Title:Biologics: An Update and Challenge of Their Pharmacokinetics
Volume: 15
Issue: 3
Author(s): Shaojun Shi
Affiliation:
Keywords:
Biologics, pharmacokinetics, pharmacokinetic drug interactions, population pharmacokinetic analysis, pharmacokinetic
modelling.
Abstract: Biologics, including but not limited to monoclonal antibodies (mAbs), cytokines, growth factors, enzymes, hormones, vaccines,
antibody fragments (e.g. Fabs), and antibody drug conjugates (ADCs), have a powerful clinical impact on the management of a
wide variety of diseases. When compared to small molecules (SMs), they have different physicochemical properties and demonstrate
unique and complex pharmacokinetic (PK) characteristics that are dependent on several factors such as net charge, neonatal Fc receptor
[FcRn], Fcγ receptor [FcγR], glycosylation, PEGylation or aggregation. While PK principles are consistent, the underlying mechanisms
that determine processes of absorption, distribution, metabolism, and excretion (ADME) of biologics are quite different from those of
SMs. Furthermore, the immunogenicity, especially formation of anti-drug antibody (ADA) and cellular immune responses, may play an
important role in their PK. Investigating the drug interaction (DI) potentials of biologics is inherently complicated, and the most well
documented DI mechanism involves cytokine-mediated changes in drug-metabolizing enzymes. Population PK (Pop-PK) analyses have
been successfully applied in assessing covariates in the disposition of biologics. The mechanism-based (target-mediated drug disposition
[TMDD]) and physiologically based PK (PBPK) models are applied to predict PK characteristics of biologics. Developing a validated
bioanalytical assay (mass assay, activity assay and immunogenicity assay) is critical in determining the PK properties of biologics. In this
review, we will highlight the current knowledge, as well as the challenges around the PK-related issues in optimization of drug development
and clinical practice of biologics.