Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Environmental Training and Synaptic Functions in Young and Old Brain: A Presynaptic Perspective

Author(s): Tommaso Bonfiglio, Matteo Vergassola, Guendalina Olivero and Anna Pittaluga*

Volume 26, Issue 20, 2019

Page: [3670 - 3684] Pages: 15

DOI: 10.2174/0929867325666180228170450

Price: $65

Abstract

Background: Aging is an unavoidable, physiological process that reduces the complexity and the plasticity of the synaptic contacts in Central Nervous System (CNS), having profound implications for human well-being. The term “cognitive reserve” refers to central cellular adaptations that augment the resilience of human brain to damage and aging. The term “Cognitive training” indicates the cultural, social and physical stimulations proposed as add-on therapy for the cure of central neurological diseases. “Cognitive training” reinforces the “cognitive reserve” permitting to counteract brain impairments and rejuvenating synaptic complexity. The research has begun investigating the clinical impact of the “cognitive training” in aged people, but additional work is needed to definitively assess its effectiveness. In particular, there is a need to understand, from a preclinical point of view, whether “cognitive training” promotes compensatory effects or, alternatively, if it elicits genuine recovery of neuronal defects. Although the translation from rodent studies to the clinical situation could be difficult, the results from pre-clinical models are of high clinical relevance, since they should allow a better understanding of the effects of environmental interventions in aging-associated chronic derangements in mammals.

Conclusion: Data in literature and the recent results obtained in our laboratory concerning the impact of environmental stimulation on the presynaptic release of noradrenaline, glutamate and gamma amino butyric acid (GABA) suggest that these neurotransmitters undergo different adaptations during aging and that they are differently tuned by “cognitive training”. The impact of “cognitive training” on neurotransmitter exocytosis might account for the cellular events involved in reinforcement of “cognitive reserve” in young and old animals.

Keywords: Young mice, old mice, environmental enrichment, exocytosis, glutamate, noradrenaline, GABA.

[1]
Deák, F. Neuronal vesicular trafficking and release in age-related cognitive impairment. J. Gerontol. A Biol. Sci. Med. Sci., 2014, 69(11), 1325-1330.
[http://dx.doi.org/10.1093/gerona/glu061] [PMID: 24809352]
[2]
Castro-Chavira, S.A.; Fernandez, T.; Nicolini, H.; Diaz-Cintra, S.; Prado-Alcala, R.A. Genetic markers in biological fluids for aging-related major neurocognitive disorder. Curr. Alzheimer Res., 2015, 12(3), 200-209.
[http://dx.doi.org/10.2174/1567205012666150302155138] [PMID: 25731625]
[3]
Schättin, A.; Baur, K.; Stutz, J.; Wolf, P.; de Bruin, E.D. Effects of physical exercise combined with nutritional supplements on aging brain related structures and functions: a systematic review. Front. Aging Neurosci., 2016, 8, 161.
[http://dx.doi.org/10.3389/fnagi.2016.00161] [PMID: 27458371]
[4]
Breunig, J.J.; Guillot-Sestier, M.V.; Town, T. Brain injury, neuroinflammation and Alzheimer’s disease. Front. Aging Neurosci., 2013, 5, 26.
[http://dx.doi.org/10.3389/fnagi.2013.00026] [PMID: 23874297]
[5]
Mather, M.; Harley, C.W. The locus coeruleus: essential for maintaining cognitive function and the aging brain In: Trends Cogn. Sci. (Regul. Ed.),; , 2016; 20, pp. (3)214-226.
[http://dx.doi.org/10.1016/j.tics.2016.01.001] [PMID: 26895736]
[6]
Segovia, G.; del Arco, A.; Mora, F. Environmental enrichment, prefrontal cortex, stress, and aging of the brain. J. Neural Transm. (Vienna), 2009, 116(8), 1007-1016.
[http://dx.doi.org/10.1007/s00702-009-0214-0] [PMID: 19343473]
[7]
Collier, T.J.; Kanaan, N.M.; Kordower, J.H. Aging and Parkinson’s disease: Different sides of the same coin? Mov. Disord., 2017, 32(7), 983-990.
[http://dx.doi.org/10.1002/mds.27037] [PMID: 28520211]
[8]
Barnes, C.A.; Rao, G.; Houston, F.P. LTP induction threshold change in old rats at the perforant path--granule cell synapse. Neurobiol. Aging, 2000, 21(5), 613-620.
[http://dx.doi.org/10.1016/S0197-4580(00)00163-9] [PMID: 11016529]
[9]
Rozycka, A.; Liguz-Lecznar, M. The space where aging acts: focus on the GABAergic synapse. Aging Cell, 2017, 16(4), 634-643.
[http://dx.doi.org/10.1111/acel.12605] [PMID: 28497576]
[10]
Liguz-Lecznar, M.; Lehner, M.; Kaliszewska, A.; Zakrzewska, R.; Sobolewska, A.; Kossut, M. Altered glutamate/GABA equilibrium in aged mice cortex influences cortical plasticity. Brain Struct. Funct., 2015, 220(3), 1681-1693.
[http://dx.doi.org/10.1007/s00429-014-0752-6] [PMID: 24659256]
[11]
Mora, F.; Segovia, G.; del Arco, A. Aging, plasticity and environmental enrichment: structural changes and neurotransmitter dynamics in several areas of the brain. Brain Res. Brain Res. Rev., 2007, 55(1), 78-88.
[http://dx.doi.org/10.1016/j.brainresrev.2007.03.011] [PMID: 17561265]
[12]
Francis, B.M.; Yang, J.; Hajderi, E.; Brown, M.E.; Michalski, B.; McLaurin, J.; Fahnestock, M.; Mount, H.T. Reduced tissue levels of noradrenaline are associated with behavioral phenotypes of the TgCRND8 mouse model of Alzheimer’s disease. Neuropsychopharmacology, 2012, 37(8), 1934-1944.
[http://dx.doi.org/10.1038/npp.2012.40] [PMID: 22491352]
[13]
Raskind, M.A.; Peskind, E.R.; Holmes, C.; Goldstein, D.S. Patterns of cerebrospinal fluid catechols support increased central noradrenergic responsiveness in aging and Alzheimer’s disease. Biol. Psychiatry, 1999, 46(6), 756-765.
[http://dx.doi.org/10.1016/S0006-3223(99)00008-6] [PMID: 10494443]
[14]
Steffener, J.; Stern, Y. Exploring the neural basis of cognitive reserve in aging. Biochim. Biophys. Acta, 2012, 1822(3), 467-473.
[http://dx.doi.org/10.1016/j.bbadis.2011.09.012] [PMID: 21982946]
[15]
Park, D.C.; Bischof, G.N. The aging mind: neuroplasticity in response to Cognitive training. Dialogues Clin. Neurosci., 2013, 15(1), 109-119.
[PMID: 23576894]
[16]
Xu, W.; Yu, J.T.; Tan, M.S.; Tan, L. cognitive reserve and Alzheimer’s disease. Mol. Neurobiol., 2015, 51(1), 187-208.
[http://dx.doi.org/10.1007/s12035-014-8720-y] [PMID: 24794146]
[17]
Bennett, E.L.; Diamond, M.C.; Krech, D.; Rosenzweig, M.R. Chemical and anatomical plasticity of brain. 1964. J. Neuropsychiatry Clin. Neurosci., 1996, 8(4), 459-470.
[http://dx.doi.org/10.1176/jnp.8.4.459] [PMID: 9116487]
[18]
Kraft, E. Cognitive function, physical activity, and aging: possible biological links and implications for multimodal interventions. Neuropsychol. Dev. Cogn. B. Aging Neuropsychol. Cogn., 2012, 19(1-2), 248-263.
[http://dx.doi.org/10.1080/13825585.2011.645010] [PMID: 22313174]
[19]
Cassarino, M.; Setti, A. Environment as 'Brain Training': A review of geographical and physical environmental influences on cognitive ageing Ageing Res Rev., 2015, 23(Pt B ), 167-182.
[http://dx.doi.org/10.1016/j.arr.2015.06.003] [PMID: 26144974]
[20]
Whalley, L.J.; Deary, I.J.; Appleton, C.L.; Starr, J.M. cognitive reserve and the neurobiology of cognitive aging. Ageing Res. Rev., 2004, 3(4), 369-382.
[http://dx.doi.org/10.1016/j.arr.2004.05.001] [PMID: 15541707]
[21]
Bryck, R.L.; Fisher, P.A. Training the brain: practical applications of neural plasticity from the intersection of cognitive neuroscience, developmental psychology, and prevention science. Am. Psychol., 2012, 67(2), 87-100.
[http://dx.doi.org/10.1037/a0024657] [PMID: 21787037]
[22]
Redolat, R.; Mesa-Gresa, P. Potential benefits and limitations of enriched environments and cognitive activity on age-related behavioural decline. Curr. Top. Behav. Neurosci., 2012, 10, 293-316.
[http://dx.doi.org/10.1007/7854_2011_134] [PMID: 21643900]
[23]
Arai, J.A.; Feig, L.A. Long-lasting and transgenerational effects of an environmental enrichment on memory formation. Brain Res. Bull., 2011, 85(1-2), 30-35.
[http://dx.doi.org/10.1016/j.brainresbull.2010.11.003] [PMID: 21078373]
[24]
Fuchs, F.; Cosquer, B.; Penazzi, L.; Mathis, C.; Kelche, C.; Majchrzak, M.; Barbelivien, A. Exposure to an enriched environment up to middle age allows preservation of spatial memory capabilities in old age. Behav. Brain Res., 2016, 299, 1-5.
[http://dx.doi.org/10.1016/j.bbr.2015.11.019] [PMID: 26611562]
[25]
Kumar, A.; Rani, A.; Tchigranova, O.; Lee, W.H.; Foster, T.C. Influence of late-life exposure to environmental enrichment or exercise on hippocampal function and CA1 senescent physiology. Neurobiol. Aging, 2012, 33(4), 828.e1-828.e17.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.06.023] [PMID: 21820213]
[26]
Baraldi, T.; Schöwe, N.M.; Balthazar, J.; Monteiro-Silva, K.C.; Albuquerque, M.S.; Buck, H.S.; Viel, T.A. Cognitive stimulation during lifetime and in the aged phase improved spatial memory, and altered neuroplasticity and cholinergic markers of mice. Exp. Gerontol., 2013, 48(8), 831-838.
[http://dx.doi.org/10.1016/j.exger.2013.05.055] [PMID: 23707230]
[27]
Summa, M.; Di Prisco, S.; Grilli, M.; Marchi, M.; Pittaluga, A. Hippocampal AMPA autoreceptors positively coupled to NMDA autoreceptors traffic in a constitutive manner and undergo adaptative changes following enriched environment training. Neuropharmacology, 2011, 61(8), 1282-1290.
[http://dx.doi.org/10.1016/j.neuropharm.2011.07.032] [PMID: 21820454]
[28]
Grilli, M.; Zappettini, S.; Zanardi, A.; Lagomarsino, F.; Pittaluga, A.; Zoli, M.; Marchi, M. Exposure to an enriched environment selectively increases the functional response of the pre-synaptic NMDA receptors which modulate noradrenaline release in mouse hippocampus. J. Neurochem., 2009, 110(5), 1598-1606.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06265.x] [PMID: 19723266]
[29]
Musante, V.; Summa, M.; Cunha, R.A.; Raiteri, M.; Pittaluga, A. Pre-synaptic glycine GlyT1 transporter--NMDA receptor interaction: relevance to NMDA autoreceptor activation in the presence of Mg2+ ions. J. Neurochem., 2011, 117(3), 516-527.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07223.x] [PMID: 21348870]
[30]
Pittaluga, A. Presynaptic release-regulating mGlu1 receptors in Central Nervous System. Front. Pharmacol., 2016, 7, 295.
[http://dx.doi.org/10.3389/fphar.2016.00295] [PMID: 27630571]
[31]
Luccini, E.; Musante, V.; Neri, E.; Raiteri, M.; Pittaluga, A. N-methyl-D-aspartate autoreceptors respond to low and high agonist concentrations by facilitating, respectively, exocytosis and carrier-mediated release of glutamate in rat hippocampus. J. Neurosci. Res., 2007, 85(16), 3657-3665.
[http://dx.doi.org/10.1002/jnr.21446] [PMID: 17671992]
[32]
Zucchini, S.; Pittaluga, A.; Summa, M.; Brocca-Cofano, E.; Fabris, M.; De Michele, R.; Bonaccorsi, A.; Buratto, G.; Barbanti-Brodano, G.; Altavilla, G.; Verlengia, G.; Cifelli, P.; Caputo, A.; Simonato, M. Seizure susceptibility in tat-transgenic mice: implications for the role of tat in human immunodeficiency virus type 1 associated encephalopathy. Neurobiol. Dis., 2013, 62, 354-349.
[33]
Di Prisco, S.; Olivero, G.; Merega, E.; Bonfiglio, T.; Marchi, M.; Pittaluga, A. CXCR4 and NMDA receptors are functionally coupled in rat hippocampal noradrenergic and glutamatergic nerve endings. J. Neuroimmune Pharmacol., 2016, 11(4), 645-656.
[http://dx.doi.org/10.1007/s11481-016-9677-6] [PMID: 27147258]
[34]
Luccini, E.; Musante, V.; Neri, E.; Brambilla Bas, M.; Severi, P.; Raiteri, M.; Pittaluga, A. Functional interactions between presynaptic NMDA receptors and metabotropic glutamate receptors co-expressed on rat and human noradrenergic terminals. Br. J. Pharmacol., 2007, 151(7), 1087-1094.
[http://dx.doi.org/10.1038/sj.bjp.0707280] [PMID: 17592518]
[35]
Luebke, J.I.; Chang, Y.M.; Moore, T.L.; Rosene, D.L. Normal aging results in decreased synaptic excitation and increased synaptic inhibition of layer 2/3 pyramidal cells in the monkey prefrontal cortex. Neuroscience, 2004, 125(1), 277-288.
[http://dx.doi.org/10.1016/j.neuroscience.2004.01.035] [PMID: 15051166]
[36]
Pittaluga, A.; Fedele, E.; Risiglione, C.; Raiteri, M. Age-related decrease of the NMDA receptor-mediated noradrenaline release in rat hippocampus and partial restoration by D-cycloserine. Eur. J. Pharmacol., 1993, 231(1), 129-134.
[http://dx.doi.org/10.1016/0014-2999(93)90693-C] [PMID: 8444277]
[37]
Pittaluga, A.; Raiteri, L.; Longordo, F.; Luccini, E.; Barbiero, V.S.; Racagni, G.; Popoli, M.; Raiteri, M. Antidepressant treatments and function of glutamate ionotropic receptors mediating amine release in hippocampus. Neuropharmacology, 2007, 53(1), 27-36.
[http://dx.doi.org/10.1016/j.neuropharm.2007.04.006] [PMID: 17543354]
[38]
Grilli, M.; Zappettini, S.; Zanardi, A.; Lagomarsino, F.; Pittaluga, A.; Zoli, M.; Marchi, M. Exposure to an enriched environment selectively increases the functional response of the pre-synaptic NMDA receptors which modulate noradrenaline release in mouse hippocampus. J. Neurochem., 2009, 110(5), 1598-1606.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06265.x] [PMID: 19723266]
[39]
Salamone, A.; Zappettini, S.; Grilli, M.; Olivero, G.; Agostinho, P.; Tomé, A.R.; Chen, J.; Pittaluga, A.; Cunha, R.A.; Marchi, M. Prolonged nicotine exposure down-regulates presynaptic NMDA receptors in dopaminergic terminals of the rat nucleus accumbens. Neuropharmacology, 2014, 79, 488-497.
[http://dx.doi.org/10.1016/j.neuropharm.2013.12.014] [PMID: 24373903]
[40]
Zappettini, S.; Grilli, M.; Olivero, G.; Chen, J.; Padolecchia, C.; Pittaluga, A.; Tomé, A.R.; Cunha, R.A.; Marchi, M. Nicotinic α7 receptor activation selectively potentiates the function of NMDA receptors in glutamatergic terminals of the nucleus accumbens. Front. Cell. Neurosci., 2014, 8, 332.
[http://dx.doi.org/10.3389/fncel.2014.00332] [PMID: 25360085]
[41]
Bredy, T.W.; Zhang, T.Y.; Grant, R.J.; Diorio, J.; Meaney, M.J. Peripubertal environmental enrichment reverses the effects of maternal care on hippocampal development and glutamate receptor subunit expression. Eur. J. Neurosci., 2004, 20(5), 1355-1362.
[http://dx.doi.org/10.1111/j.1460-9568.2004.03599.x] [PMID: 15341607]
[42]
Naka, F.; Narita, N.; Okado, N.; Narita, M. Modification of AMPA receptor properties following environmental enrichment. Brain Dev., 2005, 27(4), 275-278.
[http://dx.doi.org/10.1016/j.braindev.2004.07.006] [PMID: 15862190]
[43]
Wood, D.A.; Buse, J.E.; Wellman, C.L.; Rebec, G.V. Differential environmental exposure alters NMDA but not AMPA receptor subunit expression in nucleus accumbens core and shell. Brain Res., 2005, 1042(2), 176-183.
[http://dx.doi.org/10.1016/j.brainres.2005.02.029] [PMID: 15854589]
[44]
Pittaluga, A.; Feligioni, M.; Longordo, F.; Luccini, E.; Raiteri, M. Trafficking of presynaptic AMPA receptors mediating neurotransmitter release: neuronal selectivity and relationships with sensitivity to cyclothiazide. Neuropharmacology, 2006, 50(3), 286-296.
[http://dx.doi.org/10.1016/j.neuropharm.2005.09.004] [PMID: 16242162]
[45]
Segovia, G.; Del Arco, A.; Prieto, L.; Mora, F. Glutamate-glutamine cycle and aging in striatum of the awake rat: effects of a glutamate transporter blocker. Neurochem. Res., 2001, 26(1), 37-41.
[http://dx.doi.org/10.1023/A:1007624531077] [PMID: 11358280]
[46]
Soffié, M.; Hahn, K.; Terao, E.; Eclancher, F. Behavioural and glial changes in old rats following environmental enrichment. Behav. Brain Res., 1999, 101(1), 37-49.
[http://dx.doi.org/10.1016/S0166-4328(98)00139-9] [PMID: 10342398]
[47]
Potier, B.; Jouvenceau, A.; Epelbaum, J.; Dutar, P. Age-related alterations of GABAergic input to CA1 pyramidal neurons and its control by nicotinic acetylcholine receptors in rat hippocampus. Neuroscience, 2006, 142(1), 187-201.
[http://dx.doi.org/10.1016/j.neuroscience.2006.06.040] [PMID: 16890374]
[48]
Stanley, E.M.; Fadel, J.R.; Mott, D.D. Interneuron loss reduces dendritic inhibition and GABA release in hippocampus of aged rats. Neurobiol. Aging, 2012, 33(2), 431.e1-431.e13.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.12.014] [PMID: 21277654]
[49]
Bories, C.; Husson, Z.; Guitton, M.J.; De Koninck, Y. Differential balance of prefrontal synaptic activity in successful versus unsuccessful cognitive aging. J. Neurosci., 2013, 33(4), 1344-1356.
[http://dx.doi.org/10.1523/JNEUROSCI.3258-12.2013] [PMID: 23345211]
[50]
Gold, J.R.; Bajo, V.M. Insult-induced adaptive plasticity of the auditory system. Front. Neurosci., 2014, 8, 110.
[http://dx.doi.org/10.3389/fnins.2014.00110] [PMID: 24904256]
[51]
Ling, L.L.; Hughes, L.F.; Caspary, D.M. Age-related loss of the GABA synthetic enzyme glutamic acid decarboxylase in rat primary auditory cortex. Neuroscience, 2005, 132(4), 1103-1113.
[http://dx.doi.org/10.1016/j.neuroscience.2004.12.043] [PMID: 15857714]
[52]
Burianova, J.; Ouda, L.; Profant, O.; Syka, J. Age-related changes in GAD levels in the central auditory system of the rat. Exp. Gerontol., 2009, 44(3), 161-169.
[http://dx.doi.org/10.1016/j.exger.2008.09.012] [PMID: 18930128]
[53]
Bañuelos, C.; Beas, B.S.; McQuail, J.A.; Gilbert, R.J.; Frazier, C.J.; Setlow, B.; Bizon, J.L. Prefrontal cortical GABAergic dysfunction contributes to age-related working memory impairment. J. Neurosci., 2014, 34(10), 3457-3466.
[http://dx.doi.org/10.1523/JNEUROSCI.5192-13.2014] [PMID: 24599447]
[54]
Pittaluga, A.; Asaro, D.; Pellegrini, G.; Raiteri, M. Studies on [3H]GABA and endogenous GABA release in rat cerebral cortex suggest the presence of autoreceptors of the GABAB type. Eur. J. Pharmacol., 1987, 144(1), 45-52.
[http://dx.doi.org/10.1016/0014-2999(87)90007-0] [PMID: 2830119]
[55]
Bonanno, G.; Raiteri, M. Multiple GABAB receptors. Trends Pharmacol. Sci., 1993, 14(7), 259-261.
[http://dx.doi.org/10.1016/0165-6147(93)90124-3] [PMID: 8105595]
[56]
Raiteri, M.; Bonanno, G.; Gemignani, A.; Pende, M.; Vellebuona, F.; Lanza, M. Pharmacologically distinct GABAB receptor subtypes modulate neurotransmitter release in the rat brain cortex. Adv. Biochem. Psychopharmacol., 1992, 47, 205-216.
[PMID: 1354915]
[57]
Peinemann, A.; Lehner, C.; Conrad, B.; Siebner, H.R. Age-related decrease in paired-pulse intracortical inhibition in the human primary motor cortex. Neurosci. Lett., 2001, 313(1-2), 33-36.
[http://dx.doi.org/10.1016/S0304-3940(01)02239-X] [PMID: 11684333]
[58]
Pellicciari, M.C.; Miniussi, C.; Rossini, P.M.; De Gennaro, L. Increased cortical plasticity in the elderly: changes in the somatosensory cortex after paired associative stimulation. Neuroscience, 2009, 163(1), 266-276.
[http://dx.doi.org/10.1016/j.neuroscience.2009.06.013] [PMID: 19524024]
[59]
Majdi, M.; Ribeiro-da-Silva, A.; Cuello, A.C. Cognitive impairment and transmitter-specific pre- and postsynaptic changes in the rat cerebral cortex during ageing. Eur. J. Neurosci., 2007, 26(12), 3583-3596.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05966.x] [PMID: 18088281]
[60]
Ebrahimi, S.; Rashidy-Pour, A.; Vafaei, A.A.; Akhavan, M.M. Central beta-adrenergic receptors play an important role in the enhancing effect of voluntary exercise on learning and memory in rat. Behav. Brain Res., 2010, 208(1), 189-193.
[http://dx.doi.org/10.1016/j.bbr.2009.11.032] [PMID: 19941907]
[61]
Van Hoomissen, J.D.; Holmes, P.V.; Zellner, A.S.; Poudevigne, A.; Dishman, R.K. Effects of beta-adrenoreceptor blockade during chronic exercise on contextual fear conditioning and mRNA for galanin and brain-derived neurotrophic factor. Behav. Neurosci., 2004, 118(6), 1378-1390.
[http://dx.doi.org/10.1037/0735-7044.118.6.1378] [PMID: 15598146]
[62]
Segal, S.K.; Cotman, C.W.; Cahill, L.F. Exercise-induced noradrenergic activation enhances memory consolidation in both normal aging and patients with amnestic mild cognitive impairment. J. Alzheimers Dis., 2012, 32(4), 1011-1018.
[http://dx.doi.org/10.3233/JAD-2012-121078] [PMID: 22914593]
[63]
Elrod, R.; Peskind, E.R.; DiGiacomo, L.; Brodkin, K.I.; Veith, R.C.; Raskind, M.A. Effects of Alzheimer’s disease severity on cerebrospinal fluid norepinephrine concentration. Am. J. Psychiatry, 1997, 154(1), 25-30.
[http://dx.doi.org/10.1176/ajp.154.1.25] [PMID: 8988954]
[64]
Raskind, M.A.; Peskind, E.R.; Veith, R.C.; Beard, J.C.; Gumbrecht, G.; Halter, J.B. Increased plasma and cerebrospinal fluid norepinephrine in older men: differential suppression by clonidine. J. Clin. Endocrinol. Metab., 1988, 66(2), 438-443.
[http://dx.doi.org/10.1210/jcem-66-2-438] [PMID: 3339115]
[65]
Lohr, J.B.; Jeste, D.V. Locus ceruleus morphometry in aging and schizophrenia. Acta Psychiatr. Scand., 1988, 77(6), 689-697.
[http://dx.doi.org/10.1111/j.1600-0447.1988.tb05189.x] [PMID: 3044009]
[66]
Vijayashankar, N.; Brody, H. A quantitative study of the pigmented neurons in the nuclei locus coeruleus and subcoeruleus in man as related to aging. J. Neuropathol. Exp. Neurol., 1979, 38(5), 490-497.
[http://dx.doi.org/10.1097/00005072-197909000-00004] [PMID: 469568]
[67]
Bondareff, W.; Mountjoy, C.Q.; Roth, M. Loss of neurons of origin of the adrenergic projection to cerebral cortex (nucleus locus ceruleus) in senile dementia. Neurology, 1982, 32(2), 164-168.
[http://dx.doi.org/10.1212/WNL.32.2.164] [PMID: 7198741]
[68]
Shores, M.M.; White, S.S.; Veith, R.C.; Szot, P. Tyrosine hydroxylase mRNA is increased in old age and norepinephrine uptake transporter mRNA is decreased in middle age in locus coeruleus of Brown-Norway rats. Brain Res., 1999, 826(1), 143-147.
[http://dx.doi.org/10.1016/S0006-8993(99)01200-7] [PMID: 10216207]
[69]
Cerrito, F.; Aloisi, G.; Arminio, P. Age-related changes in rat brain monoamines release: peculiarity of dopamine release. J. Neurosci. Res., 1993, 34(3), 364-370.
[http://dx.doi.org/10.1002/jnr.490340314] [PMID: 8095990]
[70]
Vizi, E.S.; Kiss, J.P.; Lendvai, B. Nonsynaptic communication in the central nervous system. Neurochem. Int., 2004, 45(4), 443-451.
[http://dx.doi.org/10.1016/j.neuint.2003.11.016] [PMID: 15186910]
[71]
Ferrero, J.J.; Alvarez, A.M.; Ramírez-Franco, J.; Godino, M.C.; Bartolomé-Martín, D.; Aguado, C.; Torres, M.; Luján, R.; Ciruela, F.; Sánchez-Prieto, J. β-Adrenergic receptors activate exchange protein directly activated by cAMP (Epac), translocate Munc13-1, and enhance the Rab3A-RIM1α interaction to potentiate glutamate release at cerebrocortical nerve terminals. J. Biol. Chem., 2013, 288(43), 31370-31385.
[http://dx.doi.org/10.1074/jbc.M113.463877] [PMID: 24036110]
[72]
Cartford, M.C.; Gould, T.; Bickford, P.C. A central role for norepinephrine in the modulation of cerebellar learning tasks. Behav. Cogn. Neurosci. Rev., 2004, 3(2), 131-138.
[http://dx.doi.org/10.1177/1534582304270783] [PMID: 15537989]
[73]
Pittaluga, A.; Raiteri, L.; Longordo, F.; Luccini, E.; Barbiero, V.S.; Racagni, G.; Popoli, M.; Raiteri, M. Antidepressant treatments and function of glutamate ionotropic receptors mediating amine release in hippocampus. Neuropharmacology, 2007, 53(1), 27-36.
[http://dx.doi.org/10.1016/j.neuropharm.2007.04.006] [PMID: 17543354]
[74]
O’Sullivan, J.B.; Ryan, K.M.; Harkin, A.; Connor, T.J. Noradrenaline reuptake inhibitors inhibit expression of chemokines IP-10 and RANTES and cell adhesion molecules VCAM-1 and ICAM-1 in the CNS following a systemic inflammatory challenge. J. Neuroimmunol., 2010, 220(1-2), 34-42.
[http://dx.doi.org/10.1016/j.jneuroim.2009.12.007] [PMID: 20061033]
[75]
Di Prisco, S.; Merega, E.; Lanfranco, M.; Casazza, S.; Uccelli, A.; Pittaluga, A. Acute desipramine restores presynaptic cortical defects in murine experimental autoimmune encephalomyelitis by suppressing central CCL5 overproduction. Br. J. Pharmacol., 2014, 171(9), 2457-2467.
[http://dx.doi.org/10.1111/bph.12631] [PMID: 24528439]
[76]
Chabry, J.; Nicolas, S.; Cazareth, J.; Murris, E.; Guyon, A.; Glaichenhaus, N.; Heurteaux, C.; Petit-Paitel, A. Enriched environment decreases microglia and brain macrophages inflammatory phenotypes through adiponectin-dependent mechanisms: relevance to depressive-like behavior. Brain Behav. Immun., 2015, 50, 275-287.
[http://dx.doi.org/10.1016/j.bbi.2015.07.018] [PMID: 26209808]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy