Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Therapeutic Potential of Multifunctional Tacrine Analogues

Author(s): Maja Przybyłowska, Szymon Kowalski, Krystyna Dzierzbicka and Iwona Inkielewicz-Stepniak*

Volume 17, Issue 5, 2019

Page: [472 - 490] Pages: 19

DOI: 10.2174/1570159X16666180412091908

Price: $65

Abstract

Tacrine is a potent inhibitor of cholinesterases (acetylcholinesterase and butyrylcholinesterase) that shows limiting clinical application by liver toxicity. In spite of this, analogues of tacrine are considered as a model inhibitor of cholinesterases in the therapy of Alzheimer’s disease. The interest in these compounds is mainly related to a high variety of their structure and biological properties. In the present review, we have described the role of cholinergic transmission and treatment strategies in Alzheimer’s disease as well as the synthesis and biological activity of several recently developed classes of multifunctional tacrine analogues and hybrids, which consist of a new paradigm to treat Alzheimer’s disease. We have also reported potential of these analogues in the treatment of Alzheimer’s diseases in various experimental systems.

Keywords: Multifunctional tacrine analogues, tacrine hybrids, Alzheimer’s disease, cholinergic transmission, neuroprotective activity, hepatoprotection.

« Previous
Graphical Abstract
[1]
Wimo, A.; Guerchet, M.; Ali, G.C.; Wu, Y.T.; Prina, A.M.; Winblad, B.; Jönsson, L.; Liu, Z.; Prince, M. The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement., 2017, 13(1), 1-7. [http://dx.doi.org/10.1016/j.jalz.2016.07.150]. [PMID: 27583652].
[2]
Armstrong, R.A. What causes alzheimer’s disease? Folia Neuropathol., 2013, 51(3), 169-188. [http://dx.doi.org/10.5114/fn.2013.37702]. [PMID: 24114635].
[3]
Francis, P.T. The interplay of neurotransmitters in Alzheimer’s disease. CNS Spectr., 2005, 10(11)(Suppl. 18), 6-9. [http://dx.doi. org/10.1017/S1092852900014164]. [PMID: 16273023].
[4]
Rogers, S.L.; Friedhoff, L.T. The efficacy and safety of donepezil in patients with Alzheimer’s disease: results of a US Multicentre, Randomized, Double-Blind, Placebo-Controlled Trial. Dementia, 1996, 7(6), 293-303. [PMID: 8915035].
[5]
Tariot, P.N.; Solomon, P.R.; Morris, J.C.; Kershaw, P.; Lilienfeld, S.; Ding, C. A 5-month, randomized, placebo-controlled trial of galantamine in AD. The Galantamine USA-10 Study Group. Neurology, 2000, 54(12), 2269-2276. [http://dx.doi.org/10.1212/WNL. 54.12.2269]. [PMID: 10881251].
[6]
Ogura, H.; Kosasa, T.; Kuriya, Y.; Yamanishi, Y. Comparison of inhibitory activities of donepezil and other cholinesterase inhibitors on acetylcholinesterase and butyrylcholinesterase in vitro. Methods Find. Exp. Clin. Pharmacol., 2000, 22(8), 609-613. [http://dx.doi. org/10.1358/mf.2000.22.8.701373]. [PMID: 11256231].
[7]
Anand, P.; Singh, B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch. Pharm. Res., 2013, 36(4), 375-399. [http://dx.doi.org/10.1007/s12272-013-0036-3]. [PMID: 23435942].
[8]
Bansal, Y.; Silakari, O. Multifunctional compounds: smart molecules for multifactorial diseases. Eur. J. Med. Chem., 2014, 76, 31-42. [http://dx.doi.org/10.1016/j.ejmech.2014.01.060]. [PMID: 24565571].
[9]
Morphy, R.; Kay, C.; Rankovic, Z. From magic bullets to designed multiple ligands. Drug Discov. Today, 2004, 9(15), 641-651. [http:// dx.doi.org/10.1016/S1359-6446(04)03163-0]. [PMID: 15279847].
[10]
Reddy, A.S.; Zhang, S. Polypharmacology: drug discovery for the future. Expert Rev. Clin. Pharmacol., 2013, 6(1), 41-47. [http://dx. doi.org/10.1586/ecp.12.74]. [PMID: 23272792].
[11]
Buccafusco, J.J. Multifunctional receptor-directed drugs for disorders of the central nervous system. Neurotherapeutics, 2009, 6(1), 4-13. [http://dx.doi.org/10.1016/j.nurt.2008.10.031]. [PMID: 19110195].
[12]
Picciotto, M.R.; Higley, M.J.; Mineur, Y.S. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron, 2012, 76(1), 116-129. [http://dx.doi. org/10.1016/j.neuron.2012.08.036]. [PMID: 23040810].
[13]
Calabresi, P.; Centonze, D.; Gubellini, P.; Pisani, A.; Bernardi, G. Acetylcholine-mediated modulation of striatal function. Trends Neurosci., 2000, 23(3), 120-126. [http://dx.doi.org/10.1016/S0166-2236(99)01501-5]. [PMID: 10675916].
[14]
Perry, E.; Walker, M.; Grace, J.; Perry, R. Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci., 1999, 22(6), 273-280. [http://dx.doi.org/10.1016/S0166-2236(98) 01361-7]. [PMID: 10354606].
[15]
Callen, D.J.; Black, S.E.; Caldwell, C.B. Limbic system perfusion in Alzheimer’s disease measured by MRI-coregistered HMPAO SPET. Eur. J. Nucl. Med. Mol. Imaging, 2002, 29(7), 899-906. [http://dx.doi.org/10.1007/s00259-002-0816-3]. [PMID: 12111130].
[16]
Mesulam, M. The cholinergic lesion of Alzheimer’s disease: pivotal factor or side show? Learn. Mem., 2004, 11(1), 43-49. [http:// dx.doi.org/10.1101/lm.69204]. [PMID: 14747516].
[17]
Mesulam, M.M.; Geula, C. Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J. Comp. Neurol., 1988, 275(2), 216-240. [http://dx.doi.org/ 10.1002/cne.902750205]. [PMID: 3220975].
[18]
Mesulam, M.M.; Mufson, E.J.; Wainer, B.H.; Levey, A.I. Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience, 1983, 10(4), 1185-1201. [http://dx.doi.org/10.1016/0306-4522(83)90108-2]. [PMID: 6320048].
[19]
Pinto, T.; Lanctôt, K.L.; Herrmann, N. Revisiting the cholinergic hypothesis of behavioral and psychological symptoms in dementia of the Alzheimer’s type. Ageing Res. Rev., 2011, 10(4), 404-412. [PMID: 21292041].
[20]
Zoli, M.; Pistillo, F.; Gotti, C. Diversity of native nicotinic receptor subtypes in mammalian brain. Neuropharmacology,, 2015, 96 (Pt B), 302-311. [http://dx.doi.org/10.1016/j.neuropharm.2014.11.003] [PMID: 25460185]
[21]
Kruse, A.C.; Kobilka, B.K.; Gautam, D.; Sexton, P.M.; Christopoulos, A.; Wess, J. Muscarinic acetylcholine receptors: novel opportunities for drug development. Nat. Rev. Drug Discov., 2014, 13(7), 549-560. [http://dx.doi.org/10.1038/nrd4295]. [PMID: 24903776].
[22]
Higley, M.J.; Soler-Llavina, G.J.; Sabatini, B.L. Cholinergic modulation of multivesicular release regulates striatal synaptic potency and integration. Nat. Neurosci., 2009, 12(9), 1121-1128. [http://dx.doi.org/10.1038/nn.2368]. [PMID: 19668198].
[23]
Douglas, C.L.; Baghdoyan, H.A.; Lydic, R. M2 muscarinic autoreceptors modulate acetylcholine release in prefrontal cortex of C57BL/6J mouse. J. Pharmacol. Exp. Ther., 2001, 299(3), 960-966. [PMID: 11714883].
[24]
Raiteri, M.; Leardi, R.; Marchi, M. Heterogeneity of presynaptic muscarinic receptors regulating neurotransmitter release in the rat brain. J. Pharmacol. Exp. Ther., 1984, 228(1), 209-214. [PMID: 6141277].
[25]
McCormick, D.A.; Prince, D.A. Two types of muscarinic response to acetylcholine in mammalian cortical neurons. Proc. Natl. Acad. Sci. USA, 1985, 82(18), 6344-6348. [http://dx.doi.org/10.1073/ pnas.82.18.6344]. [PMID: 3862134].
[26]
Chen, S.R.; Wess, J.; Pan, H.L. Functional activity of the M2 and M4 receptor subtypes in the spinal cord studied with muscarinic acetylcholine receptor knockout mice. J. Pharmacol. Exp. Ther., 2005, 313(2), 765-770. [http://dx.doi.org/10.1124/jpet.104.082537]. [PMID: 15665136].
[27]
Gautam, D.; Jeon, J.; Li, J.H.; Han, S.J.; Hamdan, F.F.; Cui, Y.; Lu, H.; Deng, C.; Gavrilova, O.; Wess, J. Metabolic roles of the M3 muscarinic acetylcholine receptor studied with M3 receptor mutant mice: a review. J. Recept. Signal Transduct. Res., 2008, 28(1-2), 93-108. [http://dx.doi.org/10.1080/10799890801942002]. [PMID: 18437633].
[28]
Fink-Jensen, A.; Fedorova, I.; Wörtwein, G.; Woldbye, D.P.D.; Rasmussen, T.; Thomsen, M.; Bolwig, T.G.; Knitowski, K.M.; McKinzie, D.L.; Yamada, M.; Wess, J.; Basile, A. Role for M5 muscarinic acetylcholine receptors in cocaine addiction. J. Neurosci. Res., 2003, 74(1), 91-96. [http://dx.doi.org/10.1002/jnr.10728]. [PMID: 13130510].
[29]
Gotti, C.; Moretti, M.; Gaimarri, A.; Zanardi, A.; Clementi, F.; Zoli, M. Heterogeneity and complexity of native brain nicotinic receptors. Biochem. Pharmacol., 2007, 74(8), 1102-1111. [http://dx. doi.org/10.1016/j.bcp.2007.05.023]. [PMID: 17597586].
[30]
Dineley, K.T.; Pandya, A.A.; Yakel, J.L. Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends Pharmacol. Sci., 2015, 36(2), 96-108. [http://dx.doi.org/10.1016/j.tips.2014.12.002]. [PMID: 25639674].
[31]
Sudweeks, S.N.; Yakel, J.L. Functional and molecular characterization of neuronal nicotinic ACh receptors in rat CA1 hippocampal neurons. J. Physiol., 2000, 527(Pt 3), 515-528. [http://dx.doi.org/ 10.1111/j.1469-7793.2000.00515.x]. [PMID: 10990538].
[32]
Levin, E.D.; Bradley, A.; Addy, N.; Sigurani, N. Hippocampal α 7 and α 4 β 2 nicotinic receptors and working memory. Neuroscience, 2002, 109(4), 757-765. [http://dx.doi.org/10.1016/S0306-4522(01)00538-3]. [PMID: 11927157].
[33]
Davis, J.A.; Gould, T.J. The effects of DHBE and MLA on nicotine-induced enhancement of contextual fear conditioning in C57BL/6 mice. Psychopharmacology (Berl.), 2006, 184(3-4), 345-352. [http://dx.doi.org/10.1007/s00213-005-0047-y]. [PMID: 15988571].
[34]
McGehee, D.S.; Heath, M.J.S.; Gelber, S.; Devay, P.; Role, L.W. Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science, 1995, 269(5231), 1692-1696. [http://dx.doi.org/10.1126/science.7569895]. [PMID: 7569895].
[35]
Mansvelder, H.D.; Keath, J.R.; McGehee, D.S. Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron, 2002, 33(6), 905-919. [http://dx.doi.org/10.1016/S0896-6273(02)00625-6]. [PMID: 11906697].
[36]
Bowen, D.M.; Smith, C.B.; White, P.; Davison, A.N. Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain, 1976, 99(3), 459-496. [http://dx. doi.org/10.1093/brain/99.3.459]. [PMID: 11871].
[37]
Davies, P.; Maloney, A.J.F. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet, 1976, 2(8000), 1403-1403. [http://dx.doi.org/10.1016/S0140-6736(76)91936-X]. [PMID: 63862].
[38]
Bartus, R.T. On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp. Neurol., 2000, 163(2), 495-529. [http://dx.doi.org/10.1006/exnr.2000.7397]. [PMID: 10833325].
[39]
Spires-Jones, T.L.; Hyman, B.T. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron, 2014, 82(4), 756-771. [http://dx.doi.org/10.1016/j.neuron.2014.05.004]. [PMID: 24853936].
[40]
Mesulam, M. The cholinergic lesion of Alzheimer’s disease: pivotal factor or side show? Learn. Mem., 2004, 11(1), 43-49. [http://dx.doi.org/10.1101/lm.69204]. [PMID: 14747516].
[41]
Belleville, S.; Peretz, I.; Malenfant, D. Examination of the working memory components in normal aging and in dementia of the Alzheimer type. Neuropsychologia, 1996, 34(3), 195-207. [http://dx. doi.org/10.1016/0028-3932(95)00097-6]. [PMID: 8868277].
[42]
Lanctôt, K.L.; Herrmann, N.; Yau, K.K.; Khan, L.R.; Liu, B.A. LouLou, M.M.; Einarson, T.R. Efficacy and safety of cholinesterase inhibitors in Alzheimer’s disease: a meta-analysis. CMAJ, 2003, 169(6), 557-564. [PMID: 12975222].
[43]
Lockridge, O. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol. Ther., 2015, 148, 34-46. [http://dx. doi.org/10.1016/j.pharmthera.2014.11.011]. [PMID: 25448037].
[44]
Darvesh, S. Butyrylcholinesterase as a diagnostic and therapeutic target for Alzheimer’s disease. Curr. Alzheimer Res., 2016, 13(10), 1173-1177. [http://dx.doi.org/10.2174/1567205013666160404120542]. [PMID: 27040140].
[45]
Jiang, S.; Li, Y.; Zhang, C.; Zhao, Y.; Bu, G.; Xu, H.; Zhang, Y.W. M1 muscarinic acetylcholine receptor in Alzheimer’s disease. Neurosci. Bull., 2014, 30(2), 295-307. [http://dx.doi.org/10.1007/ s12264-013-1406-z]. [PMID: 24590577].
[46]
Zheng, H.; Koo, E.H. Biology and pathophysiology of the amyloid precursor protein. Mol. Neurodegener., 2011, 6(1), 27. [http://dx.doi.org/10.1186/1750-1326-6-27]. [PMID: 21527012].
[47]
Zhang, Y.W.; Thompson, R.; Zhang, H.; Xu, H. APP processing in Alzheimer’s disease. Mol. Brain, 2011, 4, 3. [http://dx.doi.org/ 10.1186/1756-6606-4-3]. [PMID: 21214928].
[48]
Haring, R.; Gurwitz, D.; Barg, J.; Pinkas-Kramarski, R.; Heldman, E.; Pittel, Z.; Wengier, A.; Meshulam, H.; Marciano, D.; Karton, Y.; Fisher, A. Amyloid precursor protein secretion via muscarinic receptors: reduced desensitization using the M1-selective agonist AF102B. Biochem. Biophys. Res. Commun., 1994, 203(1), 652-658. [http://dx.doi.org/10.1006/bbrc.1994.2232]. [PMID: 8074717].
[49]
Eckols, K.; Bymaster, F.P.; Mitch, C.H.; Shannon, H.E.; Ward, J.S.; DeLapp, N.W. The muscarinic M1 agonist xanomeline increases soluble amyloid precursor protein release from Chinese hamster ovary-m1 cells. Life Sci., 1995, 57(12), 1183-1190. [http://dx.doi.org/10.1016/0024-3205(95)02064-P]. [PMID: 7674807].
[50]
Müller, D.M.; Mendla, K.; Farber, S.A.; Nitsch, R.M. Muscarinic M1 receptor agonists increase the secretion of the amyloid precursor protein ectodomain. Life Sci., 1997, 60(13-14), 985-991. [http:// dx.doi.org/10.1016/S0024-3205(97)00038-6]. [PMID: 9121365].
[51]
Haring, R.; Fisher, A.; Marciano, D.; Pittel, Z.; Kloog, Y.; Zuckerman, A.; Eshhar, N.; Heldman, E. Mitogen-activated protein kinase-dependent and protein kinase C-dependent pathways link the m1 muscarinic receptor to β-amyloid precursor protein secretion. J. Neurochem., 1998, 71(5), 2094-2103. [http://dx.doi.org/10. 1046/j.1471-4159.1998.71052094.x]. [PMID: 9798935].
[52]
Xu, H.; Greengard, P.; Gandy, S. Regulated formation of Golgi secretory vesicles containing Alzheimer β-amyloid precursor protein. J. Biol. Chem., 1995, 270(40), 23243-23245. [http://dx.doi. org/10.1074/jbc.270.40.23243]. [PMID: 7559474].
[53]
Bigl, V.; Rossner, S. Amyloid precursor protein processing in vivo--insights from a chemically-induced constitutive overactivation of protein kinase C in Guinea pig brain. Curr. Med. Chem., 2003, 10(10), 871-882. [http://dx.doi.org/10.2174/0929867033457692]. [PMID: 12678689].
[54]
Farías, G.G.; Godoy, J.A.; Hernández, F.; Avila, J.; Fisher, A.; Inestrosa, N.C. M1 muscarinic receptor activation protects neurons from β-amyloid toxicity. A role for Wnt signaling pathway. Neurobiol. Dis., 2004, 17(2), 337-348. [http://dx.doi.org/10.1016/ j.nbd.2004.07.016]. [PMID: 15474371].
[55]
De Sarno, P.; Shestopal, S.A.; King, T.D.; Zmijewska, A.; Song, L.; Jope, R.S. Muscarinic receptor activation protects cells from apoptotic effects of DNA damage, oxidative stress, and mitochondrial inhibition. J. Biol. Chem., 2003, 278(13), 11086-11093. [http://dx.doi.org/10.1074/jbc.M212157200]. [PMID: 12538580].
[56]
Tsang, S.W.Y.; Lai, M.K.P.; Kirvell, S.; Francis, P.T.; Esiri, M.M.; Hope, T.; Chen, C.P.L-H.; Wong, P.T-H. Impaired coupling of muscarinic M1 receptors to G-proteins in the neocortex is associated with severity of dementia in Alzheimer’s disease. Neurobiol. Aging, 2006, 27(9), 1216-1223. [http://dx.doi.org/10.1016/j. neurobiolaging.2005.07.010]. [PMID: 16129514].
[57]
Echeverria, V.; Yarkov, A.; Aliev, G. Positive modulators of the α7 nicotinic receptor against neuroinflammation and cognitive impairment in Alzheimer’s disease. Prog. Neurobiol., 2016, 144, 142-157. [http://dx.doi.org/10.1016/j.pneurobio.2016.01.002]. [PMID: 26797042].
[58]
Fisher, A. Therapeutic strategies in Alzheimer’s disease: M1 muscarinic agonists. Jpn. J. Pharmacol., 2000, 84(2), 101-112. [http://dx.doi.org/10.1254/jjp.84.101]. [PMID: 11128032].
[59]
Anand, P.; Singh, B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch. Pharm. Res., 2013, 36(4), 375-399. [http://dx.doi.org/10.1007/s12272-013-0036-3]. [PMID: 23435942].
[60]
Godyń, J.; Jończyk, J.; Panek, D.; Malawska, B. Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol. Rep., 2016, 68(1), 127-138. [http://dx.doi.org/10.1016/j.pharep. 2015.07.006]. [PMID: 26721364].
[61]
Buée, L.; Bussière, T.; Buée-Scherrer, V.; Delacourte, A.; Hof, P.R. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Brain Res. Rev., 2000, 33(1), 95-130. [http://dx.doi.org/10.1016/S0165-0173(00)00019-9]. [PMID: 10967355].
[62]
Kumar, A.; Singh, A. Ekavali, A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol. Rep., 2015, 67(2), 195-203. [http://dx.doi.org/10.1016/j.pharep.2014.09. 004]. [PMID: 25712639].
[63]
Lovestone, S.; Boada, M.; Dubois, B.; Hüll, M.; Rinne, J.O.; Huppertz, H.J.; Calero, M.; Andrés, M.V.; Gómez-Carrillo, B.; León, T.; del Ser, T. A phase II trial of tideglusib in Alzheimer’s disease. J. Alzheimers Dis., 2015, 45(1), 75-88. [PMID: 25537011].
[64]
Engel, T.; Goñi-Oliver, P.; Lucas, J.J.; Avila, J.; Hernández, F. Chronic lithium administration to FTDP-17 tau and GSK-3β overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J. Neurochem., 2006, 99(6), 1445-1455. [http://dx.doi.org/ 10.1111/j.1471-4159.2006.04139.x]. [PMID: 17059563].
[65]
Rojo, L.E.; Alzate-Morales, J.; Saavedra, I.N.; Davies, P.; Maccioni, R.B. Selective interaction of lansoprazole and astemizole with tau polymers: potential new clinical use in diagnosis of Alzheimer’s disease. J. Alzheimers Dis., 2010, 19(2), 573-589. [http://dx.doi.org/10.3233/JAD-2010-1262]. [PMID: 20110603].
[66]
Salminen, A.; Ojala, J.; Kaarniranta, K.; Hiltunen, M.; Soininen, H. Hsp90 regulates tau pathology through co-chaperone complexes in Alzheimer’s disease. Prog. Neurobiol., 2011, 93(1), 99-110. [http:// dx.doi.org/10.1016/j.pneurobio.2010.10.006]. [PMID: 21056617].
[67]
Giommarelli, C.; Zuco, V.; Favini, E.; Pisano, C.; Dal Piaz, F.; De Tommasi, N.; Zunino, F. The enhancement of antiproliferative and proapoptotic activity of HDAC inhibitors by curcumin is mediated by Hsp90 inhibition. Cell. Mol. Life Sci., 2010, 67(6), 995-1004. [http://dx.doi.org/10.1007/s00018-009-0233-x]. [PMID: 20039095].
[68]
Ma, Q.L.; Zuo, X.; Yang, F.; Ubeda, O.J.; Gant, D.J.; Alaverdyan, M.; Teng, E.; Hu, S.; Chen, P.P.; Maiti, P.; Teter, B.; Cole, G.M.; Frautschy, S.A. Curcumin suppresses soluble tau dimers and corrects molecular chaperone, synaptic, and behavioral deficits in aged human tau transgenic mice. J. Biol. Chem., 2013, 288(6), 4056-4065. [http://dx.doi.org/10.1074/jbc.M112.393751]. [PMID: 23264626].
[69]
Zhang, B.; Maiti, A.; Shively, S.; Lakhani, F.; McDonald-Jones, G.; Bruce, J.; Lee, E.B.; Xie, S.X.; Joyce, S.; Li, C.; Toleikis, P.M.; Lee, V.M-Y.; Trojanowski, J.Q. Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc. Natl. Acad. Sci. USA, 2005, 102(1), 227-231. [http://dx.doi.org/10.1073/pnas. 0406361102]. [PMID: 15615853].
[70]
Ohno, M.; Sametsky, E.A.; Younkin, L.H.; Oakley, H.; Younkin, S.G.; Citron, M.; Vassar, R.; Disterhoft, J.F. BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer’s disease. Neuron, 2004, 41(1), 27-33. [http:// dx.doi.org/10.1016/S0896-6273(03)00810-9]. [PMID: 14715132].
[71]
Kobayashi, D.; Zeller, M.; Cole, T.; Buttini, M.; McConlogue, L.; Sinha, S.; Freedman, S.; Morris, R.G.; Chen, K.S. BACE1 gene deletion: impact on behavioral function in a model of Alzheimer’s disease. Neurobiol. Aging, 2008, 29(6), 861-873. [http://dx.doi.org/ 10.1016/j.neurobiolaging.2007.01.002]. [PMID: 17331621].
[72]
Willem, M.; Garratt, A.N.; Novak, B.; Citron, M.; Kaufmann, S.; Rittger, A.; DeStrooper, B.; Saftig, P.; Birchmeier, C.; Haass, C. Control of peripheral nerve myelination by the β-secretase BACE1. Science, 2006, 314(5799), 664-666. [http://dx.doi.org/10.1126/ science.1132341]. [PMID: 16990514].
[73]
Imbimbo, B.P. Therapeutic potential of γ-secretase inhibitors and modulators. Curr. Top. Med. Chem., 2008, 8(1), 54-61. [http://dx. doi.org/10.2174/156802608783334015]. [PMID: 18220933].
[74]
Maillard, I.; Adler, S.H.; Pear, W.S. Notch and the immune system. Immunity, 2003, 19(6), 781-791. [http://dx.doi.org/10.1016/S1074-7613(03)00325-X]. [PMID: 14670296].
[75]
Stanger, B.Z.; Datar, R.; Murtaugh, L.C.; Melton, D.A. Direct regulation of intestinal fate by Notch. Proc. Natl. Acad. Sci. USA, 2005, 102(35), 12443-12448. [http://dx.doi.org/10.1073/pnas. 0505690102]. [PMID: 16107537].
[76]
Nicolas, M.; Wolfer, A.; Raj, K.; Kummer, J.A.; Mill, P.; van Noort, M.; Hui, C.C.; Clevers, H.; Dotto, G.P.; Radtke, F. Notch1 functions as a tumor suppressor in mouse skin. Nat. Genet., 2003, 33(3), 416-421. [http://dx.doi.org/10.1038/ng1099]. [PMID: 12590261].
[77]
Fleisher, A.S.; Raman, R.; Siemers, E.R.; Becerra, L.; Clark, C.M.; Dean, R.A.; Farlow, M.R.; Galvin, J.E.; Peskind, E.R.; Quinn, J.F.; Sherzai, A.; Sowell, B.B.; Aisen, P.S.; Thal, L.J. Phase 2 safety trial targeting amyloid β production with a γ-secretase inhibitor in Alzheimer disease. Arch. Neurol., 2008, 65(8), 1031-1038. [http:// dx.doi.org/10.1001/archneur.65.8.1031]. [PMID: 18695053].
[78]
Han, J.Y.; Han, S.H. Primary prevention of Alzheimer’s disease: is it an attainable goal? J. Korean Med. Sci., 2014, 29(7), 886-892. [http://dx.doi.org/10.3346/jkms.2014.29.7.886]. [PMID: 25045219].
[79]
van Marum, R.J. Current and future therapy in Alzheimer’s disease. Fundam. Clin. Pharmacol., 2008, 22(3), 265-274. [http://dx. doi.org/10.1111/j.1472-8206.2008.00578.x]. [PMID: 18485144].
[80]
Calamai, M.; Chiti, F.; Dobson, C.M. Amyloid fibril formation can proceed from different conformations of a partially unfolded protein. Biophys. J., 2005, 89(6), 4201-4210. [http://dx.doi.org/10. 1529/biophysj.105.068726]. [PMID: 16169975].
[81]
McLaurin, J.; Golomb, R.; Jurewicz, A.; Antel, J.P.; Fraser, P.E. Inositol stereoisomers stabilize an oligomeric aggregate of Alzheimer amyloid beta peptide and inhibit abeta -induced toxicity. J. Biol. Chem., 2000, 275(24), 18495-18502. [http://dx.doi.org/10. 1074/jbc.M906994199]. [PMID: 10764800].
[82]
Bush, A.I.; Pettingell, W.H.; Multhaup, G. d Paradis, M.; Vonsattel, J.P.; Gusella, J.F.; Beyreuther, K.; Masters, C.L.; Tanzi, R.E. Rapid induction of Alzheimer A β amyloid formation by zinc. Science, 1994, 265(5177), 1464-1467. [http://dx.doi.org/10.1126/science.8073293]. [PMID: 8073293].
[83]
Cherny, R.A.; Atwood, C.S.; Xilinas, M.E.; Gray, D.N.; Jones, W.D.; McLean, C.A.; Barnham, K.J.; Volitakis, I.; Fraser, F.W.; Kim, Y.; Huang, X.; Goldstein, L.E.; Moir, R.D.; Lim, J.T.; Beyreuther, K.; Zheng, H.; Tanzi, R.E.; Masters, C.L.; Bush, A.I. Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron, 2001, 30(3), 665-676. [http://dx.doi.org/10.1016/S0896-6273(01)00317-8]. [PMID: 11430801].
[84]
Donahue, J.E.; Flaherty, S.L.; Johanson, C.E.; Duncan, J.A., III; Silverberg, G.D.; Miller, M.C.; Tavares, R.; Yang, W.; Wu, Q.; Sabo, E.; Hovanesian, V.; Stopa, E.G. RAGE, LRP-1, and amyloid-beta protein in Alzheimer’s disease. Acta Neuropathol., 2006, 112(4), 405-415. [http://dx.doi.org/10.1007/s00401-006-0115-3]. [PMID: 16865397].
[85]
Barnham, K.J.; Bush, A.I. Metals in Alzheimer’s and Parkinson’s diseases. Curr. Opin. Chem. Biol., 2008, 12(2), 222-228. [http://dx. doi.org/10.1016/j.cbpa.2008.02.019]. [PMID: 18342639].
[86]
Han, S.H.; Park, J.C.; Mook-Jung, I. Amyloid β-interacting partners in Alzheimer’s disease: From accomplices to possible therapeutic targets. Prog. Neurobiol., 2016, 137, 17-38. [http://dx.doi. org/10.1016/j.pneurobio.2015.12.004]. [PMID: 26721621].
[87]
Francis, P.T. Glutamatergic systems in Alzheimer’s disease. Int. J. Geriatr. Psychiatry, 2003, 18(Suppl. 1), S15-S21. [http://dx.doi. org/10.1002/gps.934]. [PMID: 12973746].
[88]
Reisberg, B.; Doody, R.; Stöffler, A.; Schmitt, F.; Ferris, S.; Möbius, H.J. Memantine in moderate-to-severe Alzheimer’s disease. N. Engl. J. Med., 2003, 348(14), 1333-1341. [http://dx.doi. org/10.1056/NEJMoa013128]. [PMID: 12672860].
[89]
Jaffrey, S.R.; Erdjument-Bromage, H.; Ferris, C.D.; Tempst, P.; Snyder, S.H. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat. Cell Biol., 2001, 3(2), 193-197. [http://dx.doi.org/10.1038/35055104]. [PMID: 11175752].
[90]
Murphy, T.H.; Miyamoto, M.; Sastre, A.; Schnaar, R.L.; Coyle, J.T. Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron, 1989, 2(6), 1547-1558. [http://dx.doi.org/10.1016/0896-6273(89)90043-3]. [PMID: 2576375].
[91]
Selkoe, D.J. Alzheimer’s disease is a synaptic failure. Science, 2002, 298(5594), 789-791. [http://dx.doi.org/10.1126/science.1074069]. [PMID: 12399581].
[92]
Moreira, P.I.; Carvalho, C.; Zhu, X.; Smith, M.A.; Perry, G. Mitochondrial dysfunction is a trigger of Alzheimer's disease pathophysiology Biochim. Biophys. Acta - Molecular Basis of Disease, 2010, 1802 (1), 2-10.
[93]
Moreira, P.I.; Cardoso, S.M.; Santos, M.S.; Oliveira, C.R. The key role of mitochondria in Alzheimer’s disease. J. Alzheimers Dis., 2006, 9(2), 101-110. [http://dx.doi.org/10.3233/JAD-2006-9202]. [PMID: 16873957].
[94]
Moreira, P.I.; Santos, M.S.; Oliveira, C.R. Alzheimer’s disease: a lesson from mitochondrial dysfunction. Antioxid. Redox Signal., 2007, 9(10), 1621-1630. [http://dx.doi.org/10.1089/ars.2007.1703]. [PMID: 17678440].
[95]
Moreira, P.I.; Duarte, A.I.; Santos, M.S.; Rego, A.C.; Oliveira, C.R. An integrative view of the role of oxidative stress, mitochondria and insulin in Alzheimer’s disease. J. Alzheimers Dis., 2009, 16(4), 741-761. [http://dx.doi.org/10.3233/JAD-2009-0972]. [PMID: 19387110].
[96]
Su, B.; Wang, X.; Nunomura, A.; Moreira, P.I.; Lee, H.G.; Perry, G.; Smith, M.A.; Zhu, X. Oxidative stress signaling in Alzheimer’s disease. Curr. Alzheimer Res., 2008, 5(6), 525-532. [http://dx.doi. org/10.2174/156720508786898451]. [PMID: 19075578].
[97]
Monteiro-Cardoso, V.F.; Oliveira, M.M.; Melo, T.; Domingues, M.R.; Moreira, P.I.; Ferreiro, E.; Peixoto, F.; Videira, R.A. Cardiolipin profile changes are associated to the early synaptic mitochondrial dysfunction in Alzheimer’s disease. J. Alzheimers Dis., 2015, 43(4), 1375-1392. [PMID: 25182746].
[98]
Hirai, K.; Aliev, G.; Nunomura, A.; Fujioka, H.; Russell, R.L.; Atwood, C.S.; Johnson, A.B.; Kress, Y.; Vinters, H.V.; Tabaton, M.; Shimohama, S.; Cash, A.D.; Siedlak, S.L.; Harris, P.L.; Jones, P.K.; Petersen, R.B.; Perry, G.; Smith, M.A. Mitochondrial abnormalities in Alzheimer’s disease. J. Neurosci., 2001, 21(9), 3017-3023. [http://dx.doi.org/10.1523/JNEUROSCI.21-09-03017.2001]. [PMID: 11312286].
[99]
Castellani, R.; Hirai, K.; Aliev, G.; Drew, K.L.; Nunomura, A.; Takeda, A.; Cash, A.D.; Obrenovich, M.E.; Perry, G.; Smith, M.A. Role of mitochondrial dysfunction in Alzheimer’s disease. J. Neurosci. Res., 2002, 70(3), 357-360. [http://dx.doi.org/10.1002/jnr. 10389]. [PMID: 12391597].
[100]
Devi, L.; Prabhu, B.M.; Galati, D.F.; Avadhani, N.G.; Anandatheerthavarada, H.K. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J. Neurosci., 2006, 26(35), 9057-9068. [http://dx.doi.org/10.1523/JNEUROSCI.1469-06.2006]. [PMID: 16943564].
[101]
Anandatheerthavarada, H.K.; Biswas, G.; Robin, M.A.; Avadhani, N.G. Mitochondrial targeting and a novel transmembrane arrest of Alzheimer’s amyloid precursor protein impairs mitochondrial function in neuronal cells. J. Cell Biol., 2003, 161(1), 41-54. [http://dx. doi.org/10.1083/jcb.200207030]. [PMID: 12695498].
[102]
Farina, N.; Isaac, M.G.; Clark, A.R.; Rusted, J.; Tabet, N. Vitamin E for Alzheimer’s dementia and mild cognitive impairment. Cochrane Database Syst. Rev., 2012, 11, CD002854. [PMID: 23152215].
[103]
Dysken, M.W.; Guarino, P.D.; Vertrees, J.E.; Asthana, S.; Sano, M.; Llorente, M.; Pallaki, M.; Love, S.; Schellenberg, G.D.; McCarten, J.R.; Malphurs, J.; Prieto, S.; Chen, P.; Loreck, D.J.; Carney, S.; Trapp, G.; Bakshi, R.S.; Mintzer, J.E.; Heidebrink, J.L.; Vidal-Cardona, A.; Arroyo, L.M.; Cruz, A.R.; Kowall, N.W.; Chopra, M.P.; Craft, S.; Thielke, S.; Turvey, C.L.; Woodman, C.; Monnell, K.A.; Gordon, K.; Tomaska, J.; Vatassery, G. Vitamin E and memantine in Alzheimer’s disease: clinical trial methods and baseline data. Alzheimers Dement., 2014, 10(1), 36-44. [http://dx. doi.org/10.1016/j.jalz.2013.01.014]. [PMID: 23583234].
[104]
Lee, J.; Boo, J.H.; Ryu, H. The failure of mitochondria leads to neurodegeneration: Do mitochondria need a jump start? Adv. Drug Deliv. Rev., 2009, 61(14), 1316-1323. [http://dx.doi.org/10.1016/ j.addr.2009.07.016]. [PMID: 19716395].
[105]
Manczak, M.; Mao, P.; Calkins, M.J.; Cornea, A.; Reddy, A.P.; Murphy, M.P.; Szeto, H.H.; Park, B.; Reddy, P.H. Mitochondria-targeted antioxidants protect against amyloid-β toxicity in Alzheimer’s disease neurons. J. Alzheimers Dis., 2010, 20(Suppl. 2), S609-S631. [http://dx.doi.org/10.3233/JAD-2010-100564]. [PMID: 20463406].
[106]
Rodríguez, J.J.; Noristani, H.N.; Verkhratsky, A. The serotonergic system in ageing and Alzheimer’s disease. Prog. Neurobiol., 2012, 99(1), 15-41. [http://dx.doi.org/10.1016/j.pneurobio.2012.06.010]. [PMID: 22766041].
[107]
Wilkinson, D.; Windfeld, K.; Colding-Jørgensen, E. Safety and efficacy of idalopirdine, a 5-HT6 receptor antagonist, in patients with moderate Alzheimer’s disease (LADDER): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol., 2014, 13(11), 1092-1099. [http://dx.doi.org/10.1016/S1474-4422(14)70198-X]. [PMID: 25297016].
[108]
Maher-Edwards, G.; Zvartau-Hind, M.; Hunter, A.J.; Gold, M.; Hopton, G.; Jacobs, G.; Davy, M.; Williams, P. Double-blind, controlled phase II study of a 5-HT6 receptor antagonist, SB-742457, in Alzheimer’s disease. Curr. Alzheimer Res., 2010, 7(5), 374-385. [http://dx.doi.org/10.2174/156720510791383831]. [PMID: 20043816].
[109]
Marazziti, D.; Rutigliano, G.; Catena-DelL’Osso, M.; Baroni, S.; Dell’Osso, L. The 5- HT6 receptor antagonism approach in Alzheimer’s disease. Drugs Future, 2014, 39, 133-140. [http://dx. doi.org/10.1358/dof.2014.039.02.2103730].
[110]
Cho, S.; Hu, Y. Activation of 5-HT4 receptors inhibits secretion of β-amyloid peptides and increases neuronal survival. Exp. Neurol., 2007, 203(1), 274-278. [http://dx.doi.org/10.1016/j.expneurol. 2006.07.021]. [PMID: 16978609].
[111]
Esbenshade, T.A.; Browman, K.E.; Bitner, R.S.; Strakhova, M.; Cowart, M.D.; Brioni, J.D. The histamine H3 receptor: an attractive target for the treatment of cognitive disorders. Br. J. Pharmacol., 2008, 154(6), 1166-1181. [http://dx.doi.org/10.1038/bjp.2008.147]. [PMID: 18469850].
[112]
Othman, A.A.; Haig, G.; Florian, H.; Locke, C.; Gertsik, L.; Dutta, S. The H3 antagonist ABT-288 is tolerated at significantly higher exposures in subjects with schizophrenia than in healthy volunteers. Br. J. Clin. Pharmacol., 2014, 77(6), 965-974. [http://dx.doi. org/10.1111/bcp.12281]. [PMID: 24215171].
[113]
Limon, A.; Reyes-Ruiz, J.M.; Miledi, R. GABAergic drugs and Alzheimer’s disease. Future Med. Chem., 2011, 3(2), 149-153. [http://dx.doi.org/10.4155/fmc.10.291]. [PMID: 21428809].
[114]
Wilcock, D.M.; Colton, C.A. Anti-amyloid-beta immunotherapy in Alzheimer’s disease: relevance of transgenic mouse studies to clinical trials. J. Alzheimers Dis., 2008, 15(4), 555-569. [http://dx. doi.org/10.3233/JAD-2008-15404]. [PMID: 19096156].
[115]
Panza, F.; Solfrizzi, V.; Imbimbo, B.P.; Tortelli, R.; Santamato, A.; Logroscino, G. Amyloid-based immunotherapy for Alzheimer’s disease in the time of prevention trials: the way forward. Expert Rev. Clin. Immunol., 2014, 10(3), 405-419. [http://dx.doi.org/10. 1586/1744666X.2014.883921]. [PMID: 24490853].
[116]
Awasthi, M.; Singh, S.; Pandey, V.P.; Dwivedi, U.N. Alzheimer’s disease: An overview of amyloid beta dependent pathogenesis and its therapeutic implications along with in silico approaches emphasizing the role of natural products. J. Neurol. Sci., 2016, 361, 256-271. [http://dx.doi.org/10.1016/j.jns.2016.01.008]. [PMID: 26810552].
[117]
Eagger, S.A.; Levy, R.; Sahakian, B.J. Tacrine in Alzheimer’s disease. Lancet, 1991, 337(8748), 989-992. [http://dx.doi.org/ 10.1016/0140-6736(91)92656-M]. [PMID: 1673209].
[118]
Dogterom, P.; Nagelkerke, J.F.; Mulder, G.J. Hepatotoxicity of tetrahydroaminoacridine in isolated rat hepatocytes: effect of glutathione and vitamin E. Biochem. Pharmacol., 1988, 37(12), 2311-2313. [http://dx.doi.org/10.1016/0006-2952(88)90356-5]. [PMID: 3390201].
[119]
Lou, G.; Montgomery, P.R.; Sitar, D.S. Bioavailability and pharmacokinetic disposition of tacrine in elderly patients with Alzheimer’s disease. J. Psychiatry Neurosci., 1996, 21(5), 334-339. [PMID: 8973053].
[120]
Melo, T.; Videira, R.A.; André, S.; Maciel, E.; Francisco, C.S.; Oliveira-Campos, A.M.; Rodrigues, L.M.; Domingues, M.R.M.; Peixoto, F.; Manuel, O.M. Tacrine and its analogues impair mitochondrial function and bioenergetics: a lipidomic analysis in rat brain. J. Neurochem., 2012, 120(6), 998-1013. [PMID: 22192081].
[121]
Praticò, D. Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharmacol. Sci., 2008, 29(12), 609-615. [http://dx.doi.org/10.1016/j.tips.2008.09.001]. [PMID: 18838179].
[122]
Tumiatti, V.; Minarini, A.; Bolognesi, M.L.; Milelli, A.; Rosini, M.; Melchiorre, C. Tacrine derivatives and Alzheimer’s disease. Curr. Med. Chem., 2010, 17(17), 1825-1838. [http://dx.doi.org/10. 2174/092986710791111206]. [PMID: 20345341].
[123]
Kuca, K.K.; Soukup, O.; Maresova, P.; Korabecny, J.; Nepovimova, E.; Klimova, B.; Honegr, J.; Teodorico, C.; Ramalho, T.C.; França, T.C.C. Current approaches against Alzheimer’s disease in clinical trials. J. Braz. Chem. Soc., 2016, 27, 641-649.
[124]
Thomae, D.; Kirsch, G.; Seck, P. Synthesis of thiophene analogues of the tacrine series. Synthesis, 2007, 7, 1027-1032.
[125]
Thomae, D.; Perspicace, E.; Hesse, S.; Kirsch, G.; Seck, P. Synthesis of substituted [1,3]thiazolo[4,5-b]pyridines and [1,3]thiazolo-[4,5-d][1,2,3]triazines. Tetrahedron, 2008, 64, 9309-9314. [http://dx.doi.org/10.1016/j.tet.2008.07.017].
[126]
Bekolo, H.; Kirsch, G. Synthesis of substituted 4-azaisoindoles - New tacrine analogues. Can. J. Chem., 2007, 85, 1-6. [http://dx. doi.org/10.1139/v06-180].
[127]
Thomae, D.; Kirsch, G.; Seck, P. Synthesis of selenophene analogues of the tacrine series: Comparison of classical route and microwave irradiation. Synthesis-Stuttgart, 2008, 10, 1600-1606.
[128]
Hamulakova, S.; Imrich, J.; Janovec, L.; Kristian, P.; Danihel, I.; Holas, O.; Pohanka, M.; Böhm, S.; Kozurkova, M.; Kuca, K. Novel tacrine/acridine anticholinesterase inhibitors with piperazine and thiourea linkers. Int. J. Biol. Macromol., 2014, 70, 435-439. [http:// dx.doi.org/10.1016/j.ijbiomac.2014.06.064]. [PMID: 25036600].
[129]
Janočková, J.; Plšíková, J.; Kašpárková, J.; Brabec, V.; Jendželovský, R.; Mikeš, J.; Kovaľ, J.; Hamuľaková, S.; Fedoročko, P.; Kuča, K.; Kožurková, M. Inhibition of DNA topoisomerases I and II and growth inhibition of HL-60 cells by novel acridine-based compounds. Eur. J. Pharm. Sci., 2015, 76, 192-202. [http://dx.doi.org/10.1016/j.ejps.2015.04.023]. [PMID: 25960253].
[130]
Khoobi, M.; Ghanoni, F.; Nadri, H.; Moradi, A.; Pirali Hamedani, M.; Homayouni Moghadam, F.; Emami, S.; Vosooghi, M.; Zadmard, R.; Foroumadi, A.; Shafiee, A. New tetracyclic tacrine analogs containing pyrano[2,3-c]pyrazole: efficient synthesis, biological assessment and docking simulation study. Eur. J. Med. Chem., 2015, 89, 296-303. [http://dx.doi.org/10.1016/j.ejmech.2014.10. 049]. [PMID: 25462245].
[131]
Chioua, M.; Pérez-Peña, J.; García-Font, N.; Moraleda, I.; Iriepa, I.; Soriano, E.; Marco-Contelles, J.; Oset-Gasque, M.J. Pyranopyrazolotacrines as nonneurotoxic, Aβ-anti-aggregating and neuroprotective agents for Alzheimer’s disease. Future Med. Chem., 2015, 7(7), 845-855. [http://dx.doi.org/10.4155/fmc.15.41]. [PMID: 26061104].
[132]
Digiacomo, M.; Chen, Z.; Wang, S.; Lapucci, A.; Macchia, M.; Yang, X.; Chu, J.; Han, Y.; Pi, R.; Rapposelli, S. Synthesis and pharmacological evaluation of multifunctional tacrine derivatives against several disease pathways of AD. Bioorg. Med. Chem. Lett., 2015, 25(4), 807-810. [http://dx.doi.org/10.1016/j.bmcl.2014.12. 084]. [PMID: 25597007].
[133]
Bajda, M.; Jończyk, J.; Malawska, B.; Czarnecka, K.; Girek, M.; Olszewska, P.; Sikora, J.; Mikiciuk-Olasik, E.; Skibiński, R.; Gumieniczek, A.; Szymański, P. Synthesis, biological evaluation and molecular modeling of new tetrahydroacridine derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem., 2015, 23(17), 5610-5618. [http://dx.doi.org/ 10.1016/j.bmc.2015.07.029]. [PMID: 26242241].
[134]
Eckroat, T.J.; Green, K.D.; Reed, R.A.; Bornstein, J.J.; Garneau-Tsodikova, S. Investigation of the role of linker moieties in bifunctional tacrine hybrids. Bioorg. Med. Chem., 2013, 21(12), 3614-3623. [http://dx.doi.org/10.1016/j.bmc.2013.02.047]. [PMID: 23535563].
[135]
Luo, W.; Li, Y.P.; He, Y.; Huang, S.L.; Li, D.; Gu, L.Q.; Huang, Z.S. Synthesis and evaluation of heterobivalent tacrine derivatives as potential multi-functional anti-Alzheimer agents. Eur. J. Med. Chem., 2011, 46(6), 2609-2616. [http://dx.doi.org/10.1016/j. ejmech.2011.03.058]. [PMID: 21497959].
[136]
Ragab, H.M.; Ashour, H.M.A.; Galal, A.; Ghoneim, A.I.; Haidar, H.R. Synthesis and biological evaluation of some tacrine analogs: study of the effect of the chloro substituent on the acetylcholinesterase inhibitory activity. Monatsh. Chem., 2016, 147, 539-552. [http://dx.doi.org/10.1007/s00706-015-1641-2].
[137]
Eslami, M.; Hashemianzadeh, S.M.; Bagherzadeh, K.; Sajadi, S.A.S. Molecular perception of interactions between bis(7)tacrine and cystamine-tacrine dimer with cholinesterases as the promising proposed agents for the treatment of Alzheimer’s disease. J. Biomol. Struct. Dyn., 2016, 34(4), 855-869.
[138]
García-Font, N.; Hayour, H.; Belfaitah, A.; Pedraz, J.; Moraleda, I.; Iriepa, I.; Bouraiou, A.; Chioua, M.; Marco-Contelles, J.; Oset-Gasque, M.J. Potent anticholinesterasic and neuroprotective pyranotacrines as inhibitors of beta-amyloid aggregation, oxidative stress and tau-phosphorylation for Alzheimer’s disease. Eur. J. Med. Chem., 2016, 118, 178-192. [http://dx.doi.org/10.1016/ j.ejmech.2016.04.023]. [PMID: 27128182].
[139]
Głąbski, T.; Mikołajczyk, J.; Rusek, D. Hybrid compounds as potential drugs multifunctional. Farm. Pol., 2013, 69, 422-433.
[140]
Singh, M.; Kaur, M.; Chadha, N.; Silakari, O. Hybrids: a new paradigm to treat Alzheimer’s disease. Mol. Divers., 2016, 20(1), 271-297. [http://dx.doi.org/10.1007/s11030-015-9628-9]. [PMID: 26328942].
[141]
Fernández-Bachiller, M.I.; Pérez, C.; Monjas, L.; Rademann, J.; Rodríguez-Franco, M.I. New tacrine-4-oxo-4H-chromene hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with cholinergic, antioxidant, and β-amyloid-reducing properties. J. Med. Chem., 2012, 55, 1303-1317.
[142]
Rodríguez-Franco, M.I.; Fernández-Bachiller, M.I.; Pérez, C.; Hernández-Ledesma, B.; Bartolomé, B. Novel tacrine-melatonin hybrids as dual-acting drugs for Alzheimer disease, with improved acetylcholinesterase inhibitory and antioxidant properties. J. Med. Chem., 2006, 49(2), 459-462. [http://dx.doi.org/10.1021/ jm050746d]. [PMID: 16420031].
[143]
Fernández-Bachiller, M.I.; Pérez, C.; Campillo, N.E.; Páez, J.A.; González-Muñoz, G.C.; Usán, P.; García-Palomero, E.; López, M.G.; Villarroya, M.; García, A.G.; Martínez, A.; Rodríguez-Franco, M.I. Tacrine-melatonin hybrids as multifunctional agents for Alzheimer’s disease, with cholinergic, antioxidant, and neuroprotective properties. ChemMedChem, 2009, 4(5), 828-841. [http://dx.doi.org/10.1002/cmdc.200800414]. [PMID: 19308922].
[144]
Lange, J.H.; Coolen, H.K.; van Stuivenberg, H.H.; Dijksman, J.A.; Herremans, A.H.; Ronken, E.; Keizer, H.G.; Tipker, K.; McCreary, A.C.; Veerman, W.; Wals, H.C.; Stork, B.; Verveer, P.C.; den Hartog, A.P.; de Jong, N.M.; Adolfs, T.J.; Hoogendoorn, J.; Kruse, C.G. Synthesis, biological properties, and molecular modeling investigations of novel 3,4-diarylpyrazolines as potent and selective CB(1) cannabinoid receptor antagonists. J. Med. Chem., 2004, 47(3), 627-643. [http://dx.doi.org/10.1021/jm031019q]. [PMID: 14736243].
[145]
Lange, J.H.; van Stuivenberg, H.H.; Coolen, H.K.; Adolfs, T.J.; McCreary, A.C.; Keizer, H.G.; Wals, H.C.; Veerman, W.; Borst, A.J.; de Looff, W.; Verveer, P.C.; Kruse, C.G. Bioisosteric replacements of the pyrazole moiety of rimonabant: synthesis, biological properties, and molecular modeling investigations of thiazoles, triazoles, and imidazoles as potent and selective CB1 cannabinoid receptor antagonists. J. Med. Chem., 2005, 48(6), 1823-1838. [http://dx.doi.org/10.1021/jm040843r]. [PMID: 15771428].
[146]
Fang, L.; Jumpertz, S.; Zhang, Y.; Appenroth, D.; Fleck, C.; Mohr, K.; Tränkle, C.; Decker, M. Hybrid molecules from xanomeline and tacrine: enhanced tacrine actions on cholinesterases and muscarinic M1 receptors. J. Med. Chem., 2010, 53(5), 2094-2103. [http://dx.doi.org/10.1021/jm901616h]. [PMID: 20158205].
[147]
Camps, P.; Formosa, X.; Galdeano, C.; Gómez, T.; Muñoz-Torrero, D.; Scarpellini, M.; Viayna, E.; Badia, A.; Clos, M.V.; Camins, A.; Pallàs, M.; Bartolini, M.; Mancini, F.; Andrisano, V.; Estelrich, J.; Lizondo, M.; Bidon-Chanal, A.; Luque, F.J. Novel donepezil-based inhibitors of acetyl- and butyrylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation. J. Med. Chem., 2008, 51(12), 3588-3598. [http://dx.doi.org/10.1021/jm8001313]. [PMID: 18517184].
[148]
Tang, H.; Zhao, L.Z.; Zhao, H.T.; Huang, S.L.; Zhong, S.M.; Qin, J.K.; Chen, Z.F.; Huang, Z.S.; Liang, H. Hybrids of oxoisoaporphine-tacrine congeners: novel acetylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation inhibitors. Eur. J. Med. Chem., 2011, 46(10), 4970-4979. [http://dx.doi.org/10.1016/ j.ejmech.2011.08.002]. [PMID: 21871694].
[149]
Carlier, P.R.; Du, D.M.; Han, Y.; Liu, J.; Pang, Y.P. Potent, easily synthesized huperzine A-tacrine hybrid acetylcholinesterase inhibitors. Bioorg. Med. Chem. Lett., 1999, 9(16), 2335-2338. [http://dx. doi.org/10.1016/S0960-894X(99)00396-0]. [PMID: 10476864].
[150]
Mao, F.; Chen, J.; Zhou, Q.; Luo, Z.; Huang, L.; Li, X. Novel tacrine-ebselen hybrids with improved cholinesterase inhibitory, hydrogen peroxide and peroxynitrite scavenging activity. Bioorg. Med. Chem. Lett., 2013, 23(24), 6737-6742. [http://dx.doi.org/10. 1016/j.bmcl.2013.10.034]. [PMID: 24220172].
[151]
Van der Zee, E.A.; Platt, B.; Riedel, G. Acetylcholine: future research and perspectives. Behav. Brain Res., 2011, 221(2), 583-586. [http://dx.doi.org/10.1016/j.bbr.2011.01.050]. [PMID: 21295616].
[152]
Holmquist, L.; Stuchbury, G.; Berbaum, K.; Muscat, S.; Young, S.; Hager, K.; Engel, J.; Münch, G. Lipoic acid as a novel treatment for Alzheimer’s disease and related dementias. Pharmacol. Ther., 2007, 113(1), 154-164. [http://dx.doi.org/10.1016/j.pharmthera. 2006.07.001]. [PMID: 16989905].
[153]
Fang, L.; Kraus, B.; Lehmann, J.; Heilmann, J.; Zhang, Y.; Decker, M. Design and synthesis of tacrine-ferulic acid hybrids as multi-potent anti-Alzheimer drug candidates. Bioorg. Med. Chem. Lett., 2008, 18(9), 2905-2909. [http://dx.doi.org/10.1016/j.bmcl.2008. 03.073]. [PMID: 18406135].
[154]
Xie, S.S.; Lan, J.S.; Wang, X.B.; Jiang, N.; Dong, G.; Li, Z.R.; Wang, K.D.G.; Guo, P.P.; Kong, L.Y. Multifunctional tacrine-trolox hybrids for the treatment of Alzheimer’s disease with cholinergic, antioxidant, neuroprotective and hepatoprotective properties. Eur. J. Med. Chem., 2015, 93, 42-50. [http://dx.doi.org/ 10.1016/j.ejmech.2015.01.058]. [PMID: 25656088].
[155]
Doucet-Personeni, C.; Bentley, P.D.; Fletcher, R.J.; Kinkaid, A.; Kryger, G.; Pirard, B.; Taylor, A.; Taylor, R.; Taylor, J.; Viner, R.; Silman, I.; Sussman, J.L.; Greenblatt, H.M.; Lewis, T. A structure-based design approach to the development of novel, reversible AChE inhibitors. J. Med. Chem., 2001, 44(20), 3203-3215. [http://dx.doi.org/10.1021/jm010826r]. [PMID: 11563919].
[156]
Szymański, P.; Markowicz, M.; Mikiciuk-Olasik, E. Synthesis and biological activity of derivatives of tetrahydroacridine as acetylcholinesterase inhibitors. Bioorg. Chem., 2011, 39(4), 138-142. [http:// dx.doi.org/10.1016/j.bioorg.2011.05.001]. [PMID: 21621811].
[157]
Fernández-Bachiller, M.I.; Pérez, C.; González-Muñoz, G.C.; Conde, S.; López, M.G.; Villarroya, M.; García, A.G.; Rodríguez-Franco, M.I. Novel tacrine-8-hydroxyquinoline hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with neuroprotective, cholinergic, antioxidant, and copper-complexing properties. J. Med. Chem., 2010, 53(13), 4927-4937. [http://dx.doi. org/10.1021/jm100329q]. [PMID: 20545360].
[158]
Hiremathad, A.; Chand, K.; Esteves, A.R.; Cardoso, S.M.
Ramsay, R.R.; Chaves, S.; Keri, R.S.; Santos, M.A. Tacrine-allyl/ propargylcysteine-benzothiazole trihybrids as potential anti-Alzheimer’s drug candidates. RSC Advances, 2016, 6, 53519-53532. [http://dx.doi.org/10.1039/C6RA03455A].
[159]
Thiratmatrakul, S.; Yenjai, C.; Waiwut, P.; Vajragupta, O.; Reubroycharoen, P.; Tohda, M.; Boonyarat, C. Synthesis, biological evaluation and molecular modeling study of novel tacrine-carbazole hybrids as potential multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2014, 75, 21-30. [http://dx.doi.org/10.1016/j.ejmech.2014.01.020]. [PMID: 24508831].
[160]
Liao, S.; Deng, H.; Huang, S.; Yang, J.; Wang, S.; Yin, B.; Zheng, T.; Zhang, D.; Liu, J.; Gao, G.; Ma, J.; Deng, Z. Design, synthesis and evaluation of novel 5,6,7-trimethoxyflavone-6-chlorotacrine hybrids as potential multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2015, 25(7), 1541-1545. [http://dx.doi.org/10.1016/j.bmcl.2015.02.015]. [PMID: 25724825].
[161]
Quintanova, C.; Keri, R.S.; Chaves, S.; Santos, M.A. Copper(II) complexation of tacrine hybrids with potential anti-neurodegenerative roles. J. Inorg. Biochem., 2015, 151, 58-66. [http://dx.doi.org/10. 1016/j.jinorgbio.2015.06.008]. [PMID: 26119099].
[162]
Quintanova, C.; Keri, R.S.; Chaves, S.; Santos, M.A. ISMEC Acta, 2014, 4, 74-75.
[163]
Keri, R.S.; Quintanova, C.; Chaves, S.; Silva, D.F.; Cardoso, S.M.; Santos, M.A. New tacrine hybrids with natural-based cysteine derivatives as multitargeted drugs for potential treatment of Alzheimer’s disease. Chem. Biol. Drug Des., 2016, 87(1), 101-111. [http://dx.doi.org/10.1111/cbdd.12633]. [PMID: 26256122].
[164]
Zha, X.; Lamba, D.; Zhang, L.; Lou, Y.; Xu, C.; Kang, D.; Chen, L.; Xu, Y.; Zhang, L.; De Simone, A.; Samez, S.; Pesaresi, A.; Stojan, J.; Lopez, M.G.; Egea, J.; Andrisano, V.; Bartolini, M. Novel tacrine-benzofuran hybrids as potent multitarget-directed ligands for the treatment of Alzheimer’s disease: design, synthesis, biological evaluation, and X-ray crystallography. J. Med. Chem., 2016, 59(1), 114-131. [http://dx.doi.org/10.1021/acs.jmedchem.5b01119]. [PMID: 26632651].
[165]
Nepovimova, E.; Korabecny, J.; Dolezal, R.; Nguyen, T.D.; Jun, D.; Soukup, O.; Pasdiorova, M.; Jost, P.; Muckova, L.; Malinak, D.; Gorecki, L.; Musilek, K.; Kuca, K. A 7-methoxytacrine-4 pyridinealdoxime hybrid as a novel prophylactic agent with reactivation properties in organophosphate intoxication. Toxicol. Res., 2016, 5, 1012-1016. [http://dx.doi.org/10.1039/C6TX00130K].
[166]
Misik, J.; Korabecny, J.; Nepovimova, E.; Kracmarova, A.; Kassa, J. Effects of novel tacrine-related cholinesterase inhibitors in the reversal of 3-quinuclidinyl benzilate-induced cognitive deficit in rats--Is there a potential for Alzheimer’s disease treatment? Neurosci. Lett., 2016, 612, 261-268. [http://dx.doi.org/10.1016/j.neulet. 2015.12.021]. [PMID: 26708634].
[167]
Eslami, M.; Nikkhah, S.J.; Hashemianzadeh, S.M.; Sajadi, S.A.S. The compatibility of Tacrine molecule with poly(n-butylcyanoacrylate) and Chitosan as efficient carriers for drug delivery: A molecular dynamics study. Eur. J. Pharm. Sci., 2016, 82, 79-85. [http://dx.doi.org/10.1016/j.ejps.2015.11.014]. [PMID: 26598087].
[168]
Chen, Y.; Lin, H.; Zhu, J.; Gu, K.; Li, Q.; He, S.; Lu, X.; Tan, R.; Pei, Y.; Wu, L.; Bian, Y.; Sun, H. Design, synthesis, in vitro and in vivo evaluation of tacrine–cinnamic acid hybrids as multi-target acetyl- and butyrylcholinesterase inhibitors against Alzheimer’s disease. RSC Advances, 2017, 7, 33851-33867. [http://dx.doi.org/ 10.1039/C7RA04385F].
[169]
Li, X.; Wang, H.; Xu, Y.; Liu, W.; Qiu, X.; Zhu, J.; Mao, F.; Zhang, H.; Li, J. Novel vilazodone-tacrine hybrids as potential multitarget-directed ligands for the treatment of Alzheimer’s disease accompanied with depression: design, synthesis, and biological evaluation. ACS Chem. Neurosci., 2017, 8(12), 2708-2721.
[170]
Mahdavi, M.; Saeedi, M.; Gholamnia, L.; Jeddi, S.A.B.; Sabourian, R.; Shafiee, A.; Foroumad, A.; Akbarzadeh, T. Synthesis of novel tacrine analogs as acetylcholinesterase inhibitors. J. Heterocycl. Chem., 2017, 54, 384-390. [http://dx.doi.org/10.1002/jhet.2594].
[171]
Jeřábek, J.; Uliassi, E.; Guidotti, L.; Korábečný, J.; Soukup, O.; Sepsova, V.; Hrabinova, M.; Kuča, K.; Bartolini, M.; Peña-Altamira, L.E.; Petralla, S.; Monti, B.; Roberti, M.; Bolognesi, M.L. Tacrine-resveratrol fused hybrids as multi-target-directed ligands against Alzheimer’s disease. Eur. J. Med. Chem., 2017, 127, 250-262. [http://dx.doi.org/10.1016/j.ejmech.2016.12.048]. [PMID: 28064079].
[172]
Eghtedari, M.; Sarrafi, Y.; Nadri, H.; Mahdavi, M.; Moradi, A.; Homayouni Moghadam, F.; Emami, S.; Firoozpour, L.; Asadipour, A.; Sabzevari, O.; Foroumadi, A. New tacrine-derived AChE/BuChE inhibitors: Synthesis and biological evaluation of 5-amino-2-phenyl-4H-pyrano[2,3-b]quinoline-3-carboxylates. Eur. J. Med. Chem., 2017, 128, 237-246. [http://dx.doi.org/10.1016/ j.ejmech.2017.01.042]. [PMID: 28189905].
[173]
Jalili-Baleh, L.; Nadri, H.; Moradi, A.; Bukhari, S.N.A.; Shakibaie, M.; Jafari, M.; Golshani, M.; Homayouni Moghadam, F.; Firoozpour, L.; Asadipour, A.; Emami, S.; Khoobi, M.; Foroumadi, A. New racemic annulated pyrazolo[1,2-b]phthalazines as tacrine-like AChE inhibitors with potential use in Alzheimer’s disease. Eur. J. Med. Chem., 2017, 139, 280-289. [http://dx.doi.org/10.1016/ j.ejmech.2017.07.072]. [PMID: 28803044].
[174]
Ulus, R.; Zengin Kurt, B.; Gazioğlu, I.; Kaya, M. Microwave assisted synthesis of novel hybrid tacrine-sulfonamide derivatives and investigation of their antioxidant and anticholinesterase activities. Bioorg. Chem., 2017, 70, 245-255. [http://dx.doi.org/10.1016/ j.bioorg.2017.01.005]. [PMID: 28153340].
[175]
Reddy, E.K.; Remya, C.; Mantosh, K.; Sajith, A.M.; Omkumar, R.V.; Sadasivan, C.; Anwar, S. Novel tacrine derivatives exhibiting improved acetylcholinesterase inhibition: Design, synthesis and biological evaluation. Eur. J. Med. Chem., 2017, 139, 367-377. [http:// dx.doi.org/10.1016/j.ejmech.2017.08.013]. [PMID: 28810188].
[176]
Liu, Z.; Fang, L.; Zhang, H.; Gou, S.; Chen, L. Design, synthesis and biological evaluation of multifunctional tacrine-curcumin hybrids as new cholinesterase inhibitors with metal ions-chelating and neuroprotective property. Bioorg. Med. Chem., 2017, 25(8), 2387-2398. [http://dx.doi.org/10.1016/j.bmc.2017.02.049]. [PMID: 28302511].
[177]
Najafi, Z.; Mahdavi, M.; Saeedi, M.; Karimpour-Razkenari, E.; Asatouri, R.; Vafadarnejad, F.; Moghadam, F.H.; Khanavi, M.; Sharifzadeh, M.; Akbarzadeh, T. Novel tacrine-1,2,3-triazole hybrids: In vitro, in vivo biological evaluation and docking study of cholinesterase inhibitors. Eur. J. Med. Chem., 2017, 125, 1200-1212. [http://dx.doi.org/10.1016/j.ejmech.2016.11.008]. [PMID: 27863370].
[178]
Roldán-Peña, J.M.; Alejandre-Ramos, D.; López, Ó.; Maya, I.; Lagunes, I.; Padrón, J.M.; Peña-Altamira, L.E.; Bartolini, M.; Monti, B.; Bolognesi, M.L.; Fernández-Bolaños, J.G. New tacrine dimers with antioxidant linkers as dual drugs: Anti-Alzheimer’s and antiproliferative agents. Eur. J. Med. Chem., 2017, 138, 761-773. [http://dx.doi.org/10.1016/j.ejmech.2017.06.048]. [PMID: 28728108].
[179]
Teponnou, G.A.K.; Joubert, J.; Malan, S.F. Tacrine, trolox and tryptoline as lead compounds for the design and synthesis of multi-target agents for Alzheimer’s disease therapy. Open Med. Chem. J., 2017, 11, 24-37. [http://dx.doi.org/10.2174/1874104501711010024]. [PMID: 28567126].
[180]
Spilovska, K.; Korabecny, J.; Sepsova, V.; Jun, D.; Hrabinova, M.; Jost, P.; Muckova, L.; Soukup, O.; Janockova, J.; Kucera, T.; Dolezal, R.; Mezeiova, E.; Kaping, D.; Kuca, K. Novel tacrine-scutellarin hybrids as multipotent anti-Alzheimer’s agents: design, synthesis and biological evaluation. Molecules, 2017, 22(6), 1006. [http://dx.doi.org/10.3390/molecules22061006]. [PMID: 28621747].
[181]
Boulebd, H.; Ismaili, L.; Martin, H.; Bonet, A.; Chioua, M.; Marco Contelles, J.; Belfaitah, A. New (benz)imidazolopyridino tacrines as nonhepatotoxic, cholinesterase inhibitors for Alzheimer disease. Future Med. Chem., 2017, 9(8), 723-729. [http://dx.doi.org/ 10.4155/fmc-2017-0019]. [PMID: 28485637].
[182]
Wang, L.; Moraleda, I.; Iriepa, I.; Romero, A.; Lopez-Munoz, F.; Chioua, M.; Inokuchi, T.; Bartolini, M.; Marco-Contelles, J. 5-Methyl-N-(8-(5,6,7,8-tetrahydroacridin-9-ylamino)octyl)-5H-indolo[2,3-b]quinolin-11-amine: a highly potent human cholinesterase inhibitor. MedChemComm, 2017, 8, 1307-1317. [http://dx.doi.org/ 10.1039/C7MD00143F].
[183]
Cen, J.; Guo, H.; Hong, C.; Lv, J.; Yang, Y.; Wang, T.; Fang, D.; Luo, W.; Wang, C. Development of tacrine-bifendate conjugates with improved cholinesterase inhibitory and pro-cognitive efficacy and reduced hepatotoxicity. Eur. J. Med. Chem., 2018, 144, 128-136. [http://dx.doi.org/10.1016/j.ejmech.2017.12.005]. [PMID: 29268129].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy