Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Synthesis and Characterization of C-TiO2 Nanomaterials Via Carbon Assistance Method

Author(s): Qiang Zhang, Zhenyin Hai, Jie Wang, Aoqun Jian, Qianqian Duan, Jianlong Ji, Wendong Zhang and Shengbo Sang*

Volume 15, Issue 3, 2019

Page: [260 - 266] Pages: 7

DOI: 10.2174/1872212112666180628152321

Price: $65

Abstract

Background: With the increasing serious problem of water environment pollution, it is a hot spot to study the high efficient sewage treatment method. Owning to the photosensitization of carbon nanomaterials, carbon doped TiO2 (C-TiO2) has higher photocatalytic activity.

Method: Here, we proposed a new method, carbon-assisted method, to prepare C-TiO2 nanomaterials. We first used degreasing cotton as a dispersant to fully absorb the TiCl4 sol.

Results: After high-temperature calcination, C-TiO2nanomaterials were obtained. Characterizations results showed that the high specific surface area C-TiO2 nanomaterials in the size of about 50 nm showed a broader light absorption and narrower bandgap spectrum than P25 (commercial TiO2 nanoparticles).

Conclusion: The C-TiO2 nanomaterials showed stronger photocatalytic ability than P25.

Keywords: C doped TiO2, nanomaterials, carbon-assisted method, photocatalysis, water treatment, environmentally friendly.

Graphical Abstract
[1]
Vanessade, J.G.; Cristina, M.M.A.; Alexandre, R.; Elisabete, F.; Maria, J.B.; Vitor, V.C. Occurrence of pharmaceuticals in a water supply system and related human health risk assessment. Water Res., 2015, 72, 199-208.
[2]
Rojas, M.R.; Leung, C.; Bonk, F.; Zhu, Y.; Edwards, L.; Arnold, R.G.; Sáez, A.E.; Klečka, G. Assessment of the effectiveness of secondary wastewater treatment technologies to remove trace chemicals of emerging concern Crit. Rev. Environ. Sci. Technol, 2013, 190, 137-147.
[3]
Zhang, C.; Li, Y.; Wang, C.; Niu, L.; Cai, W. Occurrence of endocrine disrupting compounds in aqueous environment and their bacterial degradation: A review Crit. Rev. Environ. Sci. Technol, 2016, 46, 1-59.
[4]
Qu, X.; Alvarez, P.J.J.; Li, Q. Applications of nanotechnology in water and wastewater treatment. Water Res., 2013, 47, 3931-3946.
[5]
Das, R.; Ali, M.E.; Hamid, S.B.A.; Ramakrishna, S.; Chowdhury, Z.Z. Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination, 2014, 336, 97-109.
[6]
Borges, M.E.; Sierra, M.; Cuevas, E.; García, R.D.; Esparza, P. Photocatalysis with solar energy: Sunlight-responsive photocatalyst based on TiO2 loaded on a natural material for wastewater treatment. Sol. Energy, 2016, 135, 527-535.
[7]
Leong, S.; Li, D.; Hapgood, K.; Zhang, X.; Wang, H. Ni(OH)2 decorated rutile TiO2 for efficient removal of tetracycline from wastewater. Appl. Catal. B Environ, 2016, 198, 224-233.
[8]
Pakdel, E.; Wang, J.; Allardyce, B.J.; Rajkhowa, R.; Wang, X. Functionality of nano and 3D-microhierarchical TiO2, particles as coagulants for sericin extraction from the silk degumming wastewater. Sep. Purif. Technol., 2016, 170, 92-101.
[9]
Fu, C.; Li, M.; Li, H.; Li, C.; Wu, X.G.; Yang, B.H. Fabrication of Au nanoparticle/TiO2, hybrid films for photoelectrocatalytic degradation of methyl orange. J. Alloys Compd., 2016, 692, 727-733.
[10]
Yang, Z.; Lu, J.; Ye, W.; Chang, Y.L. Preparation of Pt/TiO2, hollow nanofibers with highly visible light photocatalytic activity. Appl. Surf. Sci., 2016, 392, 472-480.
[11]
Kuo, C.Y.; Wu, C.H.; Wu, J.T. Synthesis and characterization of a phosphorus-doped TiO2 immobilized bed for the photodegradation of bisphenol A under UV and sunlight irradiation. React. Kinet. Mech. Catal., 2015, 114, 753-766.
[12]
Rahbar, M.; Behpour, M. Multi-walled carbon nanotubes/TiO2 thin layer for photocatalytic degradation of organic pollutant under visible light irradiation. Sci. Mater. Electron., 2016, 27, 8348-8355.
[13]
Lee, H.; Min, Y.S.; Jurng, J.; Park, Y.K. The synthesis and coating process of TiO2 nanoparticles using CVD process. Powder Technol., 2011, 214, 64-68.
[14]
Xie, H.Y.; Chen, S.W.; Ma, C.W.; Wang, J.R.; Zhu, L.P.; Wang, L.L.; Gao, G.L.; Wang, L.J.; Yuan, H. Photodegradation of toluene by TiO2 nanoparticles by flame CVD process. Adv. Mater. Res., 2011, 233, 1474-1478.
[15]
Manikandan, K.; Ahamed, A.J.; Thirugnanasundar, A.; Brahmanandhan, G.M. A novel approach to synthesis and characterization of titanium dioxide nanoparticles for photocatalytic applications. Dig. J. Nanomater. Biostruct., 2015, 10, 1427-1437.
[16]
Wan, Y.; Xu, Z.; Chao, W.L.; Zhang, J.Y. Sol-gel derived nickel-doped TiO2 films as wear protection coatings. J. Exp. Nanosci., 2013, 8, 782-787.
[17]
Fu, X. Synthesis and optical absorpition properies of anatase TiO2 nanoparticles via a hydrothermal hydrolysis method. Rare Metal. Mat. Eng., 2015, 44, 1067-1070.
[18]
Wang, X.Q.; Sø, L.; Su, R.; Wendt, S.; Hald, P.; Mamakhel, A.; Yang, C.X.; Huang, Y.D.; Iversen, B.B.; Besenbacher, F. The influence of crystallite size and crystallinity of anatase nanoparticles on the photo-degradation of phenol. J. Catal., 2014, 310, 100-108.
[19]
Yan, B.; Zhou, J.; Liang, X.; Song, K.; Su, X. Facile synthesis of flake-like TiO2/C nano-composites for photocatalytic H2 evolution under visible-light irradiation. Appl. Surf. Sci., 2017, 392, 889-896.
[20]
Plumejeau, S.; Rivallin, M.; Brosillon, S.; Ayral, A.; Heux, L.; Boury, B. The Reductive dehydration of cellulose by solid/gas reaction with TiCl4 at low temperature: A cheap, simple, and green process for preparing anatase nanoplates and TiO2/C composites. Chemistry, 2016, 22, 7262-17268.
[21]
Shaban, Y.A.; Maradny, A.A.E.; Farawati, R.K.A. Photocatalytic reduction of nitrate in seawater using C/TiO2, nanoparticles. J. Photochem. Photobiol. Chem.A, 2016, 328, 114-121.
[22]
Wu, Z.; Wang, K.; Yuan, G.; Li, W.; Song, C.; Han, G.; Liu, Y. Controllable fabrication and characterization of porous C/TiO2, nanocomposite films as solar selective absorber. Surf. Coat. Technol., 2016, 302, 468-473.
[23]
Shi, X.; Zhang, Z.; Du, K.; Lai, Y. Anatase TiO2@C composites with porous structure as an advanced anode material for Na ion batteries. J. Power Sources, 2016, 330, 1-6.
[24]
Joo, J.B.; Liu, H.; Lee, Y.J.; Dahl, M.; Yu, H.; Zaera, F.; Yin, Y. Tailored synthesis of C@TiO2, yolk–shell nanostructures for highly efficient photocatalysis. Catal. Today, 2016, 264, 261-269.
[25]
Wang, S.; Zhao, L.; Bai, L.; Yan, J.; Jiang, Q.; Lian, J. Enhancing photocatalytic activity of disorder-engineered C/TiO2 and TiO2 nanoparticles. J. Mater. Chem. A., 2014, 2, 7439-7445.
[26]
Chen, X.B.; Liu, L.; Yu, P.Y.; Mao, S.S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331, 746-750.
[27]
Lee, J.W.; Othman, M.R.; Eomc, Y.; Lee, T.G.; Kim, W.S.; Kim, J. The effects of sonification and TiO2 deposition on the micro-characteristics of the thermally treated SiO2/TiO2 spherical core-shell particles for photo-catalysis of methyl orange. Microporous Mesoporous Mater., 2008, 116, 561-568.
[28]
Zhang, S.; Li, X.Y.; Chen, J.P. An XPS study for mechanisms of arsenate adsorption onto a magnetite-doped activated carbon fiber. J. Colloid Interface Sci., 2010, 343, 232.
[29]
Ren, W.J.; Ai, Z.H.; Jia, F.K.; Zhang, L.Z.; Fan, X.X.; Zou, Z.G. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl. Catal. B Environ. , 2007, 69, 138-144.
[30]
Chen, C.; Long, M.; Zeng, H.; Cai, W.; Zhou, B.; Zhang, J.Y.; Wu, Y.H.; Ding, D.W.; Wu, D.Y. Preparation, characterization and visible-light activity of carbon modified TiO2 with two kinds of carbonaceous species. J. Mol. Catal. Chem.A., 2009, 314, 35-41.
[31]
Chen, F.H.; Yan, F.F.; Chen, Q.T.; Wang, Y.W.; Han, L.F.; Chen, Z.J.; Fang, S.M. Fabrication of Fe3O4@SiO2@TiO2 nanoparticles supported by graphene oxide sheets for the repeated adsorption and photocatalytic degradation of rhodamine B under UV irradiation. Dalton Trans., 2014, 43, 13537.
[32]
Chou, P.W.; Treschev, S.; Chung, P.H.; Cheng, C.L.; Tseng, Y.H.; Chen, Y.J.; Wong, M.S. Observation of carbon-containing nanostructured mixed titania phases for visible light photocatalysts. Appl. Phys. Lett., 2006, 89, 131919.
[33]
Zhu, Y.; Ding, C.; Ma, G. Electronic state characterization of TiO2 ultrafine particles by luminescence spectroscopy. J. Solid State Chem., 1998, 139, 124-127.
[34]
Zhang, Y.; Ma, X.; Chen, P.; Li, D.; Pi, X.; Yang, D.; Coleman, P.G. Enhancement of electroluminescence from TiO2/p+-Si heterostructure-based devices through engineering of oxygen vacancies in TiO2. Appl. Phys. Lett., 2009, 95, 4428.
[35]
Zhu, Y.C.; Ding, C.X. Investigation on the surface state of TiO2 ultrafine particles by luminescence. J. Solid State Chem., 1999, 145, 711-715.
[36]
Jing, L.; Sun, X.; Xin, B.; Wang, B.; Cai, W.; Fu, H. The preparation and characterization of La doped TiO2, nanoparticles and their photocatalytic activity. J. Solid State Chem., 2004, 177, 3375-3382.
[37]
Houzouji, T.; Saito, N.; Kudo, A.; Sakata, T. Electroluminescence of TiO2, film and TiO2: Cu2+, film prepared by the sol-gel method. Chem. Phys. Lett., 1996, 254, 109-113.
[38]
Wang, G.T.; Tu, J.P.; Wang, X.L.; Wu, J.B. Zhang. W.K. Photochargeability of SrTiO3/Ni/hydrogen storage alloy electrode in KOH solution. Int. J. Hydrogen Energy, 2007, 32, 3586-3591.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy