Generic placeholder image

Current Biotechnology

Editor-in-Chief

ISSN (Print): 2211-5501
ISSN (Online): 2211-551X

Mini-Review Article

Recent Advances in Functions and Biotechnological Potential of Pleiotropic Transcriptional Factor AdpA

Author(s): Bohdan Ostash*

Volume 13, Issue 3, 2024

Published on: 11 September, 2024

Page: [131 - 139] Pages: 9

DOI: 10.2174/0122115501322358240824115255

Price: $65

Open Access Journals Promotions 2
Abstract

The specialized metabolism of the members of class Actinomycetes served as one of the deepest sources of compounds for the pharmaceutical industry. Within this class species of genus Streptomyces stand out as the most diverse and prolific producers of novel scaffolds. At some point at the end of the 20th century, chemical-microbiological screening of actinomycetes seemed to largely sample their specialized metabolism chemical space. Contrary to traditional discovery methods that directly focus on the molecule or its bioactivity, the availability of sequenced actinomycete genomes opens the door for novel biosynthetic gene clusters (BGC) for specialized metabolism. The genome-based approaches reveal the striking richness and diversity of BGCs, to which the “pre-genome” discovery paradigm was myopic. In most cases, small molecules encoded within these BGCs remain unknown, and finding efficient ways to probe such unexplored BGCs becomes one of the pressing issues of current biotechnology. Here, the focus is on the biology of pleiotropic transcriptional factor (TF) AdpA, whose gene is invariably present in Streptomyces genomes. The review will portray how this TF impacts the morphogenesis and metabolism of Streptomyces and how it can be exploited to discover novel natural products.

Keywords: Streptomyces, natural products, antibiotics, pleiotropic regulation, transcriptional factors, adpA.

Next »
Graphical Abstract
[1]
Antimicrobial resistance in the age of COVID-19. Nat Microbiol 2020; 5(6): 779.
[http://dx.doi.org/10.1038/s41564-020-0739-4] [PMID: 32433531]
[2]
Carpouron JE, de Hoog S, Gentekaki E, Hyde KD. Emerging animal-associated fungal diseases. J Fungi (Basel) 2022; 8(6): 611.
[http://dx.doi.org/10.3390/jof8060611] [PMID: 35736094]
[3]
Bo L, Sun H, Li YD, et al. Combating antimicrobial resistance: The silent war. Front Pharmacol 2024; 15: 1347750.
[http://dx.doi.org/10.3389/fphar.2024.1347750] [PMID: 38420197]
[4]
Butler MS, Henderson IR, Capon RJ, Blaskovich MAT. Antibiotics in the clinical pipeline as of December 2022. J Antibiot (Tokyo) 2023; 76(8): 431-73.
[http://dx.doi.org/10.1038/s41429-023-00629-8] [PMID: 37291465]
[5]
Ribeiro da Cunha B, Fonseca LP, Calado CRC. Antibiotic discovery: Where have we come from, where do we go? Antibiotics (Basel) 2019; 8(2): 45.
[http://dx.doi.org/10.3390/antibiotics8020045] [PMID: 31022923]
[6]
Gratia A, Dath S. Bacteriolytic properties of certain molds. Compt Rend Soc Biol 1924; 91: 1442-3.
[7]
Welsch M. Bacteriostatic and bacteriolytic properties of actinomycetes. J Bacteriol 1942; 44(5): 571-88.
[http://dx.doi.org/10.1128/jb.44.5.571-588.1942] [PMID: 16560596]
[8]
Landwehr W, Wolf C, Wink J. Actinobacteria and myxobacteria – Two of the most important bacterial resources for novel antibiotics. Curr Top Microbiol Immunol 2016; 398: 273-302.
[http://dx.doi.org/10.1007/82_2016_503] [PMID: 27704272]
[9]
Walesch S, Birkelbach J, Jézéquel G, et al. Fighting antibiotic resistance—strategies and (pre)clinical developments to find new antibacterials. EMBO Rep 2023; 24(1): e56033.
[http://dx.doi.org/10.15252/embr.202256033] [PMID: 36533629]
[10]
Kautsar SA, Blin K, Shaw S, Weber T, Medema MH. BiG-FAM: The biosynthetic gene cluster families database. Nucleic Acids Res 2021; 49(D1): D490-7.
[http://dx.doi.org/10.1093/nar/gkaa812] [PMID: 33010170]
[11]
Gavriilidou A, Kautsar SA, Zaburannyi N, et al. Compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes. Nat Microbiol 2022; 7(5): 726-35.
[http://dx.doi.org/10.1038/s41564-022-01110-2]
[12]
Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linington RG. Retrospective analysis of natural products provides insights for future discovery trends. Proc Natl Acad Sci USA 2017; 114(22): 5601-6.
[http://dx.doi.org/10.1073/pnas.1614680114] [PMID: 28461474]
[13]
Liu Z, Zhao Y, Huang C, Luo Y. Recent advances in silent gene cluster activation in Streptomyces. Front Bioeng Biotechnol 2021; 9: 632230.
[http://dx.doi.org/10.3389/fbioe.2021.632230] [PMID: 33681170]
[14]
van Bergeijk DA, Terlouw BR, Medema MH, van Wezel GP. Ecology and genomics of actinobacteria: New concepts for natural product discovery. Nat Rev Microbiol 2020; 18(10): 546-58.
[http://dx.doi.org/10.1038/s41579-020-0379-y] [PMID: 32483324]
[15]
Arakawa K. Manipulation of metabolic pathways controlled by signaling molecules, inducers of antibiotic production, for genome mining in Streptomyces spp. Antonie van Leeuwenhoek 2018; 111(5): 743-51.
[http://dx.doi.org/10.1007/s10482-018-1052-6] [PMID: 29476430]
[16]
Baltz RH. Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes. J Ind Microbiol Biotechnol 2016; 43(2-3): 343-70.
[http://dx.doi.org/10.1007/s10295-015-1682-x] [PMID: 26364200]
[17]
Ostash B. Pleiotropic regulatory genes as a tool for Streptomyces strains bioprospecting and improvement. Curr Biotechnol 2021; 10(1): 18-31.
[http://dx.doi.org/10.2174/2211550110666210217105112]
[18]
Ochi K. From microbial differentiation to ribosome engineering. Biosci Biotechnol Biochem 2007; 71(6): 1373-86.
[http://dx.doi.org/10.1271/bbb.70007] [PMID: 17587668]
[19]
Ochi K. Insights into microbial cryptic gene activation and strain improvement: Principle, application and technical aspects. J Antibiot (Tokyo) 2017; 70(1): 25-40.
[http://dx.doi.org/10.1038/ja.2016.82] [PMID: 27381522]
[20]
Lee Y, Hwang S, Kim W, Kim JH, Palsson BO, Cho BK. CRISPR-aided genome engineering for secondary metabolite biosynthesis in Streptomyces. J Ind Microbiol Biotechnol 2024; 51: kuae009.
[http://dx.doi.org/10.1093/jimb/kuae009] [PMID: 38439699]
[21]
Ostash B. Regulatory Genes of AdpA Subfamily in Streptomyces: Function and Evolution: Biology of AdpA Regulators in Streptomyces. 2018.
[http://dx.doi.org/10.2478/9783110627770.]
[22]
Ohnishi Y, Kameyama S, Onaka H, Horinouchi S. The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus : Identification of a target gene of the A-factor receptor. Mol Microbiol 1999; 34(1): 102-11.
[http://dx.doi.org/10.1046/j.1365-2958.1999.01579.x] [PMID: 10540289]
[23]
Yao MD, Ohtsuka J, Nagata K, et al. Complex structure of the DNA-binding domain of AdpA, the global transcription factor in Streptomyces griseus, and a target duplex DNA reveals the structural basis of its tolerant DNA sequence specificity. J Biol Chem 2013; 288(43): 31019-29.
[http://dx.doi.org/10.1074/jbc.M113.473611] [PMID: 24019524]
[24]
Rabyk M, Yushchuk O, Rokytskyy I, Anisimova M, Ostash B. Genomic insights into evolution of AdpA family master regulators of morphological differentiation and secondary metabolism in Streptomyces. J Mol Evol 2018; 86(3-4): 204-15.
[http://dx.doi.org/10.1007/s00239-018-9834-z] [PMID: 29536136]
[25]
Yushchuk O, Ostash I, Vlasiuk I, et al. Heterologous AdpA transcription factors enhance landomycin production in Streptomyces cyanogenus S136 under a broad range of growth conditions. Appl Microbiol Biotechnol 2018; 102(19): 8419-28.
[http://dx.doi.org/10.1007/s00253-018-9249-1] [PMID: 30056513]
[26]
Guo S, Leng T, Sun X, et al. Global Regulator AdpA_1075 regulates morphological differentiation and ansamitocin production in Actinosynnema pretiosum subsp. auranticum. Bioengineering (Basel) 2022; 9(11): 719.
[http://dx.doi.org/10.3390/bioengineering9110719] [PMID: 36421120]
[27]
Ohnishi Y, Yamazaki H, Kato J, Tomono A, Horinouchi S. AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Biosci Biotechnol Biochem 2005; 69(3): 431-9.
[http://dx.doi.org/10.1271/bbb.69.431] [PMID: 15784968]
[28]
Lu T, Wu X, Cao Q, Xia Y, Xun L, Liu H. Sulfane sulfur posttranslationally modifies the global regulator AdpA to influence actinorhodin production and morphological differentiation of Streptomyces coelicolor. MBio 2022; 13(3): e03862-21.
[http://dx.doi.org/10.1128/mbio.03862-21] [PMID: 35467418]
[29]
Płachetka M, Krawiec M, Zakrzewska-Czerwińska J, Wolański M. AdpA positively regulates morphological differentiation and chloramphenicol biosynthesis in Streptomyces venezuelae. Microbiol Spectr 2021; 9(3): e01981-21.
[http://dx.doi.org/10.1128/Spectrum.01981-21] [PMID: 34878326]
[30]
Xu D, Kim TJ, Park ZY, et al. A DNA-binding factor, ArfA, interacts with the bldH promoter and affects undecylprodigiosin production in Streptomyces lividans. Biochem Biophys Res Commun 2009; 379(2): 319-23.
[http://dx.doi.org/10.1016/j.bbrc.2008.12.052] [PMID: 19103157]
[31]
Kato J, Ohnishi Y, Horinouchi S. Autorepression of AdpA of the AraC/XylS family, a key transcriptional activator in the A-factor regulatory cascade in Streptomyces griseus. J Mol Biol 2005; 350(1): 12-26.
[http://dx.doi.org/10.1016/j.jmb.2005.04.058] [PMID: 15907934]
[32]
Wolański M, Donczew R, Kois-Ostrowska A, Masiewicz P, Jakimowicz D, Zakrzewska-Czerwińska J. The level of AdpA directly affects expression of developmental genes in Streptomyces coelicolor. J Bacteriol 2011; 193(22): 6358-65.
[http://dx.doi.org/10.1128/JB.05734-11] [PMID: 21926228]
[33]
Zacharia VM, Ra Y, Sue C, et al. Genetic network architecture and environmental cues drive spatial organization of phenotypic division of labor in Streptomyces coelicolor. MBio 2021; 12(3): e00794-21.
[http://dx.doi.org/10.1128/mBio.00794-21] [PMID: 34006658]
[34]
Xu W, Huang J, Lin R, Shi J, Cohen SN. Regulation of morphological differentiation in S. coelicolor by RNase III (AbsB) cleavage of mRNA encoding the AdpA transcription factor. Mol Microbiol 2010; 75(3): 781-91.
[http://dx.doi.org/10.1111/j.1365-2958.2009.07023.x] [PMID: 20059679]
[35]
Šetinová D, Šmídová K, Pohl P, Musić I, Bobek J. RNase III-Binding-mRNAs revealed novel complementary transcripts in Streptomyces. Front Microbiol 2018; 8: 2693.
[http://dx.doi.org/10.3389/fmicb.2017.02693] [PMID: 29379487]
[36]
Leskiw BK, Mah R, Lawlor EJ, Chater KF. Accumulation of bldA-specified tRNA is temporally regulated in Streptomyces coelicolor A3(2). J Bacteriol 1993; 175(7): 1995-2005.
[http://dx.doi.org/10.1128/jb.175.7.1995-2005.1993] [PMID: 8458842]
[37]
Pettersson BMF, Kirsebom LA. tRNA accumulation and suppression of the bldA phenotype during development in Streptomyces coelicolor. Mol Microbiol 2011; 79(6): 1602-14.
[http://dx.doi.org/10.1111/j.1365-2958.2011.07543.x] [PMID: 21244529]
[38]
Higo A, Horinouchi S, Ohnishi Y. Strict regulation of morphological differentiation and secondary metabolism by a positive feedback loop between two global regulators AdpA and BldA in Streptomyces griseus . Mol Microbiol 2011; 81(6): 1607-22.
[http://dx.doi.org/10.1111/j.1365-2958.2011.07795.x.]
[39]
Koshla O, Yushchuk O, Ostash I, et al. Gene miaA for post-transcriptional modification of tRNA XXA is important for morphological and metabolic differentiation in Streptomyces. Mol Microbiol 2019; 112(1): 249-65.
[http://dx.doi.org/10.1111/mmi.14266] [PMID: 31017319]
[40]
Wang W, Ji J, Li X, et al. Angucyclines as signals modulate the behaviors of Streptomyces coelicolor. Proc Natl Acad Sci USA 2014; 111(15): 5688-93.
[http://dx.doi.org/10.1073/pnas.1324253111] [PMID: 24706927]
[41]
Den Hengst CD, Tran NT, Bibb MJ, Chandra G, Leskiw BK, Buttner MJ. Genes essential for morphological development and antibiotic production in Streptomyces coelicolor are targets of BldD during vegetative growth. Mol Microbiol 2010; 78(2): 361-79.
[http://dx.doi.org/10.1111/j.1365-2958.2010.07338.x] [PMID: 20979333]
[42]
Tschowri N, Schumacher MA, Schlimpert S, et al. Tetrameric c-di-GMP mediates effective transcription factor dimerization to control Streptomyces development. Cell 2014; 158(5): 1136-47.
[http://dx.doi.org/10.1016/j.cell.2014.07.022] [PMID: 25171413]
[43]
Wang W, Zhang J, Liu X, et al. Identification of a butenolide signaling system that regulates nikkomycin biosynthesis in Streptomyces. J Biol Chem 2018; 293(52): 20029-40.
[http://dx.doi.org/10.1074/jbc.RA118.005667] [PMID: 30355730]
[44]
Antonov IV, O’Loughlin S, Gorohovski AN, O’Connor PBF, Baranov PV, Atkins JF. Streptomyces rare codon UUA: from features associated with 2 adpA related locations to candidate phage regulatory translational bypassing. RNA Biol 2023; 20(1): 926-42.
[http://dx.doi.org/10.1080/15476286.2023.2270812] [PMID: 37968863]
[45]
Shin SK, Xu D, Kwon HJ, Suh JW. S-adenosylmethionine activates adpA transcription and promotes streptomycin biosynthesis in Streptomyces griseus . FEMS Microbiol Lett 2006; 259(1): 53-9.
[http://dx.doi.org/10.1111/j.1574-6968.2006.00246.x.]
[46]
Shigi N. Recent advances in our understanding of the biosynthesis of sulfur modifications in tRNAs. Front Microbiol 2018; 9: 2679.
[http://dx.doi.org/10.3389/fmicb.2018.02679] [PMID: 30450093]
[47]
Esakova OA, Grove TL, Yennawar NH, et al. Structural basis for tRNA methylthiolation by the radical SAM enzyme MiaB. Nature 2021; 597(7877): 566-70.
[http://dx.doi.org/10.1038/s41586-021-03904-6] [PMID: 34526715]
[48]
Takano E, Tao M, Long F, et al. A rare leucine codon in adpA is implicated in the morphological defect of bldA mutants of Streptomyces coelicolor. Mol Microbiol 2003; 50(2): 475-86.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03728.x] [PMID: 14617172]
[49]
Nguyen KT, Tenor J, Stettler H, Nguyen LT, Nguyen LD, Thompson CJ. Colonial differentiation in Streptomyces coelicolor depends on translation of a specific codon within the adpA gene. J Bacteriol 2003; 185(24): 7291-6.
[http://dx.doi.org/10.1128/JB.185.24.7291-7296.2003] [PMID: 14645292]
[50]
Lee HN, Kim JS, Kim P, Lee HS, Kim ES. Repression of antibiotic downregulator WblA by AdpA in Streptomyces coelicolor. Appl Environ Microbiol 2013; 79(13): 4159-63.
[http://dx.doi.org/10.1128/AEM.00546-13] [PMID: 23603676]
[51]
McCormick JR, Flärdh K. Signals and regulators that govern Streptomyces development. FEMS Microbiol Rev 2012; 36(1): 206-31.
[http://dx.doi.org/10.1111/j.1574-6976.2011.00317.x] [PMID: 22092088]
[52]
Hirano S, Kato J, Ohnishi Y, Horinouchi S. Control of the Streptomyces Subtilisin inhibitor gene by AdpA in the A-factor regulatory cascade in Streptomyces griseus. J Bacteriol 2006; 188(17): 6207-16.
[http://dx.doi.org/10.1128/JB.00662-06] [PMID: 16923887]
[53]
Wu Y, Kang Q, Zhang LL, Bai L. subtilisin-involved morphology engineering for improved antibiotic production in actinomycetes. Biomolecules 2020; 10(6): 851.
[http://dx.doi.org/10.3390/biom10060851] [PMID: 32503302]
[54]
Akanuma G, Hara H, Ohnishi Y, Horinouchi S. Dynamic changes in the extracellular proteome caused by absence of a pleiotropic regulator AdpA in Streptomyces griseus. Mol Microbiol 2009; 73(5): 898-912.
[http://dx.doi.org/10.1111/j.1365-2958.2009.06814.x] [PMID: 19678896]
[55]
Guyet A, Gominet M, Benaroudj N, Mazodier P. Regulation of the clpP1clpP2 operon by the pleiotropic regulator AdpA in Streptomyces lividans. Arch Microbiol 2013; 195(12): 831-41.
[http://dx.doi.org/10.1007/s00203-013-0918-2] [PMID: 24196782]
[56]
Lu T, Wang Q, Cao Q, Xia Y, Xun L, Liu H. The pleiotropic regulator AdpA regulates the removal of excessive sulfane sulfur in Streptomyces coelicolor. Antioxidants 2023; 12(2): 312.
[http://dx.doi.org/10.3390/antiox12020312] [PMID: 36829871]
[57]
Zhu D, He X, Zhou X, Deng Z. Expression of the melC operon in several Streptomyces strains is positively regulated by AdpA, an AraC family transcriptional regulator involved in morphological development in Streptomyces coelicolor. J Bacteriol 2005; 187(9): 3180-7.
[http://dx.doi.org/10.1128/JB.187.9.3180-3187.2005] [PMID: 15838045]
[58]
Yushchuk O, Ostash I, Mösker E, et al. Eliciting the silent lucensomycin biosynthetic pathway in Streptomyces cyanogenus S136 via manipulation of the global regulatory gene adpA. Sci Rep 2021; 11(1): 3507.
[http://dx.doi.org/10.1038/s41598-021-82934-6] [PMID: 33568768]
[59]
Takano H, Asano K, Beppu T, Ueda K. Role of σH paralogs in intracellular melanin formation and spore development in Streptomyces griseus . Gene 2007; 393(1-2): 43-52.
[http://dx.doi.org/10.1016/j.gene.2007.01.026] [PMID: 17346906]
[60]
Kang Y, Wu W, Zhang F, et al. AdpA lin regulates lincomycin and melanin biosynthesis by modulating precursors flux in Streptomyces lincolnensis. J Basic Microbiol 2023; 63(6): 622-31.
[http://dx.doi.org/10.1002/jobm.202200692] [PMID: 36734183]
[61]
Hara H, Ohnishi Y, Horinouchi S. DNA microarray analysis of global gene regulation by A-factor in Streptomyces griseus. Microbiology (Reading) 2009; 155(7): 2197-210.
[http://dx.doi.org/10.1099/mic.0.027862-0] [PMID: 19389771]
[62]
Higo A, Hara H, Horinouchi S, Ohnishi Y. Genome-wide distribution of AdpA, a global regulator for secondary metabolism and morphological differentiation in Streptomyces, revealed the extent and complexity of the AdpA regulatory network. DNA Res 2012; 19(3): 259-74.
[http://dx.doi.org/10.1093/dnares/dss010] [PMID: 22449632]
[63]
Guyet A, Benaroudj N, Proux C, Gominet M, Coppée JY, Mazodier P. Identified members of the Streptomyces lividans AdpA regulon involved in differentiation and secondary metabolism. BMC Microbiol 2014; 14(1): 81.
[http://dx.doi.org/10.1186/1471-2180-14-81] [PMID: 24694298]
[64]
Makitrynskyy R, Tsypik O, Bechthold A. Genetic engineering of Streptomyces ghanaensis ATCC14672 for improved production of moenomycins. Microorganisms 2021; 10(1): 30.
[http://dx.doi.org/10.3390/microorganisms10010030] [PMID: 35056478]
[65]
Makitrynskyy R, Ostash B, Tsypik O, et al. Pleiotropic regulatory genes bldA, adpA and absB are implicated in production of phosphoglycolipid antibiotic moenomycin. Open Biol 2013; 3(10): 130121.
[http://dx.doi.org/10.1098/rsob.130121] [PMID: 24153004]
[66]
Zhang S, Klementz D, Zhu J, et al. Genome mining reveals the origin of a bald phenotype and a cryptic nucleocidin gene cluster in Streptomyces asterosporus DSM 41452. J Biotechnol 2019; 292: 23-31.
[http://dx.doi.org/10.1016/j.jbiotec.2018.12.016] [PMID: 30641108]
[67]
Xu J, Zhang J, Zhuo J, Li Y, Tian Y, Tan H. Activation and mechanism of a cryptic oviedomycin gene cluster via the disruption of a global regulatory gene, adpA, in Streptomyces ansochromogenes. J Biol Chem 2017; 292(48): 19708-20.
[http://dx.doi.org/10.1074/jbc.M117.809145] [PMID: 28972184]
[68]
Liu X, Sun X, He W, Tian X, Zhuang Y, Chu J. Dynamic changes of metabolomics and expression of candicidin biosynthesis gene cluster caused by the presence of a pleiotropic regulator AdpA in Streptomyces ZYJ-6. Bioprocess Biosyst Eng 2019; 42(8): 1353-65.
[http://dx.doi.org/10.1007/s00449-019-02135-4] [PMID: 31062087]
[69]
Mao XM, Luo S, Zhou RC, et al. Transcriptional regulation of the daptomycin gene cluster in Streptomyces roseosporus by an autoregulator, AtrA. J Biol Chem 2015; 290(12): 7992-8001.
[http://dx.doi.org/10.1074/jbc.M114.608273] [PMID: 25648897]
[70]
Chen Q, Zhu J, Li X, Wen Y. Transcriptional regulator DasR represses daptomycin production through both direct and cascade mechanisms in Streptomyces roseosporus. Antibiotics (Basel) 2022; 11(8): 1065.
[http://dx.doi.org/10.3390/antibiotics11081065] [PMID: 36009934]
[71]
Kang Y, Wang Y, Hou B, et al. AdpAlin, a pleiotropic transcriptional regulator, is involved in the cascade regulation of lincomycin biosynthesis in Streptomyces lincolnensis. Front Microbiol 2019; 10: 2428.
[http://dx.doi.org/10.3389/fmicb.2019.02428] [PMID: 31708899]
[72]
Yu P, Bu QT, Tang YL, Mao XM, Li YQ. Bidirectional regulation of AdpAch in controlling the expression of scnRI and scnRII in the natamycin biosynthesis of Streptomyces chattanoogensis L10. Front Microbiol 2018; 9: 316.
[http://dx.doi.org/10.3389/fmicb.2018.00316] [PMID: 29551998]
[73]
Bignell DRD, Francis IM, Fyans JK, Loria R. Thaxtomin A production and virulence are controlled by several bld gene global regulators in Streptomyces scabies. Mol Plant Microbe Interact 2014; 27(8): 875-85.
[http://dx.doi.org/10.1094/MPMI-02-14-0037-R] [PMID: 24678834]
[74]
Huang R, Liu H, Zhao W, et al. AdpA, a developmental regulator, promotes ε-poly-l-lysine biosynthesis in Streptomyces albulus. Microb Cell Fact 2022; 21(1): 60.
[http://dx.doi.org/10.1186/s12934-022-01785-6] [PMID: 35397580]
[75]
López-García MT, Santamarta I, Liras P. Morphological differentiation and clavulanic acid formation are affected in a Streptomyces clavuligerus adpA-deleted mutant. Microbiology (Reading) 2010; 156(8): 2354-65.
[http://dx.doi.org/10.1099/mic.0.035956-0] [PMID: 20447998]
[76]
Claesen J, Bibb MJ. Biosynthesis and regulation of grisemycin, a new member of the linaridin family of ribosomally synthesized peptides produced by Streptomyces griseus IFO 13350. J Bacteriol 2011; 193(10): 2510-6.
[http://dx.doi.org/10.1128/JB.00171-11] [PMID: 21421760]
[77]
Bu XL, Weng JY, He BB, Xu MJ, Xu J. A Novel AdpA homologue negatively regulates morphological differentiation in Streptomyces xiamenensis 318. Appl Environ Microbiol 2019; 85(7): e03107-18.
[http://dx.doi.org/10.1128/AEM.03107-18] [PMID: 30683747]
[78]
Hemmerling F, Piel J. Strategies to access biosynthetic novelty in bacterial genomes for drug discovery. Nat Rev Drug Discov 2022; 21(5): 359-78.
[http://dx.doi.org/10.1038/s41573-022-00414-6] [PMID: 35296832]
[79]
Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 2020; 83(3): 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285] [PMID: 32162523]
[80]
Kautsar SA, van der Hooft JJJ, de Ridder D, Medema MH. BiG-SLiCE: A highly scalable tool maps the diversity of 1.2 million biosynthetic gene clusters. Gigascience 2021; 10(1): giaa154.
[http://dx.doi.org/10.1093/gigascience/giaa154] [PMID: 33438731]
[81]
Covington BC, Xu F, Seyedsayamdost MR. A natural product chemist’s guide to unlocking silent biosynthetic gene clusters. Annu Rev Biochem 2021; 90(1): 763-88.
[http://dx.doi.org/10.1146/annurev-biochem-081420-102432] [PMID: 33848426]
[82]
Lacey HJ, Rutledge PJ. Recently discovered secondary metabolites from Streptomyces species. Molecules 2022; 27(3): 887.
[http://dx.doi.org/10.3390/molecules27030887] [PMID: 35164153]
[83]
Pepler MA, Zhang X, Hindra , Elliot MA. Inducing global expression of actinobacterial biosynthetic gene clusters. Methods Mol Biol 2022; 2489: 157-71.
[http://dx.doi.org/10.1007/978-1-0716-2273-5_9] [PMID: 35524050]
[84]
Lee N, Choi M, Kim W, et al. Re-classification of Streptomyces venezuelae strains and mining secondary metabolite biosynthetic gene clusters. iScience 2021; 24(12): 103410.
[http://dx.doi.org/10.1016/j.isci.2021.103410] [PMID: 34877485]
[85]
Caicedo-Montoya C, Manzo-Ruiz M, Ríos-Estepa R. Pan-Genome of the genus Streptomyces and prioritization of biosynthetic gene clusters with potential to produce antibiotic compounds. Front Microbiol 2021; 12: 677558.
[http://dx.doi.org/10.3389/fmicb.2021.677558] [PMID: 34659136]
[86]
Martinet L, Naômé A, Baiwir D, De Pauw E, Mazzucchelli G, Rigali S. On the risks of phylogeny-based strain prioritization for drug discovery: Streptomyces lunaelactis as a case Study. Biomolecules 2020; 10(7): 1027.
[http://dx.doi.org/10.3390/biom10071027] [PMID: 32664387]
[87]
Hug JJ, Bader CD, Remškar M, Cirnski K, Müller R. Concepts and methods to access novel antibiotics from actinomycetes. Antibiotics (Basel) 2018; 7(2): 44.
[http://dx.doi.org/10.3390/antibiotics7020044] [PMID: 29789481]
[88]
Belknap KC, Park CJ, Barth BM, Andam CP. Genome mining of biosynthetic and chemotherapeutic gene clusters in Streptomyces bacteria. Sci Rep 2020; 10(1): 2003.
[http://dx.doi.org/10.1038/s41598-020-58904-9] [PMID: 32029878]
[89]
Pishchany G, Mevers E, Ndousse-Fetter S, et al. Amycomicin is a potent and specific antibiotic discovered with a targeted interaction screen. Proc Natl Acad Sci USA 2018; 115(40): 10124-9.
[http://dx.doi.org/10.1073/pnas.1807613115] [PMID: 30228116]
[90]
Bisacchi GS, Manchester JI. A new-class antibacterial-almost. lessons in drug discovery and development: A critical analysis of more than 50 years of effort toward ATPase inhibitors of DNA gyrase and topoisomerase IV. ACS Infect Dis 2015; 1(1): 4-41.
[http://dx.doi.org/10.1021/id500013t] [PMID: 27620144]
[91]
Montiel D, Kang HS, Chang FY, Charlop-Powers Z, Brady SF. Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters. Proc Natl Acad Sci USA 2015; 112(29): 8953-8.
[http://dx.doi.org/10.1073/pnas.1507606112] [PMID: 26150486]
[92]
Yan Y, Xia H. The roles of SARP family regulators involved in secondary metabolism in Streptomyces. Front Microbiol 2024; 15: 1368809.
[http://dx.doi.org/10.3389/fmicb.2024.1368809] [PMID: 38550856]
[93]
Du D, Katsuyama Y, Onaka H, et al. Production of a novel amide- containing polyene by activating a cryptic biosynthetic gene cluster in Streptomyces sp. MSC090213JE08. ChemBioChem 2016; 17(15): 1464-71.
[http://dx.doi.org/10.1002/cbic.201600167] [PMID: 27311327]
[94]
Krause J, Handayani I, Blin K, Kulik A, Mast Y. Disclosing the potential of the SARP-type regulator PapR2 for the activation of antibiotic gene clusters in Streptomycetes. Front Microbiol 2020; 11: 225.
[http://dx.doi.org/10.3389/fmicb.2020.00225] [PMID: 32132989]
[95]
Qi Y, Nepal KK, Blodgett JAV. A comparative metabologenomic approach reveals mechanistic insights into Streptomyces antibiotic crypticity. Proc Natl Acad Sci USA 2021; 118(31): e2103515118.
[http://dx.doi.org/10.1073/pnas.2103515118] [PMID: 34326261]
[96]
Melnyk S, Stepanyshyn A, Yushchuk O, et al. Genetic approaches to improve clorobiocin production in Streptomyces roseochromogenes NRRL 3504. Appl Microbiol Biotechnol 2022; 106(4): 1543-56.
[http://dx.doi.org/10.1007/s00253-022-11814-4] [PMID: 35147743]
[97]
Tay DWP, Tan LL, Heng E, et al. Exploring a general multi-pronged activation strategy for natural product discovery in Actinomycetes. Commun Biol 2024; 7(1): 50.
[http://dx.doi.org/10.1038/s42003-023-05648-7] [PMID: 38184720]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy