L.; Zhang, X.; Khiabani, K.T.; Zamboni, W.A. Melatonin attenuates I/R-induced mitochondrial dysfunction in skeletal muscle. J. Surg. Res., 2011, 171(1), 108-113.
[http://dx.doi.org/10.1016/j.jss.2010.01.019] [PMID: 20421117]
[92]
Sobhani, R.; Masoudpour, H.; Akbari, M.; Suzangar, H.R. AleSaeidio, S.; Adibi, S.; Khademi, S.A.; Khademi, E.F.; Sobhani, F. The histobiochemical effects of melatonin on ischemia reperfusion-related injuries in vascular trauma of lower limbs. Ann. Ital. Chir., 2012, 83(1), 49-54.
[PMID: 22352217]
[93]
Drobnik, J.; Olczak, S.; Owczarek, K.; Hrabec, Z.; Hrabec, E. Melatonin augments expression of the procollagen α1 (I) and α1 (III) genes in the infarcted heart scar of pinealectomized rats. Connect. Tissue Res., 2010, 51(6), 491-496.
[http://dx.doi.org/10.3109/03008201003686966] [PMID: 20388018]
[94]
Drobnik, J.; Slotwinska, D.; Olczak, S.; Tosik, D.; Pieniazek, A.; Matczak, K.; Koceva-Chyla, A.; Szczepanowska, A. Pharmacological doses of melatonin reduce the glycosaminoglycan level within the infarcted heart scar. J. Physiol. Pharmacol., 2011, 62(1), 29-35.
[PMID: 21451207]
[95]
Srinivasan, V.; Mohamed, M.; Kato, H. Melatonin in bacterial and viral infections with focus on sepsis: a review. Recent Pat. Endocr. Metab. Immune Drug Discov., 2012, 6(1), 30-39.
[http://dx.doi.org/10.2174/187221412799015317] [PMID: 22264213]
[96]
Srinivasan, V.; Pandi-Perumal, S.; Brzezinski, A.; Bhatnagar, K.; Cardinali, D.
[97]
Kılınçel, Ö.; Çalışkan, E.; Şahin, İ.; Öztürk, C.E.; Kılıç, N.; Öksüz, Ş. The effect of melatonin on antifungal susceptibility in planktonic and biofilm forms of Candida strains isolated from clinical samples. Med. Mycol., 2019, 57(1), 45-51.
[http://dx.doi.org/10.1093/mmy/myx157] [PMID: 29390164]
[98]
Boga, J.A.; Coto-Montes, A.; Rosales-Corral, S.A.; Tan, D.X.; Reiter, R.J. Beneficial actions of melatonin in the management of viral infections: a new use for this “molecular handyman”? Rev. Med. Virol., 2012, 22(5), 323-338.
[http://dx.doi.org/10.1002/rmv.1714] [PMID: 22511571]
[99]
Provinciali, M.; Di Stefano, G.; Bulian, D.; Stronati, S.; Fabris, N. Long-term melatonin supplementation does not recover the impairment of natural killer cell activity and lymphocyte proliferation in aging mice. Life Sci., 1997, 61(9), 857-864.
[http://dx.doi.org/10.1016/S0024-3205(97)00587-0] [PMID: 9284078]
[100]
Ma, H.; Wang, Z.; Hu, L.; Zhang, S.; Zhao, C.; Yang, H.; Wang, H.; Fang, Z.; Wu, L.; Chen, X. The melatonin-MT1 receptor axis modulates tumor growth in PTEN-mutated gliomas. Biochem. Biophys. Res. Commun., 2018, 496(4), 1322-1330.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.010] [PMID: 29408377]
[101]
Andersen, L.P.H.; Gögenur, I.; Rosenberg, J.; Reiter, R.J. The safety of melatonin in humans. Clin. Drug Investig., 2016, 36(3), 169-175.
[http://dx.doi.org/10.1007/s40261-015-0368-5] [PMID: 26692007]
[102]
Vigoré, L.; Messina, G.; Brivio, F.; Fumagalli, L. Rovelli, F.; DI Fede, G.; Lissoni, P. Psychoneuroendocrine modulation of regulatory T lymphocyte system: in vivo and in vitro effects of the pineal immunomodulating hormone melatonin. In Vivo, 2010, 24(5), 787-789.
[PMID: 20952751]
[103]
Ochoa, J.J.; Díaz-Castro, J.; Kajarabille, N.; García, C.; Guisado, I.M.; De Teresa, C.; Guisado, R. Melatonin supplementation ameliorates oxidative stress and inflammatory signaling induced by strenuous exercise in adult human males. J. Pineal Res., 2011, 51(4), 373-380.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00899.x] [PMID: 21615492]
[104]
Park, J.H.; Chung, E.J.; Kwon, H.J.; Im, S.S.; Lim, J.G.; Song, D.K. Protective effect of melatonin on TNF-α-induced muscle atrophy in L6 myotubes. J. Pineal Res., 2013, 54(4), 417-425.
[http://dx.doi.org/10.1111/jpi.12036] [PMID: 23278522]
[105]
Innominato, P.F.; Lim, A.S.; Palesh, O.; Clemons, M.; Trudeau, M.; Eisen, A.; Wang, C.; Kiss, A.; Pritchard, K.I.; Bjarnason, G.A. The effect of melatonin on sleep and quality of life in patients with advanced breast cancer. Support. Care Cancer, 2016, 24(3), 1097-1105.
[http://dx.doi.org/10.1007/s00520-015-2883-6] [PMID: 26260726]
[106]
Anisimov, V.N.; Popovich, I.G.; Zabezhinski, M.A.; Anisimov, S.V.; Vesnushkin, G.M.; Vinogradova, I.A. Melatonin as antioxidant, geroprotector and anticarcinogen. Biochimica et Biophysica Acta (BBA)-. Bioenergetics, 2006, 1757(5-6), 573-589.
[http://dx.doi.org/10.1016/j.bbabio.2006.03.012] [PMID: 16678784]
[107]
Reiter, R.J.; Tan, D.X.; Rosales-Corral, S.; Galano, A.; Zhou, X.J.; Xu, B. Mitochondria: central organelles for melatonin’s antioxidant and anti-aging actions. Molecules, 2018, 23(2), 509.
[http://dx.doi.org/10.3390/molecules23020509] [PMID: 29495303]
[108]
Del Fabbro, E.; Dev, R.; Hui, D.; Palmer, L.; Bruera, E. Effects of melatonin on appetite and other symptoms in patients with advanced cancer and cachexia: A double-blind placebo-controlled trial. J. Clin. Oncol., 2013, 31(10), 1271-1276.
[http://dx.doi.org/10.1200/JCO.2012.43.6766] [PMID: 23439759]
[109]
Werner, K.; Küllenberg de Gaudry, D.; Taylor, L.A.; Keck, T.; Unger, C.; Hopt, U.T.; Massing, U. Dietary supplementation with n-3-fatty acids in patients with pancreatic cancer and cachexia: marine phospholipids versus fish oil - a randomized controlled double-blind trial. Lipids Health Dis., 2017, 16(1), 104.
[http://dx.doi.org/10.1186/s12944-017-0495-5] [PMID: 28578704]
[110]
Venkatachalam, S.; Kuppusamy, P.; Kuppusamy, B.; Dhanapal, S. The potency of essential nutrient taurine on boosting the antioxidant status and chemopreventive effect against benzo (a) pyrene induced experimental lung cancer. Biomedicine & Preventive Nutrition, 2014, 4(2), 251-255.
[http://dx.doi.org/10.1016/j.bionut.2013.09.006]
[111]
Christophersen, O.A. Radiation protection following nuclear power accidents: a survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure. Microb. Ecol. Health Dis., 2012, 23(1), 14787.
[http://dx.doi.org/10.3402/mehd.v23i0.14787] [PMID: 23990836]
[112]
Haug, A.; Graham, R.D.; Christophersen, O.A.; Lyons, G.H. How to use the world’s scarce selenium resources efficiently to increase the selenium concentration in food. Microb. Ecol. Health Dis., 2007, 19(4), 209-228.
[http://dx.doi.org/10.1080/08910600701698986] [PMID: 18833333]
[113]
Tallon, M.J.; Harris, R.C.; Maffulli, N.; Tarnopolsky, M.A. Carnosine, taurine and enzyme activities of human skeletal muscle fibres from elderly subjects with osteoarthritis and young moderately active subjects. Biogerontology, 2007, 8(2), 129-137.
[http://dx.doi.org/10.1007/s10522-006-9038-6] [PMID: 16967207]
[114]
Tallon, M.J.; Harris, R.C.; Boobis, L.H.; Fallowfield, J.L.; Wise, J.A. The carnosine content of vastus lateralis is elevated in resistance-trained bodybuilders. J. Strength Cond. Res., 2005, 19(4), 725-729.
[http://dx.doi.org/10.1519/041018.1] [PMID: 16287364]
[115]
Mora, L.; Sentandreu, M.Á.; Toldrá, F. Contents of creatine, creatinine and carnosine in porcine muscles of different metabolic types. Meat Sci., 2008, 79(4), 709-715.
[http://dx.doi.org/10.1016/j.meatsci.2007.11.002] [PMID: 22063033]
[116]
Pierno, S.; Liantonio, A.; Camerino, G.M.; De Bellis, M.; Cannone, M.; Gramegna, G.; Scaramuzzi, A.; Simonetti, S.; Nicchia, G.P.; Basco, D.; Svelto, M.; Desaphy, J.F.; Camerino, D.C. Potential benefits of taurine in the prevention of skeletal muscle impairment induced by disuse in the hindlimb-unloaded rat. Amino Acids, 2012, 43(1), 431-445.
[http://dx.doi.org/10.1007/s00726-011-1099-4] [PMID: 21986958]
[117]
Jong, C.J.; Azuma, J.; Schaffer, S. Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids, 2012, 42(6), 2223-2232.
[http://dx.doi.org/10.1007/s00726-011-0962-7] [PMID: 21691752]
[118]
Heidari, R.; Ghanbarinejad, V.; Mohammadi, H.; Ahmadi, A.; Ommati, M.M.; Abdoli, N.; Aghaei, F.; Esfandiari, A.; Azarpira, N.; Niknahad, H. Mitochondria protection as a mechanism underlying the hepatoprotective effects of glycine in cholestatic mice. Biomed. Pharmacother., 2018, 97, 1086-1095.
[http://dx.doi.org/10.1016/j.biopha.2017.10.166] [PMID: 29136945]
[119]
Desai, T.K.; Maliakkal, J.; Kinzie, J.L.; Ehrinpreis, M.N.; Luk, G.D.; Cejka, J. Taurine deficiency after intensive chemotherapy and/or radiation. Am. J. Clin. Nutr., 1992, 55(3), 708-711.
[http://dx.doi.org/10.1093/ajcn/55.3.708] [PMID: 1550047]
[120]
Gray, G.E.; Landel, A.M.; Meguid, M.M. Taurine-supplemented total parenteral nutrition and taurine status of malnourished cancer patients. Nutrition, 1994, 10(1), 11-15.
[PMID: 8199416]
[121]
Lambert, I.H.; Kristensen, D.M.; Holm, J.B.; Mortensen, O.H. Physiological role of taurine--from organism to organelle. Acta Physiol. (Oxf.), 2015, 213(1), 191-212.
[http://dx.doi.org/10.1111/apha.12365] [PMID: 25142161]
[122]
Ørtenblad, N.; Young, J.F.; Oksbjerg, N.; Nielsen, J.H.; Lambert, I.H. Reactive oxygen species are important mediators of taurine release from skeletal muscle cells. Am. J. Physiol. Cell Physiol., 2003, 284(6), C1362-C1373.
[http://dx.doi.org/10.1152/ajpcell.00287.2002] [PMID: 12519746]
[123]
Kücükakin, B.; Gögenur, I.; Reiter, R.J.; Rosenberg, J. Oxidative stress in relation to surgery: is there a role for the antioxidant melatonin? J. Surg. Res., 2009, 152(2), 338-347.
[http://dx.doi.org/10.1016/j.jss.2007.12.753] [PMID: 18262562]
[124]
Inoue, H.; Tani, K. Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments. Cell Death Differ., 2014, 21(1), 39-49.
[http://dx.doi.org/10.1038/cdd.2013.84] [PMID: 23832118]
[125]
Hayes, K.C.; Pronczuk, A.; Addesa, A.E.; Stephan, Z.F. Taurine modulates platelet aggregation in cats and humans. Am. J. Clin. Nutr., 1989, 49(6), 1211-1216.
[http://dx.doi.org/10.1093/ajcn/49.6.1211] [PMID: 2729158]
[126]
Fennessy, F.M.; Moneley, D.S.; Wang, J.H.; Kelly, C.J.; Bouchier-Hayes, D.J. Taurine and vitamin C modify monocyte and endothelial dysfunction in young smokers. Circulation, 2003, 107(3), 410-415.
[http://dx.doi.org/10.1161/01.CIR.0000046447.72402.47] [PMID: 12551864]
[127]
Moloney, M.A.; Casey, R.G.; O’Donnell, D.H.; Fitzgerald, P.; Thompson, C.; Bouchier-Hayes, D.J. Two weeks taurine supplementation reverses endothelial dysfunction in young male type 1 diabetics. Diab. Vasc. Dis. Res., 2010, 7(4), 300-310.
[http://dx.doi.org/10.1177/1479164110375971] [PMID: 20667936]
[128]
Stacchiotti, A.; Rovetta, F.; Ferroni, M.; Corsetti, G.; Lavazza, A.; Sberveglieri, G.; Aleo, M.F. Taurine rescues cisplatin-induced muscle atrophy in vitro: A morphological study. Oxid. Med. Cell. Longev, 2014. 2014
[http://dx.doi.org/10.1155/2014/840951]
[129]
H.; Pfirrmann, R.W.; Frei, K., Redox-directed cancer therapeutics: Taurolidine and Piperlongumine as broadly effective antineoplastic agents. Int. J. Oncol., 2014, 45(4), 1329-1336.
[http://dx.doi.org/10.3892/ijo.2014.2566] [PMID: 25175943]
[130]
Arlt, M.J.; Walters, D.K.; Banke, I.J.; Steinmann, P.; Puskas, G.J.; Bertz, J.; Rentsch, K.M.; Ehrensperger, F.; Born, W.; Fuchs, B. The antineoplastic antibiotic taurolidine promotes lung and liver metastasis in two syngeneic osteosarcoma mouse models and exhibits severe liver toxicity. Int. J. Cancer, 2012, 131(5), E804-E812.
[http://dx.doi.org/10.1002/ijc.27378] [PMID: 22120774]
[131]
Sato, S.; Yamamoto, H.; Mukaisho, K.; Saito, S.; Hattori, T.; Yamamoto, G.; Sugihara, H. Continuous taurocholic acid exposure promotes esophageal squamous cell carcinoma progression due to reduced cell loss resulting from enhanced vascular development. PLoS One, 2014, 9(2)e88831
[http://dx.doi.org/10.1371/journal.pone.0088831] [PMID: 24551170]
[132]
Hipkiss, A.R. Carnosine and its possible roles in nutrition and health. Adv. Food Nutr. Res., 2009, 57, 87-154.
[http://dx.doi.org/10.1016/S1043-4526(09)57003-9] [PMID: 19595386]
[133]
Nagai, K.; Suda, T. [Immuno-enhancing actions of carnosine and homocarnosine] Nippon Seirigaku Zasshi, 1986, 48(11), 735-740.
[PMID: 3820123]
[134]
Chuang, C-H.; Hu, M-L. L-carnosine inhibits metastasis of SK-Hep-1 cells by inhibition of matrix metaoproteinase-9 expression and induction of an antimetastatic gene, nm23-H1. Nutr. Cancer, 2008, 60(4), 526-533.
[http://dx.doi.org/10.1080/01635580801911787] [PMID: 18584487]
[135]
Renner, C.; Zemitzsch, N.; Fuchs, B.; Geiger, K.D.; Hermes, M.; Hengstler, J.; Gebhardt, R.; Meixensberger, J.; Gaunitz, F. Carnosine retards tumor growth in vivo in an NIH3T3-HER2/neu mouse model. Mol. Cancer, 2010, 9(1), 2.
[http://dx.doi.org/10.1186/1476-4598-9-2] [PMID: 20053283]
[136]
Renner, C.; Asperger, A.; Seyffarth, A.; Meixensberger, J.; Gebhardt, R.; Gaunitz, F. Carnosine inhibits ATP production in cells from malignant glioma. Neurol. Res., 2010, 32(1), 101-105.
[http://dx.doi.org/10.1179/016164109X12518779082237] [PMID: 19909581]
[137]
Shen, Y.; Yang, J.; Li, J.; Shi, X.; Ouyang, L.; Tian, Y.; Lu, J. Carnosine inhibits the proliferation of human gastric cancer SGC-7901 cells through both of the mitochondrial respiration and glycolysis pathways. PLoS One, 2014, 9(8)e104632
[http://dx.doi.org/10.1371/journal.pone.0104632] [PMID: 25115854]
[138]
Rybakova, Y.S.; Boldyrev, A.A. Effect of carnosine and related compounds on proliferation of cultured rat pheochromocytoma PC-12 cells. Bull. Exp. Biol. Med., 2012, 154(1), 136-140.
[http://dx.doi.org/10.1007/s10517-012-1894-2] [PMID: 23330110]
[139]
Hipkiss, A.R.; Cartwright, S.P.; Bromley, C.; Gross, S.R.; Bill, R.M. Carnosine: can understanding its actions on energy metabolism and protein homeostasis inform its therapeutic potential? Chem. Cent. J., 2013, 7(1), 38.
[http://dx.doi.org/10.1186/1752-153X-7-38] [PMID: 23442334]
[140]
Ditte, Z.; Ditte, P.; Labudova, M.; Simko, V.; Iuliano, F.; Zatovicova, M.; Csaderova, L.; Pastorekova, S.; Pastorek, J. Carnosine inhibits carbonic anhydrase IX-mediated extracellular acidosis and suppresses growth of HeLa tumor xenografts. BMC Cancer, 2014, 14(1), 358.
[http://dx.doi.org/10.1186/1471-2407-14-358] [PMID: 24886661]
[141]
Gaunitz, F.; Hipkiss, A.R. Carnosine and cancer: a perspective. Amino Acids, 2012, 43(1), 135-142.
[http://dx.doi.org/10.1007/s00726-012-1271-5] [PMID: 22454085]
[142]
Schaffer, S.W.; Ballard-Croft, C.; Azuma, J.; Takahashi, K.; Kakhniashvili, D.G.; Jenkins, T.E. Shape and size changes induced by taurine depletion in neonatal cardiomyocytes. Amino Acids, 1998, 15(1-2), 135-142.
[http://dx.doi.org/10.1007/BF01345286] [PMID: 9871493]
[143]
Golubnitschaja, O.; Moenkemann, H.; Kim, K.; Mozaffari, M.S. DNA damage and expression of checkpoint genes p21(WAF1/CIP1) and 14-3-3 σ in taurine-deficient cardiomyocytes. Biochem. Pharmacol., 2003, 66(3), 511-517.
[http://dx.doi.org/10.1016/S0006-2952(03)00285-5] [PMID: 12907251]
[144]
Kerai, M.D.; Waterfield, C.J.; Kenyon, S.H.; Asker, D.S.; Timbrell, J.A. The effect of taurine depletion by β-alanine treatment on the susceptibility to ethanol-induced hepatic dysfunction in rats. Alcohol Alcohol., 2001, 36(1), 29-38.
[http://dx.doi.org/10.1093/alcalc/36.1.29] [PMID: 11139413]
[145]
Jong, C.J.; Ito, T.; Mozaffari, M.; Azuma, J.; Schaffer, S. Effect of β-alanine treatment on mitochondrial taurine level and 5-taurinomethyluridine content. J. Biomed. Sci., 2010, 17(1)(Suppl. 1), S25.
[http://dx.doi.org/10.1186/1423-0127-17-S1-S25] [PMID: 20804600]
[146]
Der-Torossian, H.; Wysong, A.; Shadfar, S.; Willis, M.S.; McDunn, J.; Couch, M.E. Metabolic derangements in the gastrocnemius and the effect of Compound A therapy in a murine model of cancer cachexia. J. Cachexia Sarcopenia Muscle, 2013, 4(2), 145-155.
[http://dx.doi.org/10.1007/s13539-012-0101-7] [PMID: 23344889]
[147]
Arner, P.; Henjes, F.; Schwenk, J.M.; Darmanis, S.; Dahlman, I.; Iresjö, B-M.; Naredi, P.; Agustsson, T.; Lundholm, K.; Nilsson, P.; Rydén, M. Circulating carnosine dipeptidase 1 associates with weight loss and poor prognosis in gastrointestinal cancer. PLoS One, 2015, 10(4)e0123566
[http://dx.doi.org/10.1371/journal.pone.0123566] [PMID: 25898255]
[148]
Folkers, K. Relevance of the biosynthesis of coenzyme Q10 and of the four bases of DNA as a rationale for the molecular causes of cancer and a therapy. Biochem. Biophys. Res. Commun., 1996, 224(2), 358-361.
[http://dx.doi.org/10.1006/bbrc.1996.1033] [PMID: 8702395]
[149]
Donnino, M.W.; Cocchi, M.N.; Salciccioli, J.D.; Kim, D.; Naini, A.B.; Buettner, C.; Akuthota, P. Coenzyme Q10 levels are low and may be associated with the inflammatory cascade in septic shock. Crit. Care, 2011, 15(4), R189.
[http://dx.doi.org/10.1186/cc10343] [PMID: 21827677]
[150]
De Luca, C.; Kharaeva, Z.; Raskovic, D.; Pastore, P.; Luci, A.; Korkina, L. Coenzyme Q(10), vitamin E, selenium, and methionine in the treatment of chronic recurrent viral mucocutaneous infections. Nutrition, 2012, 28(5), 509-514.
[http://dx.doi.org/10.1016/j.nut.2011.08.003] [PMID: 22079390]
[151]
Flowers, N.; Hartley, L.; Rees, K. Co-enzyme Q10 supplementation for the primary pre-vention of cardiovascular disease. Cochrane Database Syst. Rev., 2014, 12CD010405
[http://dx.doi.org/10.1002/14651858.CD010405] [PMID: 25474484]
[152]
Potgieter, M.; Pretorius, E.; Pepper, M.S. Primary and secondary coenzyme Q10 deficiency: the role of therapeutic supplementation. Nutr. Rev., 2013, 71(3), 180-188.
[http://dx.doi.org/10.1111/nure.12011] [PMID: 23452285]
[153]
Folkers, K. The potential of coenzyme Q 10 (NSC-140865) in cancer treatment. Cancer Chemother. Rep. 2, 1974, 4(4), 19-22.
[PMID: 4218125]
[154]
Vetvicka, V.; Vetvickova, J. Combination therapy with glucan and Coenzyme Q10 in murine experimental autoimmune disease and cancer. Anticancer Res., 2018, 38(6), 3291-3297.
[http://dx.doi.org/10.21873/anticanres.12594] [PMID: 29848676]
[155]
Roffe, L.; Schmidt, K.; Ernst, E. Efficacy of coenzyme Q10 for improved tolerability of cancer treatments: a systematic review. J. Clin. Oncol., 2004, 22(21), 4418-4424.
[http://dx.doi.org/10.1200/JCO.2004.02.034] [PMID: 15514384]
[156]
Lockwood, K.; Moesgaard, S.; Hanioka, T.; Folkers, K. Apparent partial remission of breast cancer in ‘high risk’ patients supplemented with nutritional antioxidants, essential fatty acids and coenzyme Q10. Mol. Aspects Med., 1994, 15(Suppl.), s231-s240.
[http://dx.doi.org/10.1016/0098-2997(94)90033-7] [PMID: 7752835]
[157]
Iwase, S.; Kawaguchi, T.; Yotsumoto, D.; Doi, T.; Miyara, K.; Odagiri, H.; Kitamura, K.; Ariyoshi, K.; Miyaji, T.; Ishiki, H.; Inoue, K.; Tsutsumi, C.; Sagara, Y.; Yamaguchi, T. Efficacy and safety of an amino acid jelly containing coenzyme Q10 and L-carnitine in controlling fatigue in breast cancer patients receiving chemotherapy: a multi-institutional, randomized, exploratory trial (JORTC-CAM01). Support. Care Cancer, 2016, 24(2), 637-646.
[http://dx.doi.org/10.1007/s00520-015-2824-4] [PMID: 26105516]
[158]
Daneryd, P.; Aberg, F.; Dallner, G.; Ernster, L.; Scherstén, T.; Soussi, B. Coenzymes Q9 and Q10 in skeletal and cardiac muscle in tumour-bearing exercising rats. Eur. J. Cancer, 1995, 31A(5), 760-765.
[http://dx.doi.org/10.1016/0959-8049(95)00086-X] [PMID: 7503906]
[159]
Bjørklund, G. The Adjuvant Nutritional Intervention in Cancer (ANICA) Trial. Nutr. Cancer, 2015, 67(8), 1355-1358.
[http://dx.doi.org/10.1080/01635581.2015.1085582] [PMID: 26473998]
[160]
Tafazoli, A. Coenzyme Q10 in breast cancer care. Future Oncol., 2017, 13(11), 1035-1041.
[http://dx.doi.org/10.2217/fon-2016-0547] [PMID: 28481148]
[161]
Liu, H-T.; Cheng, S-B.; Huang, Y-C.; Huang, Y-T.; Lin, P-T. Coenzyme Q10 and oxidative stress: inflammation status in hepatocellular carcinoma patients after surgery. Nutrients, 2017, 9(1), 29.
[http://dx.doi.org/10.3390/nu9010029] [PMID: 28054958]
[162]
Gonzalez, M.J. Fish oil, lipid peroxidation and mammary tumor growth. J. Am. Coll. Nutr., 1995, 14(4), 325-335.
[http://dx.doi.org/10.1080/07315724.1995.10718517] [PMID: 8568108]
[163]
Giacosa, A.; Rondanelli, M. Fish oil and treatment of cancer cachexia. Genes Nutr., 2008, 3(1), 25-28.
[http://dx.doi.org/10.1007/s12263-008-0078-1] [PMID: 18850196]
[164]
Smith, H.J.; Tisdale, M.J. Induction of apoptosis by a cachectic-factor in murine myotubes and inhibition by eicosapentaenoic acid. Apoptosis, 2003, 8(2), 161-169.
[http://dx.doi.org/10.1023/A:1022970609579] [PMID: 12766476]
[165]
Cerchietti, L.C.; Navigante, A.H.; Castro, M.A. Effects of eicosapentaenoic and docosahexaenoic n-3 fatty acids from fish oil and preferential Cox-2 inhibition on systemic syndromes in patients with advanced lung cancer. Nutr. Cancer, 2007, 59(1), 14-20.
[http://dx.doi.org/10.1080/01635580701365068] [PMID: 17927497]
[166]
Barber, M.D.; Ross, J.A.; Voss, A.C.; Tisdale, M.J.; Fearon, K.C. The effect of an oral nutritional supplement enriched with fish oil on weight-loss in patients with pancreatic cancer. Br. J. Cancer, 1999, 81(1), 80-86.
[http://dx.doi.org/10.1038/sj.bjc.6690654] [PMID: 10487616]
[167]
Hudson, E.A.; Tisdale, M.J. Comparison of the effectiveness of eicosapentaenoic acid administered as either the free acid or ethyl ester as an anticachectic and antitumour agent. Prostaglandins Leukot. Essent. Fatty Acids, 1994, 51(2), 141-145.
[http://dx.doi.org/10.1016/0952-3278(94)90090-6] [PMID: 7972268]
[168]
Beck, S.A.; Smith, K.L.; Tisdale, M.J. Anticachectic and antitumor effect of eicosapentaenoic acid and its effect on protein turnover. Cancer Res., 1991, 51(22), 6089-6093.
[PMID: 1657378]
[169]
Yang, Y-L.; Sui, G-Y.; Liu, G-C.; Huang, D-S.; Wang, S-M.; Wang, L. The effects of psychological interventions on depression and anxiety among Chinese adults with cancer: a meta-analysis of randomized controlled studies. BMC Cancer, 2014, 14(1), 956.
[http://dx.doi.org/10.1186/1471-2407-14-956] [PMID: 25510213]
[170]
Zheng, J-S.; Hu, X-J.; Zhao, Y-M.; Yang, J.; Li, D. Intake of fish and marine n-3 polyunsaturated fatty acids and risk of breast cancer: meta-analysis of data from 21 independent prospective cohort studies. BMJ, 2013, 346, f3706.
[http://dx.doi.org/10.1136/bmj.f3706] [PMID: 23814120]
[171]
Noel, S.E.; Stoneham, A.C.; Olsen, C.M.; Rhodes, L.E.; Green, A.C. Consumption of omega-3 fatty acids and the risk of skin cancers: a systematic review and meta-analysis. Int. J. Cancer, 2014, 135(1), 149-156.
[http://dx.doi.org/10.1002/ijc.28630] [PMID: 24265065]
[172]
Brasky, T.M.; Darke, A.K.; Song, X.; Tangen, C.M.; Goodman, P.J.; Thompson, I.M.; Meyskens, F.L., Jr; Goodman, G.E.; Minasian, L.M.; Parnes, H.L.; Klein, E.A.; Kristal, A.R. Plasma phospholipid fatty acids and prostate cancer risk in the SELECT trial. J. Natl. Cancer Inst., 2013, 105(15), 1132-1141.
[http://dx.doi.org/10.1093/jnci/djt174] [PMID: 23843441]
[173]
Mocellin, M.C.; Camargo, C.Q.; Nunes, E.A.; Fiates, G.M.R.; Trindade, E.B.S.M. A systematic review and meta-analysis of the n-3 polyunsaturated fatty acids effects on inflammatory markers in colorectal cancer. Clin. Nutr., 2016, 35(2), 359-369.
[http://dx.doi.org/10.1016/j.clnu.2015.04.013] [PMID: 25982417]
[174]
Yu, X.; Mi, L.; Dong, J.; Zou, J. Long intergenic non-protein-coding RNA 1567 (LINC01567) acts as a “sponge” against microRNA-93 in regulating the proliferation and tumorigenesis of human colon cancer stem cells. BMC Cancer, 2017, 17(1), 716.
[http://dx.doi.org/10.1186/s12885-017-3731-5] [PMID: 29110645]
[175]
Zhang, J.Q.; Zeng, S.; Vitiello, G.A.; Seifert, A.M.; Medina, B.D.; Beckman, M.J.; Loo, J.K.; Santamaria-Barria, J.; Maltbaek, J.H.; Param, N.J.; Moral, J.A.; Zhao, J.N.; Balachandran, V.; Rossi, F.; Antonescu, C.R.; DeMatteo, R.P. Macrophages and CD8+ T cells mediate the antitumor efficacy of combined CD40 ligation and imatinib therapy in gastrointestinal stromal tumors. Cancer Immunol. Res., 2018, 6(4), 434-447.
[http://dx.doi.org/10.1158/2326-6066.CIR-17-0345] [PMID: 29467128]
[176]
DeBoer, M.D. Ghrelin and cachexia: will treatment with GHSR-1a agonists make a difference for patients suffering from chronic wasting syndromes? Mol. Cell. Endocrinol., 2011, 340(1), 97-105.
[http://dx.doi.org/10.1016/j.mce.2011.02.012] [PMID: 21354462]
[177]
Granado, M.; Priego, T.; Martín, A.I.; Villanúa, M.A.; López-Calderón, A. Anti-inflammatory effect of the ghrelin agonist growth hormone-releasing peptide-2 (GHRP-2) in arthritic rats. Am. J. Physiol. Endocrinol. Metab., 2005, 288(3), E486-E492.
[http://dx.doi.org/10.1152/ajpendo.00196.2004] [PMID: 15507538]
[178]
Adachi, S.; Takiguchi, S.; Okada, K.; Yamamoto, K.; Yamasaki, M.; Miyata, H.; Nakajima, K.; Fujiwara, Y.; Hosoda, H.; Kangawa, K.; Mori, M.; Doki, Y. Effects of ghrelin administration after total gastrectomy: a prospective, randomized, placebo-controlled phase II study. Gastroenterology, 2010, 138(4), 1312-1320.
[http://dx.doi.org/10.1053/j.gastro.2009.12.058] [PMID: 20060830]
[179]
Lundholm, K.; Gunnebo, L.; Körner, U.; Iresjö, B.M.; Engström, C.; Hyltander, A.; Smedh, U.; Bosaeus, I. Effects by daily long term provision of ghrelin to unselected weight-losing cancer patients: a randomized double-blind study. Cancer, 2010, 116(8), 2044-2052.
[http://dx.doi.org/10.1002/cncr.24917] [PMID: 20186829]
[180]
Zhao, S.; He, L.; Feng, C.; He, X. Improvements in medical quality and patient safety through implementation of a case bundle management strategy in a large outpatient blood collection center. Medicine (Baltimore), 2018, 97(22)e10990
[http://dx.doi.org/10.1097/MD.0000000000010990] [PMID: 29851856]
[181]
Sever, S.; White, D.L.; Garcia, J.M. Is there an effect of ghrelin/ghrelin analogs on cancer? A systematic review. Endocr. Relat. Cancer, 2016, 23(9), R393-R409.
[http://dx.doi.org/10.1530/ERC-16-0130] [PMID: 27552970]
[182]
Grönberg, M.; Ahlin, C.; Naeser, Y.; Janson, E.T.; Holmberg, L.; Fjällskog, M-L. Ghrelin is a prognostic marker and a potential therapeutic target in breast cancer. PLoS One, 2017, 12(4)e0176059
[http://dx.doi.org/10.1371/journal.pone.0176059] [PMID: 28419141]
[183]
Khatib, M.N.; Shankar, A.; Kirubakaran, R.; Gaidhane, A.; Gaidhane, S.; Simkhada, P.; Quazi Syed, Z. Ghrelin for the management of cachexia associated with cancer. Cochrane Libr., 2016.
[http://dx.doi.org/10.1002/14651858.CD012229] [PMID: 29489032]
[184]
Rayman, M.P.; Winther, K.H.; Pastor-Barriuso, R.; Cold, F.; Thvilum, M.; Stranges, S.; Guallar, E.; Cold, S. Effect of long-term selenium supplementation on mortality: Results from a multiple-dose, randomised controlled trial. Free Radic. Biol. Med., 2018, 127, 46-54.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.02.015] [PMID: 29454039]
[185]
Omura, Y.; Lu, D.; Jones, M.K.; Nihrane, A.; Duvvi, H.; Yapor, D.; Shimotsuura, Y.; Ohki, M. Optimal dose of vitamin D3 400 I.U. for average adults has a significant anti-cancer effect, while widely used 2000 I.U. or higher promotes cancer: marked reduction of taurine & 1α, 25(OH)2D3 was found in various cancer tissues and oral intake of optimal dose of taurine 175mg for average adults, rather than 500mg, was found to be a new potentially safe and more effective method of cancer treatment. Acupunct. Electrother. Res., 2016, 41(1), 39-60.
[http://dx.doi.org/10.3727/036012916X14597946741564] [PMID: 27244952]
[186]
Blancquaert, L.; Baguet, A.; Bex, T.; Volkaert, A.; Everaert, I.; Delanghe, J.; Petrovic, M.; Vervaet, C.; De Henauw, S.; Constantin-Teodosiu, D.; Greenhaff, P.; Derave, W. Changing to a vegetarian diet reduces the body creatine pool in omnivorous women, but appears not to affect carnitine and carnosine homeostasis: a randomised trial. Br. J. Nutr., 2018, 119(7), 759-770.
[http://dx.doi.org/10.1017/S000711451800017X] [PMID: 29569535]
[187]
Villars, F.O.; Pietra, C.; Giuliano, C.; Lutz, T.A.; Riediger, T. Oral Treatment with the Ghrelin Receptor Agonist HM01 Attenuates Cachexia in Mice Bearing Colon-26 (C26) Tumors. Int. J. Mol. Sci., 2017, 18(5), 986.
[http://dx.doi.org/10.3390/ijms18050986] [PMID: 28475119]
[188]
Strasser, F.; Lutz, T.A.; Maeder, M.T.; Thuerlimann, B.; Bueche, D.; Tschöp, M.; Kaufmann, K.; Holst, B.; Brändle, M.; von Moos, R.; Demmer, R.; Cerny, T. Safety, tolerability and pharmacokinetics of intravenous ghrelin for cancer-related anorexia/cachexia: a randomised, placebo-controlled, double-blind, double-crossover study. Br. J. Cancer, 2008, 98(2), 300-308.
[http://dx.doi.org/10.1038/sj.bjc.6604148] [PMID: 18182992]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy