Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Blood-Vessel-on-a-Chip Platforms for Evaluating Nanoparticle Drug Delivery Systems

Author(s): Yuancheng Li, Kai Zhu, Xiao Liu and Yu Shrike Zhang*

Volume 19, Issue 2, 2018

Page: [100 - 109] Pages: 10

DOI: 10.2174/1389200218666170925114636

Price: $65

Abstract

Background: Nanoparticle-based drug delivery systems hold great promise for the treatment of major diseases. However, their slow translation from bench to the clinic posts a concern. It is mainly attributed to the lack of suitable in vitro platforms for rapid and accurate screening of nanomedicine. Recent developments in microfluidic technologies have provided the possibility to reproduce the biomimetic blood vessel microenvironments outside the body, thus offering a convenient means to characterize the in vivo dynamics and biological responses of nanoparticles during circulation.

Objective: In this review, we discuss the challenges facing the field of nanoparticle drug delivery and highlight the urgent need for construction of blood-vessel-on-a-chip platforms for testing nanomedicine. We subsequently illustrate advances in fabricating various well-controlled blood-vessel-on-a-chip platforms, covering a few examples that have used such models for evaluating nanoparticle behaviors. We then summarize with conclusions and perspectives.

Conclusion: We anticipate that, further development of these blood-vessel-on-a-chip platforms with improved biomimetic parameters, tissue specificity, and personalization, will enable their wide applications in drug screening including nanomedicine.

Keywords: Microfluidics, blood vessel, 3D bioprinting, drug delivery, nanomedicine, drug screening.

Next »
Graphical Abstract

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy