Generic placeholder image

Cardiovascular & Hematological Disorders-Drug Targets

Editor-in-Chief

ISSN (Print): 1871-529X
ISSN (Online): 2212-4063

Research Article

Pseudomonas aeruginosa Invades Human Aortic Endothelial Cells and Induces Cell Damage in vitro

Author(s): Rahul Mittal*, Vasanti M. Jhaveri, Sae-In Samantha Kay, Patricia Blackwelder and Kunal Patel

Volume 19, Issue 1, 2019

Page: [45 - 50] Pages: 6

DOI: 10.2174/1871529X18666180611094928

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Cardiovascular diseases such as endocarditis are the second most common cause of death worldwide. Infective Endocarditis (IE) is the most severe infection of the heart associated with significant mortality and morbidity. The binding and invasion of Human Aortic Endothelial Cells (HAECs) by pathogenic microbes can play an important role in the pathogenesis of IE.

Objective: Pseudomonas aeruginosa is an emerging pathogen that has been associated with IE. However, it is not known whether P. aeruginosa can bind and interact with HAECs. The aim of this study was to determine whether P. aeruginosa can bind and colonize HAECs.

Methods: The invasion of HAECs by P. aeruginosa was assessed by gentamicin protection assay. Cytokine levels were determined by enzyme-linked Immunosorbent Assay (ELISA) kits. Cell damage was determined by Lactate Dehydrogenase (LDH) assay.

Results: P. aeruginosa can bind and invade HAECs. Infection of HAECs with P. aeruginosa induces TNF-α IL-1β, IL-6 and IL-8 cytokine production leading to the generation of inflammatory milieu that can cause tissue damage as observed in human clinical cases of IE. We also observed that P. aeruginosa induces cell damage in HAECs.

Conclusion: In this study, we demonstrate for first time that P. aeruginosa can invade and survive inside HAECs. This cell culture model can be of immense importance to determine the efficacy of drug targets against IE.

Keywords: Infective endocarditis, Pseudomonas aeruginosa, cell damage, cytokines, lactate dehydrogenase (LDH) assay.

Graphical Abstract
[1]
Que, Y.A.; Moreillon, P. Infective endocarditis. Nat. Rev. Cardiol., 2011, 8, 322-336.
[2]
Fitzsimmons, K.; Bamber, A.I.; Smalley, H.B. Infective endocarditis: Changing aetiology of disease. Br. J. Biomed. Sci., 2010, 67, 35-41.
[3]
Haldar, S.M.; O’Gara, P.T. Infective endocarditis: Diagnosis and management. Nat. Clin. Pract. Cardiovasc. Med., 2006, 3, 310-317.
[4]
Durack, D.T. Infective endocarditis. Infect. Dis. Clin. North Am., 2002, 16, xv-xix.
[5]
Morpeth, S.; Murdoch, D.; Cabell, C.H.; Karchmer, A.W.; Pappas, P.; Levine, D.; Nacinovich, F.; Tattevin, P.; Fernández-Hidalgo, N.; Dickerman, S.; Bouza, E.; del Río, A.; Lejko-Zupanc, T.; de Oliveira Ramos, A.; Iarussi, D.; Klein, J.; Chirouze, C.; Bedimo, R.; Corey, G.R.; Fowler, V.G. Jr; International Collaboration on Endocarditis Prospective Cohort Study (ICE-PCS) Investigators. Non-HACEK Gram-negative bacillus endocarditis. Ann. Intern. Med., 2007, 147, 829-835.
[6]
Krcmery, V.; Demitrovicova, A.; Hricak, V.; Kisac, P. Endocarditis due to Gram-negative bacteria. Int. J. Infect. Dis., 2010.
[http://dx.doi.org/10.1016/j.ijid.2009.08.022]
[7]
McDonald, J.R. Acute infective endocarditis. Infect. Dis. Clin. North Am., 2009, 23, 643-664.
[8]
Mocchegiani, R.; Nataloni, M. Complications of infective endocarditis. Cardiovasc. Hematol. Disord. Drug Targets, 2009, 9, 240-248.
[9]
Derex, L.; Bonnefoy, E.; Delahaye, F. Impact of stroke on therapeutic decision making in infective endocarditis. J. Neurol., 2010, 257, 315-321.
[10]
Heiro, M.; Nikoskelainen, J.; Engblom, E.; Kotilainen, E.; Marttila, R.; Kotilainen, P. Neurologic manifestations of infective endocarditis: A 17-year experience in a teaching hospital in Finland. Arch. Intern. Med., 2000, 160, 2781-2787.
[11]
Kanter, M.C.; Hart, R.G. Neurologic complications of infective endocarditis. Neurology, 1991, 41, 1015-1020.
[12]
Moreillon, P.; Que, Y.A. Infective endocarditis. Lancet, 2004, 363, 139-149.
[13]
Cabell, C.H.; Fowler, V.G. Jr, Engemann, J.J. Endocarditis in the elderly: Incidence, surgery, and survival in 16,921 patients over 12 years. Circulation, 2002, 106, 547.
[14]
Reyes, M.P.; Ali, A.; Mendes, R.E.; Biedenbach, D.J. Resurgence of Pseudomonas endocarditis in Detroit, 2006-2008. Medicine (Baltimore), 2009, 88, 294-301.
[15]
Noureddine, M.; de la Torre, J.; Ivanova, R.; Martínez, F.J.; Lomas, J.M.; Plata, A.; Gálvez, J.; Reguera, J.M.; Ruiz, J.; Hidalgo, C.; Luque, R.; García-López, M.V.; de Alarcón, A. Left-sided endocarditis due to gram-negative bacilli: Epidemiology and clinical characteristics. Enferm. Infecc. Microbiol. Clin., 2011, 29(4), 276-281.
[16]
Nasim, A.; Baqi, S.; Akhtar, S.F. Pseudomonas aeruginosa endocarditis in renal transplant recipients. Transpl. Infect. Dis., 2012, 14(2), 180-183.
[17]
Aggarwal, A.; Ritter, N.; Reddy, L.; Lingutla, D.; Nasar, F.; El-Daher, N.; His, D. Recurrent Pseudomonas aortic root abscess complicating mitral valve endocarditis. Heart Lung, 2012, 41(2), 181-183.
[18]
Wei, H.H.; Wu, K.G.; Sy, L.B.; Chen, C.J.; Tang, R.B. Infectious endocarditis in pediatric patients: analysis of 19 cases presenting at a medical center. J. Microbiol. Immunol. Infect., 2010, 43, 430-437.
[19]
Tembe, A.G.; Kharbanda, P.; Dalal, J.J.; Vaishnav, G.; Joshi, V.R. Infective endocarditis--a tale of two cases and the lessons (re)learned. J. Assoc. Physicians India, 2010, 58, 319-322.
[20]
Bicanic, T.A.; Eykyn, S.J. Hospital-acquired, native valve endocarditis caused by Pseudomonas aeruginosa. J. Infect., 2002, 44, 137-139.
[21]
Wieland, M.; Lederman, M.M.; Kline-King, C.; Keys, T.F.; Lerner, P.I.; Bass, S.N.; Chmielewski, R.; Banks, V.D.; Ellner, J.J. Left-sided endocarditis due to Pseudomonas aeruginosa: A report of 10 cases and review of the literature. Medicine, 1986, 65, 180-189.
[22]
Reyes, M.P.; Lerner, A.M. Current problems in the treatment of infective endocarditis due to Pseudomonas aeruginosa. Rev. Infect. Dis., 1983, 5, 314-321.
[23]
Parlakay, A.O.; Kara, A.; Çelik, I.; Cengiz, A.B.; Karagöz, T.; Devrim, I.; Ceyhan, M. Winning the battle against Pseudomonas aeruginosa endocarditis: A case report. Çocuk Enfeks. Derg., 2010, 4, 114-116.
[24]
Kato, Y.; Ohashi, H.; Tsutsumi, Y.; Murakami, T.; Takahashi, Y. Prosthetic valve endocarditis caused by metallo-beta-lactamase-producing Pseudomonas aeruginosa. J. Card. Surg., 2009, 24, 347-349. Reyes MP, Ali A, Mendes RE, Biedenbach DJ. Resurgence of Pseudomonas endocarditis in Detroit, 2006-2008. Medicine (Baltimore), 2009, 88(5), 294-301.
[25]
Thompson, J.; Meddens, M.J.; Thörig, L.; van Furth, R. The role of bacterial adherence in the pathogenesis of infective endocarditis. Infection, 1982, 10, 196-198.
[26]
Ho, M.H.; Guo, Z.M.; Chunga, J.; Goodwin, J.S.; Xie, H. Characterization of innate immune responses of human endothelial cells induced by Porphyromonas gingivalis and their derived outer membrane vesicles. Front. Cell. Infect. Microbiol., 2016, 6, 139.
[27]
Deshpande, R.G.; Khan, M.B.; Genco, C.A. Invasion of aortic and heart endothelial cells by Porphyromonas gingivalis. Infect. Immun., 1998, 66(11), 5337-5343.
[28]
Chou, H.H.; Yumoto, H.; Davey, M.; Takahashi, Y.; Miyamoto, T.; Gibson, F.C. 3rd, Genco, C.A. Porphyromonas gingivalis fimbria-dependent activation of inflammatory genes in human aortic endothelial cells. Infect. Immun., 2005, 73(9), 5367-5378.
[29]
Khlgatian, M.; Nassar, H.; Chou, H.H.; Gibson, F.C. 3rd, Genco, C.A. Fimbria-dependent activation of cell adhesion molecule expression in Porphyromonas gingivalis-infected endothelial cells. Infect. Immun., 2002, 70(1), 257-267.
[30]
Komatsu, T.; Nagano, K.; Sugiura, S.; Hagiwara, M.; Tanigawa, N.; Abiko, Y.; Yoshimura, F.; Furuichi, Y.; Matsushita, K. E-selectin mediates Porphyromonas gingivalis adherence to human endothelial cells. Infect. Immun., 2012, 80(7), 2570-2576.
[31]
Vielma, S.A.; Krings, G.; Lopes-Virella, M.F. Chlamydophila pneumoniae induces ICAM-1 expression in human aortic endothelial cells via protein kinase C-dependent activation of nuclear factor-kappaB. Circ. Res., 2003, 92(10), 1130-1137.
[32]
Mueller, K.E.; Wolf, K. C. pneumoniae disrupts eNOS trafficking and impairs NO production in human aortic endothelial cells. Cell. Microbiol., 2015, 17(1), 119-130.
[33]
Herrera, A.; Kulhankova, K.; Sonkar, V.K.; Dayal, S.; Klingelhutz, A.J.; Salgado-Pabon, W.; Schlievert, P.M. Staphylococcal beta-toxin modulates human aortic endothelial cell and platelet function through sphingomyelinase and biofilm ligase activities. MBio, 2017, 8(2), e00273-e17.
[34]
Nagata, E.; de Toledo, A.; Oho, T. Invasion of human aortic endothelial cells by oral viridans group streptococci and induction of inflammatory cytokine production. Mol. Oral Microbiol., 2011, 26(1), 78-88.
[35]
de Toledo, A.; Nagata, E.; Yoshida, Y.; Oho, T. Streptococcus oralis coaggregation receptor polysaccharides induce inflammatory responses in human aortic endothelial cells. Mol. Oral Microbiol., 2012, 27(4), 295-307.
[36]
di Penta, A.; Moreno, B.; Reix, S.; Fernandez-Diez, B.; Villanueva, M.; Errea, O.; Escala, N.; Vandenbroeck, K.; Comella, J.X.; Villoslada, P. Oxidative stress and proinflammatory cytokines contribute to demyelination and axonal damage in a cerebellar culture model of neuroinflammation. PLoS One, 2013, 8(2), e54722.
[37]
Araújo, I.R.; Ferrari, T.C.; Teixeira-Carvalho, A.; Campi-Azevedo, A.C.; Rodrigues, L.V.; Guimarães Júnior, M.H.; Barros, T.L.; Gelape, C.L.; Sousa, G.R.; Nunes, M.C. Cytokine signature in infective endocarditis. PLoS One, 2015, 10(7), e0133631.
[38]
Nunes, M.C.P. AI, Carvalho, A.T.; Andrade, L.A.; Resende, M.H.L.; Silva, J.L.P.; Ferrari, T.C.A. Do cytokines play a role in predicting some features and outcome in infective endocarditis? Adv. Infect. Dis., 2013, 3, 115-119.
[39]
Chu, C.Q. How much have we learnt about the TNF family of cytokines? Cytokine, 2018, 101, 1-3.
[40]
Zelová, H.; Hošek, J. TNF-α signalling and inflammation: Interactions between old acquaintances. Inflamm. Res., 2013, 62(7), 641-651.
[41]
Moorlag, S.J.C.F.M.; Röring, R.J.; Joosten, L.A.B.; Netea, M.G. The role of the interleukin-1 family in trained immunity. Immunol. Rev., 2018, 281(1), 28-39.
[42]
Dinarello, C.A. Introduction to the interleukin-1 family of cytokines and receptors: Drivers of innate inflammation and acquired immunity. Immunol. Rev., 2018, 281(1), 5-7.
[43]
Striz, I. Cytokines of the IL-1 family: Recognized targets in chronic inflammation underrated in organ transplantations. Clin. Sci., (Lond). 2017, 131(17), 2241-2256.
[44]
Ridker, P.M.N.; Rafai, M.J.; Stampfer, C.H. Hennekens. 2000. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation, 2000, 101, 1767-1772.
[45]
Tanaka, T.; Kanda, T.; McManus, B.M.; Kanai, H.; Akiyama, H.; Sekiguchi, K.; Yokoyama, T.; Kurabayashi, M. Overexpression of interleukin-6 aggravates viral myocarditis: impaired increase in tumor necrosis factor-α. J. Mol. Cell. Cardiol., 2001, 33, 1627-1635.
[46]
Bickel, M. The role of interleukin-8 in inflammation and mechanisms of regulation. J. Periodontol., 1993, 64(5)(Suppl.), 456-460.
[47]
Shah, R.; Thomas, R.; Mehta, D.S. Neutrophil priming: Implications in periodontal disease. J. Indian Soc. Periodontol., 2017, 21(3), 180-185.
[48]
Laursen, H.; Jensen, H.E.; Leifsson, P.S.; Jensen, L.K.; Christiansen, J.G.; Trebbien, R.; Nielsen, O.L. Immunohistochemical detection of interleukin-8 in inflamed porcine tissues. Vet. Immunol. Immunopathol., 2014, 159(1-2), 97-102.
[49]
Baggiolini, M.; Clark-Lewis, I. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett., 1992, 307(1), 97-101.
[50]
Watkin, R.W.; Harper, L.V.; Vernallis, A.B.; Lang, S.; Lambert, P.A.; Ranasinghe, A.M.; Elliott, T.S. Pro-inflammatory cytokines IL6, TNF-alpha, IL1beta, procalcitonin, lipopolysaccharide binding protein and C-reactive protein in infective endocarditis. J. Infect., 2007, 55, 220-225.
[51]
Rawczynska-Englert, I.; Hryniewiecki, T.; Dzierzanowska, D. Evaluation of serum cytokine concentrations in patients with infective endocarditis. J. Heart Valve, 2000, 9, 705-709.
[52]
Gouriet, F.; Bothelo-Nevers, E.; Coulibaly, B.; Raoult, D.; Casalta, J.P. Evaluation of sedimentation rate, rheumatoid factor, C-reactive protein, and tumor necrosis factor for the diagnosis of infective endocarditis. Clin. Vaccine Immunol., 2006, 13, 301.
[53]
Zeng, C.; Hu, X.; Wang, Y.; Zeng, X.; Xiong, Y.; Li, L.; Ye, Q. A novel hypothermic machine perfusion system using a LifePort Kidney Transporter for the preservation of rat liver. Exp. Ther. Med., 2018, 15(2), 1410-1416.
[54]
Zhao, P.; Chang, R.Y.; Liu, N.; Wang, J.; Zhou, R.; Qi, X.; Liu, Y.; Ma, L.; Niu, Y.; Sun, T.; Li, Y.X.; He, Y.P.; Yu, J.Q. Neuroprotective effect of oxysophocarpine by modulation of mapk pathway in rat hippocampal neurons subject to oxygen-glucose deprivation and reperfusion. Cell. Mol. Neurobiol., 2018, 38(2), 29-540.
[55]
Roth, G.A.; Ankersmit, H.J.; Brown, V.B.; Papapanou, P.N.; Schmidt, A.M.; Lalla, E. Porphyromonas gingivalis infection and cell death in human aortic endothelial cells. FEMS Microbiol. Lett., 2007, 272(1), 106-113.
[56]
Marino, J.; Stoeckli, I.; Walch, M.; Latinovic-Golic, S.; Sundstroem, H.; Groscurth, P.; Ziegler, U.; Dumrese, C. Chlamydophila pneumoniae derived from inclusions late in the infectious cycle induce aponecrosis in human aortic endothelial cells. BMC Microbiol., 2008, 8, 32.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy