Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Malignant Intracranial High Grade Glioma and Current Treatment Strategy

Author(s): Xiang Zhang*, Wei Zhang, Xing-Gang Mao, Wei-Dong Cao, Hai-Ning Zhen and Shi-Jie Hu

Volume 19, Issue 2, 2019

Page: [101 - 108] Pages: 8

DOI: 10.2174/1568009618666180530090922

Price: $65

Abstract

Malignant high-grade glioma (HGG) is the most common and extremely fatal type of primary intracranial tumor. These tumors recurred within 2 to 3 cm of the primary region of tumor resection in the majority of cases. Furthermore, the blood-brain barrier significantly limited the access of many systemically administered chemotherapeutics to the tumor, pointing towards a stringent need for new therapeutic patterns. Therefore, targeting therapy using local drug delivery for HGG becomes a priority for the development of novel therapeutic strategies. The main objectives to the effective use of chemotherapy for HGG include the drug delivery to the tumor region and the infusion of chemotherapeutic agents into the vascular supply of a tumor directly, which could improve the pharmacokinetic profile by enhancing drug delivery to the neoplasm tissue. Herein, we reviewed clinical and molecular features, different methods of chemotherapy application in HGGs, especially the existing and promising targeting therapies using local drug delivery for HGG which could effectively inhibit tumor invasion, proliferation and recurrence of HGG to combat the deadly disease. Undoubtedly, novel chemical medicines targeting these HGG may represent one of the most important directions in the Neuro-oncology.

Keywords: Glioma, drug delivery, blood-brain barrier, Genetic alterations, chemotherapy, malignant high-grade glioma.

Next »
Graphical Abstract
[1]
Louis, D.N.; Ohgaki, H.; Wiestler, O.D.; Cavenee, W.K.; Burger, P.C.; Jouvet, A.; Scheithauer, B.W.; Kleihues, P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol., 2007, 114(2), 97-109.
[2]
Huse, J.T.; Holland, E.C. Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat. Rev. Cancer, 2010, 10(5), 319-331.
[3]
Arko, L.; Katsyv, I.; Park, G.E.; Luan, W.P.; Park, J.K. Experimental approaches for the treatment of malignant gliomas. Pharmacol. Ther., 2010, 128(1), 1-36.
[4]
Stupp, R.; Tonn, J.C.; Brada, M.; Pentheroudakis, G. High-grade malignant glioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol., 2010, 21(Suppl. 5), v190-v193.
[5]
Wen, P.Y.; Kesari, S. Malignant gliomas in adults. N. Engl. J. Med., 2008, 359(5), 492-507.
[6]
Dolecek, T.A.; Propp, J.M.; Stroup, N.E.; Kruchko, C. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. Neuro-oncol., 2012, 14(Suppl. 5), v1-v49.
[7]
Nagarajan, R.P.; Costello, J.F. Epigenetic mechanisms in glioblastoma multiforme. Semin. Cancer Biol., 2009, 19(3), 188-197.
[8]
Dahlback, H.S.; Brandal, P.; Meling, T.R.; Gorunova, L.; Scheie, D.; Heim, S. Genomic aberrations in 80 cases of primary glioblastoma multiforme: Pathogenetic heterogeneity and putative cytogenetic pathways. Genes Chromosomes Cancer, 2009, 48(10), 908-924.
[9]
Bonavia, R.; Inda, M.M.; Cavenee, W.K.; Furnari, F.B. Heterogeneity maintenance in glioblastoma: a social network. Cancer Res., 2011, 71(12), 4055-4060.
[10]
Karsy, M.; Gelbman, M.; Shah, P.; Balumbu, O.; Moy, F.; Arslan, E. Established and emerging variants of glioblastoma multiforme: review of morphological and molecular features. Folia Neuropathol., 2012, 50(4), 301-321.
[11]
Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 2008, 455(7216), 1061-1068.
[12]
Dudley, A.; Sater, M.; Le, P.U.; Trinh, G.; Sadr, M.S.; Bergeron, J.; Deleavey, G.F.; Bedell, B.; Damha, M.J.; Petrecca, K. DRR regulates AKT activation to drive brain cancer invasion. Oncogene, 2014, 33(41), 4952-4960.
[13]
Shete, S.; Hosking, F.J.; Robertson, L.B.; Dobbins, S.E.; Sanson, M.; Malmer, B.; Simon, M.; Marie, Y.; Boisselier, B.; Delattre, J.Y.; Hoang-Xuan, K.; El Hallani, S.; Idbaih, A.; Zelenika, D.; Andersson, U.; Henriksson, R.; Bergenheim, A.T.; Feychting, M.; Lonn, S.; Ahlbom, A.; Schramm, J.; Linnebank, M.; Hemminki, K.; Kumar, R.; Hepworth, S.J.; Price, A.; Armstrong, G.; Liu, Y.; Gu, X.; Yu, R.; Lau, C.; Schoemaker, M.; Muir, K.; Swerdlow, A.; Lathrop, M.; Bondy, M.; Houlston, R.S. Genome-wide association study identifies five susceptibility loci for glioma. Nat. Genet., 2009, 41(8), 899-904.
[14]
Hill, C.; Hunter, S.B.; Brat, D.J. Genetic markers in glioblastoma: prognostic significance and future therapeutic implications. Adv. Anat. Pathol., 2003, 10(4), 212-217.
[15]
Killela, P.J.; Reitman, Z.J.; Jiao, Y.; Bettegowda, C.; Agrawal, N.; Diaz, L.A., Jr; Friedman, A.H.; Friedman, H.; Gallia, G.L.; Giovanella, B.C.; Grollman, A.P.; He, T.C.; He, Y.; Hruban, R.H.; Jallo, G.I.; Mandahl, N.; Meeker, A.K.; Mertens, F.; Netto, G.J.; Rasheed, B.A.; Riggins, G.J.; Rosenquist, T.A.; Schiffman, M.; Shih Ie, M.; Theodorescu, D.; Torbenson, M.S.; Velculescu, V.E.; Wang, T.L.; Wentzensen, N.; Wood, L.D.; Zhang, M.; McLendon, R.E.; Bigner, D.D.; Kinzler, K.W.; Vogelstein, B.; Papadopoulos, N.; Yan, H. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc. Natl. Acad. Sci. USA, 2013, 110(15), 6021-6026.
[16]
Noushmehr, H.; Weisenberger, D.J.; Diefes, K.; Phillips, H.S.; Pujara, K.; Berman, B.P.; Pan, F.; Pelloski, C.E.; Sulman, E.P.; Bhat, K.P.; Verhaak, R.G.; Hoadley, K.A.; Hayes, D.N.; Perou, C.M.; Schmidt, H.K.; Ding, L.; Wilson, R.K.; Van Den Berg, D.; Shen, H.; Bengtsson, H.; Neuvial, P.; Cope, L.M.; Buckley, J.; Herman, J.G.; Baylin, S.B.; Laird, P.W.; Aldape, K. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell, 2010, 17(5), 510-522.
[17]
Fujisawa, H.; Reis, R.M.; Nakamura, M.; Colella, S.; Yonekawa, Y.; Kleihues, P.; Ohgaki, H. Loss of heterozygosity on chromosome 10 is more extensive in primary (de novo) than in secondary glioblastomas. Lab. Invest., 2000, 80(1), 65-72.
[18]
Horbinski, C.; Nikiforova, M.N.; Hobbs, J.; Bortoluzzi, S.; Cieply, K.; Dacic, S.; Hamilton, R.L. The importance of 10q status in an outcomes-based comparison between 1p/19q fluorescence in situ hybridization and polymerase chain reaction-based microsatellite loss of heterozygosity analysis of oligodendrogliomas. J. Neuropathol. Exp. Neurol., 2012, 71(1), 73-82.
[19]
Yan, H.; Parsons, D.W.; Jin, G.; McLendon, R.; Rasheed, B.A.; Yuan, W.; Kos, I.; Batinic-Haberle, I.; Jones, S.; Riggins, G.J.; Friedman, H.; Friedman, A.; Reardon, D.; Herndon, J.; Kinzler, K.W.; Velculescu, V.E.; Vogelstein, B.; Bigner, D.D. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med., 2009, 360(8), 765-773.
[20]
Parsons, D.W.; Jones, S.; Zhang, X.; Lin, J.C.; Leary, R.J.; Angenendt, P.; Mankoo, P.; Carter, H.; Siu, I.M.; Gallia, G.L.; Olivi, A.; McLendon, R.; Rasheed, B.A.; Keir, S.; Nikolskaya, T.; Nikolsky, Y.; Busam, D.A.; Tekleab, H.; Diaz, L.A., Jr; Hartigan, J. Smith, D.R.; Strausberg, R.L.; Marie, S.K.; Shinjo, S.M.; Yan, H.; Riggins, G.J.; Bigner, D.D.; Karchin, R.; Papadopoulos, N.; Parmigiani, G.; Vogelstein, B.; Velculescu, V.E.; Kinzler, K.W. An integrated genomic analysis of human glioblastoma multiforme. Science, 2008, 321(5897), 1807-1812.
[21]
Bleeker, F.E.; Lamba, S.; Leenstra, S.; Troost, D.; Hulsebos, T.; Vandertop, W.P.; Frattini, M.; Molinari, F.; Knowles, M.; Cerrato, A.; Rodolfo, M.; Scarpa, A.; Felicioni, L.; Buttitta, F.; Malatesta, S.; Marchetti, A.; Bardelli, A. IDH1 mutations at residue p.R132 (IDH1(R132)) occur frequently in high-grade gliomas but not in other solid tumors. Hum. Mutat., 2009, 30(1), 7-11.
[22]
Kil, I.S.; Kim, S.Y.; Lee, S.J.; Park, J.W. Small interfering RNA-mediated silencing of mitochondrial NADP+-dependent isocitrate dehydrogenase enhances the sensitivity of HeLa cells toward tumor necrosis factor-alpha and anticancer drugs. Free Radic. Biol. Med., 2007, 43(8), 1197-1207.
[23]
Okita, Y.; Narita, Y.; Miyakita, Y.; Ohno, M.; Matsushita, Y.; Fukushima, S.; Sumi, M.; Ichimura, K.; Kayama, T.; Shibui, S. IDH1/2 mutation is a prognostic marker for survival and predicts response to chemotherapy for grade II gliomas concomitantly treated with radiation therapy. Int. J. Oncol., 2012, 41(4), 1325-1336.
[24]
Zhao, S.; Lin, Y.; Xu, W.; Jiang, W.; Zha, Z.; Wang, P.; Yu, W.; Li, Z.; Gong, L.; Peng, Y.; Ding, J.; Lei, Q.; Guan, K.L.; Xiong, Y. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science, 2009, 324(5924), 261-265.
[25]
Mao, X.G.; Xue, X.Y.; Wang, L.; Zhang, X.; Yan, M.; Tu, Y.Y.; Lin, W.; Jiang, X.F.; Ren, H.G.; Zhang, W.; Song, S.J. CDH5 is specifically activated in glioblastoma stem like cells and contributes to vasculogenic mimicry induced by hypoxia. Neuro-oncol., 2013, 15(7), 865-879.
[26]
Marampon, F.; Gravina, G.L.; Zani, B.M.; Popov, V.M.; Fratticci, A.; Cerasani, M.; Di Genova, D.; Mancini, M.; Ciccarelli, C.; Ficorella, C.; Di Cesare, E.; Festuccia, C. Hypoxia sustains glioblastoma radioresistance through ERKs/DNA-PKcs/HIF-1alpha functional interplay. Int. J. Oncol., 2014, 44(6), 2121-2131.
[27]
Lee, S.M.; Koh, H.J.; Park, D.C.; Song, B.J.; Huh, T.L.; Park, J.W. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic. Biol. Med., 2002, 32(11), 1185-1196.
[28]
Dolecek, T.A.; Propp, J.M.; Stroup, N.E.; Kruchko, C. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. Neuro-oncol., 2012, 14(Suppl. 5), v1-v49.
[29]
Huse, J.T.; Aldape, K.D. The molecular landscape of diffuse glioma and prospects for biomarker development. Expert Opin. Med. Diagn., 2013, 7(6), 573-587.
[30]
Herman, S.T. Epilepsy after brain insult: targeting epileptogenesis. Neurology, 2002, 59(9)(Suppl. 5), S21-S26.
[31]
Glantz, M.J.; Cole, B.F.; Forsyth, P.A.; Recht, L.D.; Wen, P.Y.; Chamberlain, M.C.; Grossman, S.A.; Cairncross, J.G. Practice parameter: anticonvulsant prophylaxis in patients with newly diagnosed brain tumors. report of the quality standards subcommittee of the American academy of neurology. Neurology, 2000, 54(10), 1886-1893.
[32]
Neuroradiology, Pierot.L. J. Radiol., 2005, 86(7-8), 868-873.
[33]
Young, G.S. Advanced MRI of adult brain tumors. Neurol. Clin., 2007, 25(4), 947-973. [viii.].
[34]
Housni, A.; Boujraf, S. Multimodal magnetic resonance imaging in the diagnosis and therapeutical follow-up of brain tumors. Neurosciences, 2013, 18(1), 3-10.
[35]
Wen, P.Y.; Schiff, D.; Kesari, S.; Drappatz, J.; Gigas, D.C.; Doherty, L. Medical management of patients with brain tumors. J. Neurooncol., 2006, 80(3), 313-332.
[36]
Sanai, N.; Berger, M.S. Extent of resection influences outcomes for patients with gliomas. Rev. Neurol., 2011, 167(10), 648-654.
[37]
Lacroix, M.; Abi-Said, D.; Fourney, D.R.; Gokaslan, Z.L.; Shi, W.; DeMonte, F.; Lang, F.F.; McCutcheon, I.E.; Hassenbusch, S.J.; Holland, E.; Hess, K.; Michael, C.; Miller, D.; Sawaya, R. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J. Neurosurg., 2001, 95(2), 190-198.
[38]
Stummer, W.; Pichlmeier, U.; Meinel, T.; Wiestler, O.D.; Zanella, F.; Reulen, H.J. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol., 2006, 7(5), 392-401.
[39]
Asthagiri, A.R.; Pouratian, N.; Sherman, J.; Ahmed, G.; Shaffrey, M.E. Advances in brain tumor surgery. Neurol. Clin., 2007, 25(4), 975-1003. [viii-ix.].
[40]
Brastianos, P.K.; Batchelor, T.T. Vascular endothelial growth factor inhibitors in malignant gliomas. Target. Oncol., 2010, 5(3), 167-174.
[41]
Balana, C.; Gil, M.J.; Perez, P.; Reynes, G.; Gallego, O.; Ribalta, T.; Capellades, J.; Gonzalez, S.; Verger, E. Sunitinib administered prior to radiotherapy in patients with non-resectable glioblastoma: results of a Phase II study. Target. Oncol., 2014, 9(4), 321-329.
[42]
Caruso, C.; Carcaterra, M.; Donato, V. Role of radiotherapy for high grade gliomas management. J. Neurosurg. Sci., 2013, 57(2), 163-169.
[43]
Reardon, D.A.; Quinn, J.A.; Vredenburgh, J.; Rich, J.N.; Gururangan, S.; Badruddoja, M.; Herndon, J.E., II; Dowell, J.M.; Friedman, A.H.; Friedman, H.S. Phase II trial of irinotecan plus celecoxib in adults with recurrent malignant glioma. Cancer, 2005, 103(2), 329-338.
[44]
Franceschi, E.; Cavallo, G.; Scopece, L.; Paioli, A.; Pession, A.; Magrini, E.; Conforti, R.; Palmerini, E.; Bartolini, S.; Rimondini, S.; Esposti, R.D.; Crino, L. Phase II trial of carboplatin and etoposide for patients with recurrent high-grade glioma. Br. J. Cancer, 2004, 91(6), 1038-1044.
[45]
Barr, J.G.; Grundy, P.L. The effects of the NICE technology appraisal 121 (gliadel and temozolomide) on survival in high-grade glioma. Br. J. Neurosurg., 2012, 26(6), 818-822.
[46]
Roldan Urgoiti, G.B.; Singh, A.D.; Easaw, J.C. Extended adjuvant temozolomide for treatment of newly diagnosed glioblastoma multiforme. J. Neurooncol., 2012, 108(1), 173-177.
[47]
Juratli, T.A.; Schackert, G.; Krex, D. Current status of local therapy in malignant gliomas - A clinical review of three selected approaches. Pharmacol. Ther., 2013, 139(3), 341-358.
[48]
Brem, H.; Piantadosi, S.; Burger, P.C.; Walker, M.; Selker, R.; Vick, N.A.; Black, K.; Sisti, M.; Brem, S.; Mohr, G. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-brain Tumor Treatment Group. Lancet, 1995, 345(8956), 1008-1012.
[49]
Newton, H.B. Intra-arterial chemotherapy of primary brain tumors. Curr. Treat. Options Oncol., 2005, 6(6), 519-530.
[50]
French, J.D.; West, P.M.; Von Amerongen, F.K.; Magoun, H.W. Effects of intracarotid administration of nitrogen mustard on normal brain and brain tumors. J. Neurosurg., 1952, 9(4), 378-389.
[51]
Klopp, C.T.; Alford, T.C.; Bateman, J.; Berry, G.N.; Winship, T. Fractionated intra-arterial cancer; chemotherapy with methyl bis amine hydrochloride; a preliminary report. Ann. Surg., 1950, 132(4), 811-832.
[52]
Figueiredo, E.G.; Faria, J.W.; Teixeira, M.J. Treatment of recurrent glioblastoma with intra-arterial BCNU [1, 3-bis (2-chloroethyl)-1-nitrosourea]. Arq. Neuropsiquiatr., 2010, 68(5), 778-782.
[53]
Shin, B.J.; Burkhardt, J.K.; Riina, H.A.; Boockvar, J.A. Superselective intra-arterial cerebral infusion of novel agents after blood-brain disruption for the treatment of recurrent glioblastoma multiforme: a technical case series. Neurosurg. Clin. N. Am., 2012, 23(2), 323-329. [ix-x.].
[54]
Salacz, M.E.; Watson, K.R.; Schomas, D.A. Glioblastoma. Part II: Future directions. Mol. Med., 2011, 108(4), 289-291.
[55]
Cloughesy, T.F.; Gobin, Y.P.; Black, K.L.; Vinuela, F.; Taft, F.; Kadkhoda, B.; Kabbinavar, F. Intra-arterial carboplatin chemotherapy for brain tumors: a dose escalation study based on cerebral blood flow. J. Neurooncol., 1997, 35(2), 121-131.
[56]
Wu, E. Editorial: discovering new anticancer activities from old drugs. Curr. Med. Chem., 2013, 20(30), 4093-4094.
[57]
Bidros, D.S.; Vogelbaum, M.A. Novel drug delivery strategies in neuro-oncology. Neurotherapeutics, 2009, 6(3), 539-546.
[58]
Burkhardt, J.K.; Riina, H.A.; Shin, B.J.; Moliterno, J.A.; Hofstetter, C.P.; Boockvar, J.A. Intra-arterial chemotherapy for malignant gliomas: a critical analysis. Interv. Neuroradiol., 2011, 17(3), 286-295.
[59]
Boockvar, J.A.; Tsiouris, A.J.; Hofstetter, C.P.; Kovanlikaya, I.; Fralin, S.; Kesavabhotla, K.; Seedial, S.M.; Pannullo, S.C.; Schwartz, T.H.; Stieg, P.; Zimmerman, R.D.; Knopman, J.; Scheff, R.J.; Christos, P.; Vallabhajosula, S.; Riina, H.A. Safety and maximum tolerated dose of superselective intraarterial cerebral infusion of bevacizumab after osmotic blood-brain barrier disruption for recurrent malignant glioma. Clinical article. J. Neurosurg., 2011, 114(3), 624-632.
[60]
Burkhardt, J.K.; Riina, H.; Shin, B.J.; Christos, P.; Kesavabhotla, K.; Hofstetter, C.P.; Tsiouris, A.J.; Boockvar, J.A. Intra-arterial delivery of bevacizumab after blood-brain barrier disruption for the treatment of recurrent glioblastoma: progression-free survival and overall survival. World Neurosurg., 2012, 77(1), 130-134.
[61]
Riina, H.A.; Knopman, J.; Greenfield, J.P.; Fralin, S.; Gobin, Y.P.; Tsiouris, A.J.; Souweidane, M.M.; Boockvar, J.A. Balloon-assisted superselective intra-arterial cerebral infusion of bevacizumab for malignant brainstem glioma. A technical note. Interv. Neuroradiol., 2010, 16(1), 71-76.
[62]
Ammaya, A.K. Subcutaneous reservoir and pump for sterile access to ventricular cerebrospinal fluid. Lancet, 1963, 2(7315), 983-984.
[63]
Buonerba, C.; Di Lorenzo, G.; Marinelli, A.; Federico, P.; Palmieri, G.; Imbimbo, M.; Conti, P.; Peluso, G.; De Placido, S.; Sampson, J.H. A comprehensive outlook on intracerebral therapy of malignant gliomas. Crit. Rev. Oncol. Hematol., 2011, 80(1), 54-68.
[64]
Srikandarajah, N.; Patel, A.; Lee, M.K.; Brodbelt, A. Indications for intracranial reservoirs: A six-year study. Br. J. Neurosurg., 2014, 28(4), 475-477.
[65]
Walter, K.A.; Tamargo, R.J.; Olivi, A.; Burger, P.C.; Brem, H. Intratumoral chemotherapy. Neurosurgery, 1995, 37(6), 1128-1145.
[66]
Patchell, R.A.; Regine, W.F.; Ashton, P.; Tibbs, P.A.; Wilson, D.; Shappley, D.; Young, B. A phase I trial of continuously infused intratumoral bleomycin for the treatment of recurrent glioblastoma multiforme. J. Neurooncol., 2002, 60(1), 37-42.
[67]
Boiardi, A.; Silvani, A.; Eoli, M.; Lamperti, E.; Salmaggi, A.; Gaviani, P.; Fiumani, A.; Botturi, A.; Falcone, C.; Solari, A.; Filippini, G.; Di Meco, F.; Broggi, G. Treatment of recurrent glioblastoma: can local delivery of mitoxantrone improve survival? J. Neurooncol., 2008, 88(1), 105-113.
[68]
Dorner, L.; Ulmer, S.; Rohr, A.; Mehdorn, H.M.; Nabavi, A. Space-occupying cyst development in the resection cavity of malignant gliomas following Gliadel(R) implantation--incidence, therapeutic strategies, and outcome. J. Clin. Neurosci., 2011, 18(3), 347-351.
[69]
Zhang, S.; Xie, R.; Zhao, T.; Yang, X.; Han, L.; Ye, F.; Lei, T.; Wan, F. Neural stem cells preferentially migrate to glioma stem cells and reduce their stemness phenotypes. Int. J. Oncol., 2014, 45(5), 1989-1996.
[70]
Gutova, M.; Frank, J.A.; D’Apuzzo, M.; Khankaldyyan, V.; Gilchrist, M.M.; Annala, A.J.; Metz, M.Z.; Abramyants, Y.; Herrmann, K.A.; Ghoda, L.Y.; Najbauer, J.; Brown, C.E.; Blanchard, M.S.; Lesniak, M.S.; Kim, S.U.; Barish, M.E.; Aboody, K.S.; Moats, R.A. Magnetic resonance imaging tracking of ferumoxytol-labeled human neural stem cells: studies leading to clinical use. Stem Cells Transl. Med., 2013, 2(10), 766-775.
[71]
Allhenn, D.; Boushehri, M.A.; Lamprecht, A. Drug delivery strategies for the treatment of malignant gliomas. Int. J. Pharm., 2012, 436(1-2), 299-310.
[72]
Westphal, M.; Hilt, D.C.; Bortey, E.; Delavault, P.; Olivares, R.; Warnke, P.C.; Whittle, I.R.; Jaaskelainen, J.; Ram, Z. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-oncol., 2003, 5(2), 79-88.
[73]
Nagpal, S. The role of BCNU polymer wafers (Gliadel) in the treatment of malignant glioma. Neurosurg. Clin. N. Am., 2012, 23(2), 289-295. [ix.].
[74]
Butt, A.M.; Jones, H.C.; Abbott, N.J. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J. Physiol., 1990, 429, 47-62.
[75]
Arifin, D.Y.; Lee, K.Y.; Wang, C.H.; Smith, K.A. Role of convective flow in carmustine delivery to a brain tumor. Pharm. Res., 2009, 26(10), 2289-2302.
[76]
Fung, L.K.; Ewend, M.G.; Sills, A.; Sipos, E.P.; Thompson, R.; Watts, M.; Colvin, O.M.; Brem, H.; Saltzman, W.M. Pharmacokinetics of interstitial delivery of carmustine, 4-hydropero-xycyclophosphamide, and paclitaxel from a biodegradable polymer implant in the monkey brain. Cancer Res., 1998, 58(4), 672-684.
[77]
Dorner, L.; Mustafa, A.; Rohr, A.; Mehdorn, H.M.; Nabavi, A. Growth pattern of tumor recurrence following bis-chloroethylnitrosourea (BCNU) wafer implantation in malignant glioma. J. Clin. Neurosci., 2013, 20(3), 429-434.
[78]
Panigrahi, M.; Das, P.K.; Parikh, P.M. Brain tumor and Gliadel wafer treatment. Indian J. Cancer, 2011, 48(1), 11-17.
[79]
Hart, M.G.; Grant, R.; Garside, R.; Rogers, G.; Somerville, M.; Stein, K. Chemotherapy wafers for high grade glioma. Cochrane Database Syst. Rev., 2011, 3, CD007294.
[80]
Sabel, M.; Giese, A. Safety profile of carmustine wafers in malignant glioma: a review of controlled trials and a decade of clinical experience. Curr. Med. Res. Opin., 2008, 24(11), 3239-3257.
[81]
Shah, R.S.; Homapour, B.; Casselden, E.; Barr, J.G.; Grundy, P.L.; Brydon, H.L. Delayed post-operative haemorrhage after carmustine wafer implantation: a case series from two UK centres. Br. J. Neurosurg., 2014, 28(4), 488-494.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy