Review Article

高血压心房颤动的生物标志物

卷 26, 期 5, 2019

页: [888 - 897] 页: 10

弟呕挨: 10.2174/0929867324666171006155516

价格: $65

摘要

背景:心房纤颤(AF)是全球最常见的心律失常,并且大大增加了血栓栓塞性疾病的风险。尽管如此,所有AF病例中仍有20%未被诊断出来。另一方面,高血压通过血液动力学和非血液动力学机制以及脑血管缺血扩大了AF发生的风险。在这种棱镜下,对高血压患者未检出房颤的及时诊断至关重要。 方法:我们对生物标志物研究的文献进行了回顾,这些生物标志物可用于AF诊断以及预测阵发性房颤到持续性房颤的转变,特别是在高血压患者中。 结果:AF的潜在生物标志物可大致分为电生理学,形态学和分子标志物,反映不良心房重构的潜在机制。我们将P波持续时间和分散作为电生理标志物,左心房(LA)和LA附肢大小,心房纤维化,左心室肥大和主动脉僵硬度分别作为结构生物标志物。 AF的异质组分子生物标志物包括神经激素级联的产物,包括NT-pro BNP,BNP,MR-pro ANP,ACE的多态性和转化酶如corin和弗林蛋白酶。此外,评估炎症的可溶性生物标志物(即CRP,IL-6)和纤维化(即TGF-1和基质金属蛋白酶)用于预测AF。 结论:所评估的个体生物标志物可能是目前诊断工具的一个有价值的补充,但理想的候选者有望结合多个心房重塑指标,以有效地检测高危高危患者的房颤和不良特征。

关键词: 心房颤动,高血压,生物标志物,心房重塑,中风,高血压患者。

[1]
Lloyd-Jones, D.M.; Wang, T.J.; Leip, E.P.; Larson, M.G.; Levy, D.; Vasan, R.S.; D’Agostino, R.B.; Massaro, J.M.; Beiser, A.; Wolf, P.A.; Benjamin, E.J. Lifetime risk for development of atrial fibrillation: The Framingham heart study. Circulation, 2004, 110(9), 1042-1046.
[2]
Miyasaka, Y.; Barnes, M.E.; Gersh, B.J.; Cha, S.S.; Bailey, K.R.; Abhayaratna, W.P.; Seward, J.B.; Tsang, T.S. Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation, 2006, 114(2), 119-125.
[3]
Krijthe, B.P.; Kunst, A.; Benjamin, E.J.; Lip, G.Y.H.; Franco, O.H.; Hofman, A.; Witteman, J.C.; Stricker, B.H.; Heeringa, J. Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. Eur. Heart J., 2013, 34(35), 2746-2751.
[4]
Dulli, D.A.; Stanko, H.; Levine, R.L. Atrial fibrillation is associated with severe acute ischemic stroke. Neuroepidemiology, 2003, 22(2), 118-123.
[5]
Lin, H-J.; Wolf, P.A.; Kelly-Hayes, M.; Beiser, A.S.; Kase, C.S.; Benjamin, E.J.; D’Agostino, R.B. Stroke severity in atrial fibrillation. The Framingham Study. Stroke, 1996, 27(10), 1760-1764.
[6]
Clua-Espuny, J.L.; Lechuga-Duran, I.; Bosch-Princep, R.; Roso-Llorach, A.; Panisello-Tafalla, A.; Lucas-Noll, J.; López-Pablo, C.; Queralt-Tomas, L.; Giménez-Garcia, E.; González-Rojas, N.; Gallofré López, M. Prevalence of undiagnosed atrial fibrillation and of that not being treated with anticoagulant drugs: the AFABE study. Rev. Esp. Cardiol. (Engl. Ed.), 2013, 66(7), 545-552.
[7]
Krahn, A.D.; Manfreda, J.; Tate, R.B.; Mathewson, F.A.; Cuddy, T.E. The natural history of atrial fibrillation: incidence, risk factors, and prognosis in the Manitoba Follow-Up Study. Am. J. Med., 1995, 98(5), 476-484.
[8]
Kannel, W.B.; Wolf, P.A.; Benjamin, E.J.; Levy, D. Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates. Am. J. Cardiol., 1998, 82(8A), 2N-9N.
[9]
Reiffel, J.A. Is arterial stiffness a contributing factor to atrial fibrillation in patients with hypertension? A preliminary investigation. Am. J. Hypertens., 2004, 17(3), 213-216.
[10]
Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther., 2001, 69(3), 89-95.
[11]
Martins, R.P.; Kaur, K.; Hwang, E.; Ramirez, R.J.; Willis, B.C.; Filgueiras-Rama, D.; Ennis, S.R.; Takemoto, Y.; Ponce-Balbuena, D.; Zarzoso, M.; O’Connell, R.P.; Musa, H.; Guerrero-Serna, G.; Avula, U.M.; Swartz, M.F.; Bhushal, S.; Deo, M.; Pandit, S.V.; Berenfeld, O.; Jalife, J. Dominant frequency increase rate predicts transition from paroxysmal to long-term persistent atrial fibrillation. Circulation, 2014, 129(14), 1472-1482.
[12]
Hijazi, Z.; Oldgren, J.; Andersson, U.; Connolly, S.J.; Ezekowitz, M.D.; Hohnloser, S.H.; Reilly, P.A.; Vinereanu, D.; Siegbahn, A.; Yusuf, S.; Wallentin, L. Cardiac biomarkers are associated with an increased risk of stroke and death in patients with atrial fibrillation: a Randomized Evaluation of Long-term Anticoagulation Therapy (RE-LY) substudy. Circulation, 2012, 125(13), 1605-1616.
[13]
Dilaveris, P.E.; Gialafos, E.J.; Sideris, S.K.; Theopistou, A.M.; Andrikopoulos, G.K.; Kyriakidis, M.; Gialafos, J.E.; Toutouzas, P.K. Simple electrocardiographic markers for the prediction of paroxysmal idiopathic atrial fibrillation. The Am. Heart J., 1998, 135(5), 733-738.
[14]
Dogan, U.; Dogan, E.A.; Tekinalp, M.; Tokgoz, O.S.; Aribas, A.; Akilli, H.; Ozdemir, K.; Gok, H.; Yuruten, B. P-wave dispersion for predicting paroxysmal atrial fibrillation in acute ischemic stroke. Int. J. Med. Sci., 2012, 9(1), 108-114.
[15]
Dagli, N.; Karaca, I.; Yavuzkir, M.; Balin, M.; Arslan, N. Are maximum P wave duration and P wave dispersion a marker of target organ damage in the hypertensive population? Clin. Res. Cardiol., 2008, 97(2), 98-104.
[16]
Yildirim, N.; Simsek, V.; Tulmac, M. Atrial electromechanical coupling interval and P-wave dispersion in patients with white coat hypertension. ClinExpHyperten., 2012, 34(5), 350-356.
[17]
Tsioufis, C.; Syrseloudis, D.; Hatziyianni, A. Relationships of CRP and P wave dispersion with atrial fibrillation in hypertensive subjects. Am. J. Hypertens., 2010, 23(2), 202-207.
[18]
Laukkanen, J.A.; Kurl, S.; Eränen, J.; Huttunen, M.; Salonen, J.T. Left atrium size and the risk of cardiovascular death in middle-aged men. Arch. Intern. Med., 2005, 165(15), 1788-1793.
[19]
Vaziri, S.M.; Larson, M.G.; Benjamin, E.J.; Levy, D. Echocardiographic predictors of nonrheumatic atrial fibrillation. The Framingham Heart Study. Circulation, 1994, 89(2), 724-730.
[20]
Phang, R.S.; Isserman, S.M.; Karia, D.; Pandian, N.G.; Homoud, M.K.; Link, M.S.; Estes, N.A., III; Wang, P.J. Echocardiographic evidence of left atrial abnormality in young patients with lone paroxysmal atrial fibrillation. The Am. J. Cardiol., 2004, 94(4), 511-513.
[21]
Vaziri, S.M.; Larson, M.G.; Lauer, M.S.; Benjamin, E.J.; Levy, D. Influence of blood pressure on left atrial size. The Framingham Heart Study. Hypertension, 1995, 25(6), 1155-1160.
[22]
Mitchell, G.F.; Vasan, R.S.; Keyes, M.J.; Parise, H.; Wang, T.J.; Larson, M.G.; D’Agostino, R.B., Sr; Kannel, W.B.; Levy, D.; Benjamin, E.J. Pulse pressure and risk of new-onset atrial fibrillation. JAMA, 2007, 297(7), 709-715.
[23]
Tsang, T.S.; Barnes, M.E.; Bailey, K.R.; Leibson, C.L.; Montgomery, S.C.; Takemoto, Y.; Diamond, P.M.; Marra, M.A.; Gersh, B.J.; Wiebers, D.O.; Petty, G.W.; Seward, J.B. Left atrial volume: important risk marker of incident atrial fibrillation in 1655 older men and women. Mayo Clin. Proc., 2001, 76(5), 467-475.
[24]
Toh, N.; Kanzaki, H.; Nakatani, S.; Ohara, T.; Kim, J.; Kusano, K.F.; Hashimura, K.; Ohe, T.; Ito, H.; Kitakaze, M. Left atrial volume combined with atrial pump function identifies hypertensive patients with a history of paroxysmal atrial fibrillation. Hypertension, 2010, 55(5), 1150-1156.
[25]
Donal, E.; Yamada, H.; Leclercq, C.; Herpin, D. The left atrial appendage, a small, blind-ended structure: A review of its echocardiographic evaluation and its clinical role. Chest, 2005, 128(3), 1853-1862.
[26]
Dudley, S.C., Jr; Hoch, N.E.; McCann, L.A.; Honeycutt, C.; Diamandopoulos, L.; Fukai, T.; Harrison, D.G.; Dikalov, S.I.; Langberg, J. Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage: Role of the NADPH and xanthine oxidases. Circulation, 2005, 112(9), 1266-1273.
[27]
Dogan, A.; Kahraman, H.; Ozturk, M.; Avsar, A. P wave dispersion and left atrial appendage function for predicting recurrence after conversion of atrial fibrillation and relation of p wave dispersion to appendage function. Echocardiography, 2004, 21(6), 523-530.
[28]
Ma, X.; Zhang, X.; Guo, W. Factors to predict recurrence of atrial fibrillation in patients with hypertension. Clin. Cardiol., 2009, 32(5), 264-268.
[29]
Frustaci, A.; Chimenti, C.; Bellocci, F.; Morgante, E.; Russo, M.A.; Maseri, A. Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation, 1997, 96(4), 1180-1184.
[30]
Tan, T.C.; Koutsogeorgis, I.D.; Grapsa, J.; Papadopoulos, C.; Katsivas, A.; Nihoyannopoulos, P. Left atrium and the imaging of atrial fibrosis: catch it if you can! Eur. J. Clin. Invest., 2014, 44(9), 872-881.
[31]
Saraiva, R.M.; Demirkol, S.; Buakhamsri, A.; Greenberg, N.; Popović, Z.B.; Thomas, J.D.; Klein, A.L. Left atrial strain measured by two-dimensional speckle tracking represents a new tool to evaluate left atrial function. J. Am. Soc. Echocardiogr., 2010, 23(2), 172-180.
[32]
Mondillo, S.; Cameli, M.; Caputo, M.L.; Lisi, M.; Palmerini, E.; Padeletti, M.; Ballo, P. Early detection of left atrial strain abnormalities by speckle-tracking in hypertensive and diabetic patients with normal left atrial size. J. Am. Soc. Echocardiogr., 2011, 24(8), 898-908.
[33]
Oakes, R.S.; Badger, T.J.; Kholmovski, E.G.; Akoum, N.; Burgon, N.S.; Fish, E.N.; Blauer, J.J.; Rao, S.N.; DiBella, E.V.; Segerson, N.M.; Daccarett, M.; Windfelder, J.; McGann, C.J.; Parker, D.; MacLeod, R.S.; Marrouche, N.F. Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation, 2009, 119(13), 1758-1767.
[34]
Mahnkopf, C.; Badger, T.J.; Burgon, N.S.; Daccarett, M.; Haslam, T.S.; Badger, C.T.; McGann, C.J.; Akoum, N.; Kholmovski, E.; Macleod, R.S.; Marrouche, N.F. Evaluation of the left atrial substrate in patients with lone atrial fibrillation using delayed-enhanced MRI: implications for disease progression and response to catheter ablation. Heart Rhythm, 2010, 7(10), 1475-1481.
[35]
McDowell, K.S.; Vadakkumpadan, F.; Blake, R.; Blauer, J.; Plank, G.; MacLeod, R.S.; Trayanova, N.A. Methodology for patient-specific modeling of atrial fibrosis as a substrate for atrial fibrillation. J. Electrocardiol., 2012, 45(6), 640-645.
[36]
Manolis, A.J.; Rosei, E.A.; Coca, A.; Cifkova, R.; Erdine, S.E.; Kjeldsen, S.; Lip, G.Y.; Narkiewicz, K.; Parati, G.; Redon, J.; Schmieder, R.; Tsioufis, C.; Mancia, G. Hypertension and atrial fibrillation: Diagnostic approach, prevention and treatment. Position paper of the working group ‘hypertension arrhythmias and thrombosis’ of the European society of hypertension. J. Hypertens., 2012, 30(2), 239-252.
[37]
Chinali, M.; de Simone, G.; Wachtell, K.; Gerdts, E.; Gardin, J.M.; Boman, K.; Nieminen, M.S.; Papademetriou, V.; Dahlöf, B.; Devereux, R.B. Left atrial systolic force in hypertensive patients with left ventricular hypertrophy: The LIFE study. J. Hypertens., 2008, 26(7), 1472-1476.
[38]
Verdecchia, P.; Dagenais, G.; Healey, J.; Gao, P.; Dans, A.L.; Chazova, I.; Binbrek, A.S.; Iacobellis, G.; Ferreira, R.; Holwerda, N.; Karatzas, N.; Keltai, M.; Mancia, G.; Sleight, P.; Teo, K.; Yusuf, S. Blood pressure and other determinants of new-onset atrial fibrillation in patients at high cardiovascular risk in the ongoing telmisartan alone and in combination with ramipril global endpoint trial/telmisartan randomized assessment study in ACE iNtolerant subjects with cardiovascular disease studies. J. Hypertens., 2012, 30(5), 1004-1014.
[39]
Gerdts, E.; Oikarinen, L.; Palmieri, V.; Otterstad, J.E.; Wachtell, K.; Boman, K.; Dahlöf, B.; Devereux, R.B. Correlates of left atrial size in hypertensive patients with left ventricular hypertrophy: The Losartan Intervention for Endpoint Reduction in Hypertension (LIFE) Study. Hypertension, 2002, 39(3), 739-743.
[40]
Boutouyrie, P.; Laurent, S.; Girerd, X.; Benetos, A.; Lacolley, P.; Abergel, E.; Safar, M. Common carotid artery stiffness and patterns of left ventricular hypertrophy in hypertensive patients. Hypertension, 1995, 25(4 Pt 1), 651-659.
[41]
Palmieri, V.; Bella, J.N.; Roman, M.J.; Gerdts, E.; Papademetriou, V.; Wachtell, K.; Nieminen, M.S.; Dahlöf, B.; Devereux, R.B. Pulse pressure/stroke index and left ventricular geometry and function: the LIFE Study. J. Hypertens., 2003, 21(4), 781-787.
[42]
Larstorp, A.C.; Ariansen, I.; Gjesdal, K.; Olsen, M.H.; Ibsen, H.; Devereux, R.B.; Okin, P.M.; Dahlöf, B.; Kjeldsen, S.E.; Wachtell, K. Association of pulse pressure with new-onset atrial fibrillation in patients with hypertension and left ventricular hypertrophy: The Losartan Intervention for Endpoint (LIFE) reduction in hypertension study. Hypertension, 2012, 60(2), 347-353.
[43]
Lantelme, P.; Laurent, S.; Besnard, C.; Bricca, G.; Vincent, M.; Legedz, L.; Milon, H. Arterial stiffness is associated with left atrial size in hypertensive patients. Arch. Cardiovasc. Dis., 2008, 101(1), 35-40.
[44]
Chamontin, B. Evaluation of aortic stiffness to predict and prevent the risk of atrial fibrillation in hypertensive patients in their 50's. Arch. Cardiovasc. Dis., 2008, 101(1), 9-10.
[45]
Mahadavan, G.; Nguyen, T.H.; Horowitz, J.D. Brain natriuretic peptide: A biomarker for all cardiac disease? Curr. Opin. Cardiol., 2014, 29(2), 160-166.
[46]
Tadic, M.; Ivanovic, B.; Cuspidi, C. What do we actually know about the relationship between arterial hypertension and atrial fibrillation? Blood Press., 2014, 23(2), 81-88.
[47]
Suzuki, M.; Yamamoto, K.; Watanabe, S.; Iwata, T.; Hamada, M.; Hiwada, K. Association between elevated brain natriuretic peptide levels and the development of left ventricular hypertrophy in patients with hypertension. Am. J. Med., 2000, 108(8), 627-633.
[48]
Dixen, U.; Ravn, L.; Soeby-Rasmussen, C.; Paulsen, A.W.; Parner, J.; Frandsen, E.; Jensen, G.B. Raised plasma aldosterone and natriuretic peptides in atrial fibrillation. Cardiology, 2007, 108(1), 35-39.
[49]
Latini, R.; Masson, S.; Pirelli, S.; Barlera, S.; Pulitano, G.; Carbonieri, E.; Gulizia, M.; Vago, T.; Favero, C.; Zdunek, D.; Struck, J.; Staszewsky, L.; Maggioni, A.P.; Franzosi, M.G.; Disertori, M. Circulating cardiovascular biomarkers in recurrent atrial fibrillation: data from the GISSI-atrial fibrillation trial. J. Intern. Med., 2011, 269(2), 160-171.
[50]
Badran, H.M.; Eid, M.A.; Michael, A. Doppler-derived indexes and B-type natriuretic peptide in prediction of paroxysmal atrial fibrillation in essential hypertension: a prospective study. Echocardiography, 2007, 24(9), 911-922.
[51]
Karagiannis, A.; Tziomalos, K.; Zamboulis, C. Plasma B-type natriuretic peptide is related to left ventricular mass in hypertensive patients. Eur. Heart J., 2004, 25(21), 1967.
[52]
Giannopoulos, G.; Kossyvakis, C.; Angelidis, C.; Efremidis, M.; Panagopoulou, V.; Letsas, K.; Bouras, G.; Vassilikos, V.P.; Goudevenos, J.; Tousoulis, D.; Lekakis, J.; Deftereos, S. Amino-terminal B-natriuretic peptide levels and postablation recurrence in hypertensive patients with paroxysmal atrial fibrillation. Heart Rhythm, 2015, 12(7), 1470-1475.
[53]
Ichiki, T.; Huntley, B.K.; Burnett, J.C., Jr BNP molecular forms and processing by the cardiac serine protease corin. Adv. Clin. Chem., 2013, 61, 1-31.
[54]
Semenov, A.G.; Tamm, N.N.; Seferian, K.R.; Postnikov, A.B.; Karpova, N.S.; Serebryanaya, D.V.; Koshkina, E.V.; Krasnoselsky, M.I.; Katrukha, A.G. Processing of pro-B-type natriuretic peptide: Furin and corin as candidate convertases. Clin. Chem., 2010, 56(7), 1166-1176.
[55]
Chen, F.; Xia, Y.; Liu, Y.; Zhang, Y.; Song, W.; Zhong, Y.; Gao, L.; Jin, Y.; Li, S.; Jiang, Y.; Yang, Y. Increased plasma corin levels in patients with atrial fibrillation. Clin. Chim. Acta, 2015, 447, 79-85.
[56]
Huang, M.; Gai, X.; Yang, X.; Hou, J.; Lan, X.; Zheng, W.; Chen, F.; He, J. Functional polymorphisms in ACE and CYP11B2 genes and atrial fibrillation in patients with hypertensive heart disease. Clin. Chem. Lab. Med., 2009, 47(1), 32-37.
[57]
Tziakas, D.N.; Chalikias, G.K.; Stakos, D.A.; Papazoglou, D.; Papanas, N.; Papatheodorou, K.; Chatzikyriakou, S.V.; Kotsiou, S.; Maltezos, E.; Boudoulas, H. Effect of angiotensin-converting enzyme insertion/deletion genotype on collagen type I synthesis and degradation in patients with atrial fibrillation and arterial hypertension. Expert Opin. Pharmacother., 2007, 8(14), 2225-2234.
[58]
Yao, S.Y.; Chu, J.M.; Chen, K.P. Inflammation in lone AF. Clin. Cardiol., 2009, 32(2), 94-98.
[59]
Bruins, P.; te Velthuis, H.; Yazdanbakhsh, A.P.; Jansen, P.G.; van Hardevelt, F.W.; de Beaumont, E.M.; Wildevuur, C.R.; Eijsman, L.; Trouwborst, A.; Hack, C.E. Activation of the complement system during and after cardiopulmonary bypass surgery: Postsurgery activation involves C-reactive protein and is associated with postoperative arrhythmia. Circulation, 1997, 96(10), 3542-3548.
[60]
Frustaci, A.; Chimenti, C.; Bellocci, F. Histological substrate of atrial biopsies in patients with lone AF. Circulation, 1997, 96(4), 1180-1184.
[61]
Devaraj, S.; Singh, U.; Jialal, I. The evolving role of C-reactive protein in atherothrombosis. Clin. Chem., 2009, 55(2), 229-238.
[62]
Marott, S.C.; Nordestgaard, B.G.; Zacho, J. Does elevated C-reactive protein increase AF risk? A Mendelian randomization of 47,000 individuals from the general population. J. Am. Coll. Cardiol., 2010, 56(10), 789-795.
[63]
Aviles, RJ1.; Martin, Do.; Apperson-Hansen, C. Inflammation as a risk factor for AF. Circulation, 2003, 108(24), 3006-3010.
[64]
Ellinor, P.T.; Low, A.; Patton, K.K. C-reactive protein in lone AF. Am. J. Cardiol., 2006, 97(9), 1346-1350.
[65]
Chung, M.K.; Martin, D.O.; Sprecher, D. C-reactive protein elevation in patients with atrial arrhythmias: Inflammatory mechanisms and persistence of AF. Circulation, 2001, 104(24), 2886-2891.
[66]
Anderson, J.L.; Allen Maycock, C.A.; Lappé, D.L. Frequency of elevation of C-reactive protein in AF. Am. J. Cardiol., 2004, 94(10), 1255-1259.
[67]
Hu, Y.F.; Chen, Y.J.; Lin, Y.J.; Chen, S.A. Inflammation and the pathogenesis of AF. Nat. Rev. Cardiol., 2015, 12(4), 230-243.
[68]
Lumeng, C.N.; DelProposto, J.B.; Westcott, D.J.; Saltiel, A.R. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes, 2008, 57(12), 3239-3246.
[69]
Lumeng, C.N.; Bodzin, J.L.; Saltiel, A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest., 2007, 117(1), 175-184.
[70]
Mazurek, T.; Kiliszek, M.; Kobylecka, M. Relation of proinflammatory activity of epicardial adipose tissue to the occurrence of AF. Am. J. Cardiol., 2014, 113(9), 1505-1508.
[71]
Guo, Y.; Lip, G.H.; Apostolakis, S. Inflammation in AF. Clin. Cardiol., 2009, 32(2), 94-98.
[72]
Conway, D.S.; Therkelsen, S.K.; Bruunsgaard, H. Prognostic impact of hs-CRP and IL-6 in patients with persistent AF treated with electrical cardioversion. Scand. J. Clin. Lab. Invest., 2009, 69(3), 425-432.
[73]
Li, J.; Song, J.; Jiang, M.H.; Zheng, J.G.; Gao, S.P.; Zhu, J.H.; Pan, M. Interleukin-6 promoter polymorphisms and susceptibility to atrial fibrillation in elderly Han Chinese patients with essential hypertension. J. Interferon Cytokine Res., 2012, Nov 32(11), 542-547.
[74]
Kottkamp, H. AF substrate: the ‘unknown species’ — from lone atrial fibrillation to fibrotic atrial cardiomyopathy. Eur. Heart J., 2013, 34(35), 2731-2738.
[75]
Kottkamp, H. Fibrotic atrial cardiomyopathy: a specific disease/syndrome supplying substrates for AF, atrial tachycardia, sinus node disease, AV node disease, and thromboembolic complications. J. Cardiovasc. Electrophysiol., 2012, 23(7), 797-799.
[76]
Lau, D.H.; Mackenzie, L.; Kelly, D.J. HTN and AF: Evidence of progressive atrial remodeling with electrostructural correlate in a conscious chronically instrumented ovine model. Heart Rhythm, 2010, 7(9), 1282-1290.
[77]
Lau, D.H.; Shipp, N.J.; Kelly, D.J.; Thanigaimani, S.; Neo, M.; Kuklik, P.; Lim, H.S.; Zhang, Y.; Drury, K.; Wong, C.X.; Chia, N.H.; Brooks, A.G.; Dimitri, H.; Saint, D.A.; Brown, L.; Sanders, P. Atrial arrhythmia in ageing spontaneously hypertensive rats: unraveling the substrate in hypertension and ageing. PLoS One, 2013, 8(8), e72416.
[78]
Boldt, A.; Wetzel, U.; Lauschke, J. Fibrosis in left atrial tissue of patients with AF with and without underlying mitral valve disease. Heart, 2004, 90(4), 400-405.
[79]
Kalogeropoulos, A.S.; Tsiodras, S.; Rigopoulos, A.G. Novel association patterns of cardiac remodeling markers in patients with essential HTN and AFBMC. Cardiovasc. Dis., 2011, 11, 77.
[80]
Corradi, D.; Callegari, S.; Maestri, R. Structural remodeling in AF. Nat. Clin. Pract. Cardiovasc. Med., 2008, 5(12), 782-796.
[81]
Shin, S.Y.; Jo, W.M.; Min, T.J.; Kim, B.K.; Song, D.H.; Hyeon, S.H.; Kwon, J.E.; Lee, W.S.; Lee, K.J.; Kim, S.W.; Kim, T.H.; Kim, C.J.; Im, S.I.; Lim, H.E. Gap junction remodelling by chronic pressure overload is related to the increased susceptibility to atrial fibrillation in rat heart. Europace, 2015, 17(4), 655-663.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy