Title:Improving Image Quality and Diagnostic Performance of CCTA in Patients with Challenging Heart Rate Conditions using a Deep Learning-based Motion Correction Algorithm
Volume: 20
Author(s): Ziwei Wang, Li Bao, Sihua Zhong, Fan Xiong, Linze Zhong, Daojin Wang, Tao Shuai and Min Wu*
Affiliation:
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular lmaging Key Laboratory of Sichuan Province, West
China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
Keywords:
Coronary computed tomography angiography, Motion artifacts, Motion correction, Signal-to-noise ratio, HR, HRV.
Abstract:
Objective:
Challenging HR conditions, such as elevated Heart Rate (HR) and Heart Rate Variability (HRV), are major contributors to motion artifacts in
Coronary Computed Tomography Angiography (CCTA). This study aims to assess the impact of a deep learning-based motion correction
algorithm (MCA) on motion artifacts in patients with challenging HR conditions, focusing on image quality and diagnostic performance of CCTA.
Materials and Methods:
This retrospective study included 240 patients (mean HR: 88.1 ± 14.5 bpm; mean HRV: 32.6 ± 45.5 bpm) who underwent CCTA between June,
2020 and December, 2020. CCTA images were reconstructed with and without the MCA. The signal-to-noise ratio (SNR) and contrast-to-noise
ratio (CNR) were measured to assess objective image quality. Subjective image quality was evaluated by two radiologists using a 5-point scale
regarding vessel visualization, diagnostic confidence, and overall image quality. Moreover, all vessels with scores ≥ 3 were considered clinically
interpretable. The diagnostic performance of CCTA with and without MCA for detecting significant stenosis (≥ 50%) was assessed in 34 patients
at both per-vessel and per-patient levels, using invasive coronary angiography as the reference standard.
Results:
The MCA significantly improved subjective image quality, increasing the vessel interpretability from 89.9% (CI: 0.88-0.92) to 98.8% (CI:
0.98-0.99) (p < 0.001). The use of MCA resulted in significantly higher diagnostic performance in both patient-based (AUC: 0.83 vs. 0.58, p =
0.04) and vessel-based (AUC: 0.92 vs. 0.81, p < 0.001) analyses, with the vessel-based accuracy notably increased from 79.4% (CI: 0.72-0.86) to
91.2% (CI: 0.85-0.95) (p = 0.01). There were no significant differences in objective image quality between the two reconstructions. The mean
effective dose in this study was 2.8 ± 1.1 mSv.
Conclusion:
The use of MCA allows for obtaining high-quality CCTA images and superior diagnostic performance with low radiation exposure in patients with
elevated HR and HRV.