Title:Poly(ε-caprolactone) Films with Favourable Properties for Neural Cell Growth
Volume: 14
Issue: 23
Author(s): N. Diban, J. Ramos-Vivas, S. Remuzgo-Martinez, I. Ortiz and A. Urtiaga
Affiliation:
Keywords:
Biodegradable scaffolds, Cell-substrate interaction, Neural regeneration, Poly(ε-caprolactone), Porous films, Topography.
Abstract: The regeneration of brain tissue is one of the major challenges in regenerative medicine due to
the lack of viable grafts to support the re-growth of functional tissue after a traumatic injury. The development
of biocompatible and biodegradable structures with appropriate morphology for the interaction
with neural tissue is required. The objective pursued in this work is to develop a biodegradable 2D scaffold structure for
neural tissue engineering. Poly(ε-caprolactone) (PCL) was the selected material due to its biocompatibility and biodegradability
in the long term. PCL (15%w/w) was dissolved in N-methylpyrrolidone and the film was fabricated by phase inversion
casting technique employing ethanol and isopropanol as coagulation baths. The physical structure, morphology
and topography of the flat scaffolds were characterized using different techniques. The two different scaffolds presented
homogeneous structure with high porosity (higher than 85%), contact angles higher than 90o, high roughness (Ra> 0.6 μm)
and superficial pore sizes of 0.7 and 1.7 μm, respectively. Permeance tests showed high water permeabilities (~350-590
mL m-1 bar-1 h-1) indicative of promising nutrients supply to the cells. Finally, in vitro human glioblastoma cells cultures
after 48 hours showed good cell attachment, proliferation and penetration in the scaffolds. Detailed evaluation of the interaction
between the surface morphology and the properties of the scaffolds with the cell response has been done. Thus,
the PCL films herein fabricated show promising results as scaffolds for neural tissue regeneration.