Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Whole Cell Biocatalysts for the Preparation of Nucleosides and their Derivatives

Author(s): Elizabeth S. Lewkowicz and Adolfo M. Iribarren*

Volume 23, Issue 45, 2017

Page: [6851 - 6878] Pages: 28

DOI: 10.2174/1381612823666171011101133

Price: $65

Open Access Journals Promotions 2
Abstract

Nucleosides constitute an extensive group of natural and chemically modified compounds that display a wide range of structures and activities. Different biocatalysts have been developed for their preparation, but the choice of commercially available enzymes is limited. Therefore, the search of new biocatalysts is particularly attractive. In this sense, microorganisms are a vast source of enzymatic diversity that can be directly used as whole cell biocatalysts providing a potential cheaper and suitable route for industrial applications.

Methods: This work makes particular emphasis on the following methods: the biocatalyzed whole cell synthesis of nucleosides mediated by phosphorylases, key biocatalyzed steps involved in other chemoenzymatic routes to prepare nucleoside analogues and the transformation of nucleosides in derivatives with particular properties.

Results: The literature covered in this work confirms that biocatalytic procedures that make use of whole cell systems can be successfully applied to obtain a wide variety of nucleoside analogues and their derivatives, providing alternative and complementary routes to traditional chemistry. The direct use of microbial whole cells as biocatalysts affords competitive results since it avoids the cumbersome procedures involved in enzyme isolation and facilitates multienzymatic processes. These biocatalysts also maintain the enzymes in their natural environment, protecting their activities from reaction conditions.

Conclusion: Although the information presented herein shows that these methodologies have reached a high degree of development, it is expected that future contributions of protein engineering and nucleoside metabolism knowledge, among other disciplines, will expand the already wide range of applications in nucleoside chemistry of whole cell biocatalysis.

Keywords: Nucleosides, whole cell biocatalysts, nucleoside phosphates, carbocyclic nucleosides, acylnucleosides, glycosylnucleosides, transglycosylation.


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy