Generic placeholder image

Current Enzyme Inhibition

Editor-in-Chief

ISSN (Print): 1573-4080
ISSN (Online): 1875-6662

Review Article

The Transformative Potential of Oxidoreductases in Pollutant Remediation – A Review

Author(s): Asia Khalil, Ayman Iqbal, Muhammad Aqib Shabir*, Ammarah Hasnain and Zainab Niaz

Volume 20, Issue 3, 2024

Published on: 13 August, 2024

Page: [173 - 184] Pages: 12

DOI: 10.2174/0115734080313745240802110504

Price: $65

Open Access Journals Promotions 2
Abstract

In this modern era, the environment is being contaminated with toxic pollutants as a result of anthropogenic activities. To overcome the harmful effects of pollutants, scientists have developed ideas and technologies. Biotechnology provides a green approach for decontaminating the environment, i.e., bioremediation. Several organisms have been explored for their enzymes. Enzymes belonging to various classes are useful for degrading, transforming, or removal of pollutants. Oxidoreductases produced by different plants, bacteria, and fungi are useful for deterioration of toxic pollutants, like compounds having aroma, called aromatic compounds (benzene, chlorine, phenols, phenanthrene, etc.), PAHs (Polyaromatic Hydrocarbons), various dyes, etc. Oxidoreductases are further classified as laccases, peroxidases, and oxygenases. All three classes have proven to be efficacious in the field of bioremediation. Microorganism strains have also been genetically engineered for the production of enzymes. Oxidoreductases can be used to remove pollutants from industrial waste. This review has classified all the species that produce oxidoreductase enzymes, their mechanism of action, and the pollutants that have been removed by using oxidoreductases.

Keywords: Environment, mechanism, pollutants, microorganisms, enzymes, oxidoreductases.

[1]
El-Sheekh, M.M.; Mahmoud, Y.A. Technological approach of bioremediation using microbial tools: Bacteria, fungi, and algae. Handbook of Research on Inventive Bioremediation Techniques; IGI Global: Hershey, Pennsylvania, 2017, pp. 134-154.
[http://dx.doi.org/10.4018/978-1-5225-2325-3.ch006]
[2]
Abd El-Rahim, W.M.; El-Ardy, O.A.M.; Mohammad, F.H.A. The effect of pH on bioremediation potential for the removal of direct violet textile dye by Aspergillus niger. Desalination, 2009, 249(3), 1206-1211.
[http://dx.doi.org/10.1016/j.desal.2009.06.037]
[3]
Qiu, M.; Liu, L.; Ling, Q. Biochar for the removal of contaminants from soil and water: A review. Biochar, 2022, 4(1), 19.
[http://dx.doi.org/10.1007/s42773-022-00146-1]
[4]
Kiyono, M.; Pan-Hou, H. Genetic engineering of bacteria for environmental remediation of mercury. J. Health Sci., 2006, 52(3), 199-204.
[http://dx.doi.org/10.1248/jhs.52.199]
[5]
Gu, W.; Li, X.; Li, Q.; Hou, Y.; Zheng, M.; Li, Y. Combined remediation of polychlorinated naphthalene-contaminated soil under multiple scenarios: An integrated method of genetic engineering and environmental remediation technology. J. Hazard. Mater., 2021, 405, 124139.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124139] [PMID: 33092886]
[6]
Sharma, P.; Bano, A.; Singh, S.P. Engineered microbes as effective tools for the remediation of polyaromatic aromatic hydrocarbons and heavy metals. Chemosphere, 2022, 306, 135538.
[http://dx.doi.org/10.1016/j.chemosphere.2022.135538] [PMID: 35792210]
[7]
Kumar, K.; Shinde, A.; Aeron, V.; Verma, A.; Arif, N.S. Genetic engineering of plants for phytoremediation: Advances and challenges. J. Plant Biochem. Biotechnol., 2023, 32(1), 12-30.
[http://dx.doi.org/10.1007/s13562-022-00776-3]
[8]
Sharma, B.; Dangi, A.K.; Shukla, P. Contemporary enzyme based technologies for bioremediation: A review. J. Environ. Manage., 2018, 210, 10-22.
[http://dx.doi.org/10.1016/j.jenvman.2017.12.075] [PMID: 29329004]
[9]
Bhandari, S.; Poudel, D.K.; Marahatha, R. Microbial enzymes used in bioremediation. J. Chem., 2021, 2021, 1-17.
[http://dx.doi.org/10.1155/2021/8849512]
[10]
Dave, S.; Das, J. Role of microbial enzymes for biodegradation and bioremediation of environmental pollutants: Challenges and future prospects.Bioremediation for Environmental Sustainability; Elsevier: Amsterdam, 2021, pp. 325-346.
[11]
Jugder, B.E.; Ertan, H.; Bohl, S.; Lee, M.; Marquis, C.P.; Manefield, M. Organohalide respiring bacteria and reductive dehalogenases: Key tools in organohalide bioremediation. Front. Microbiol., 2016, 7, 249.
[http://dx.doi.org/10.3389/fmicb.2016.00249] [PMID: 26973626]
[12]
Roumani, M.; Besseau, S.; Gagneul, D.; Robin, C.; Larbat, R. Phenolamides in plants: An update on their function, regulation, and origin of their biosynthetic enzymes. J. Exp. Bot., 2021, 72(7), 2334-2355.
[http://dx.doi.org/10.1093/jxb/eraa582] [PMID: 33315095]
[13]
Day, M.A.; Jarrom, D.; Christofferson, A.J. The structures of E. coli NfsA bound to the antibiotic nitrofurantoin; to 1,4-benzoquinone and to FMN. Biochem. J., 2021, 478(13), 2601-2617.
[http://dx.doi.org/10.1042/BCJ20210160] [PMID: 34142705]
[14]
Bhatt, P.; Gangola, S.; Bhandari, G. New insights into the degradation of synthetic pollutants in contaminated environments. Chemosphere, 2021, 268, 128827.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128827] [PMID: 33162154]
[15]
Pathak, A.; Gupta, M.K.; Rabani, M.S. Enzymatic approach for phytoremediation.Aquatic Contamination: Tolerance and Bioremediation; Wiley: Hoboken, New Jersey, 2024, pp. 123-130.
[16]
Demkiv, O.M.; Gayda, G.Z.; Broda, D.; Gonchar, M.V. Extracellular laccase from Monilinia fructicola: Isolation, primary characterization and application. Cell Biol. Int., 2021, 45(3), 536-548.
[http://dx.doi.org/10.1002/cbin.11316] [PMID: 32052524]
[17]
Chen, M.; Yao, S.; Zhang, H.; Liang, X. Purification and characterization of a versatile peroxidase from edible mushroom Pleurotus eryngii. Chin. J. Chem. Eng., 2010, 18(5), 824-829.
[http://dx.doi.org/10.1016/S1004-9541(09)60134-8]
[18]
Sellami, K.; Couvert, A.; Nasrallah, N.; Maachi, R.; Abouseoud, M.; Amrane, A. Peroxidase enzymes as green catalysts for bioremediation and biotechnological applications: A review. Sci. Total Environ., 2022, 806(Pt 2), 150500.
[http://dx.doi.org/10.1016/j.scitotenv.2021.150500] [PMID: 34852426]
[19]
Bansal, N.; Kanwar, S.S. Peroxidase(s) in environment protection. ScientificWorldJournal, 2013, 2013, 714639.
[20]
Sadaqat, B.; Khatoon, N.; Malik, A.Y. Enzymatic decolorization of melanin by lignin peroxidase from Phanerochaete chrysosporium. Sci. Rep., 2020, 10(1), 20240.
[http://dx.doi.org/10.1038/s41598-020-76376-9] [PMID: 33214596]
[21]
Emami, E.; Zolfaghari, P.; Golizadeh, M. Effects of stabilizers on sustainability, activity and decolorization performance of Manganese Peroxidase enzyme produced by Phanerochaete chrysosporium. J. Environ. Chem. Eng., 2020, 8(6), 104459.
[http://dx.doi.org/10.1016/j.jece.2020.104459]
[22]
Dhagat, S.; Jujjavarapu, S.E. Utility of lignin‐modifying enzymes: A green technology for organic compound mycodegradation. J. Chem. Technol. Biotechnol., 2022, 97(2), 343-358.
[http://dx.doi.org/10.1002/jctb.6807]
[23]
Nakazawa, T.; Yamaguchi, I.; Zhang, Y. Experimental evidence that lignin‐modifying enzymes are essential for degrading plant cell wall lignin by Pleurotus ostreatus using CRISPR/Cas9. Environ. Microbiol., 2023, 25(10), 1909-1924.
[http://dx.doi.org/10.1111/1462-2920.16427] [PMID: 37218079]
[24]
Zhu, X.; Wang, X.; Wang, L.; Fan, X.; Li, X.; Jiang, Y. Biodegradation of lincomycin in wastewater by two-level bio-treatment using chloroperoxidase and activated sludge: Degradation route and eco-toxicity evaluation. Environ Technol Innov, 2020, 20, 101114.
[http://dx.doi.org/10.1016/j.eti.2020.101114]
[25]
Zhang, X.; Li, X.; Jiang, Y.; Hu, M.; Li, S.; Zhai, Q. Combination of enzymatic degradation by chloroperoxidase with activated sludge treatment to remove sulfamethoxazole: Performance, and eco-toxicity assessment. J. Chem. Technol. Biotechnol., 2016, 91(11), 2802-2809.
[http://dx.doi.org/10.1002/jctb.4888]
[26]
Lin, L.; Wang, X.; Cao, L.; Xu, M. Lignin catabolic pathways reveal unique characteristics of dye‐decolorizing peroxidases in Pseudomonas putida. Environ. Microbiol., 2019, 21(5), 1847-1863.
[http://dx.doi.org/10.1111/1462-2920.14593] [PMID: 30882973]
[27]
Ellouze, M.; Sayadi, S. White-Rot fungi and their enzymes as a biotechnological tool for xenobiotic bioremediation.Management of Hazardous Wastes; IntechOpen Ltd: London, 2016.
[28]
Regalado, C.; García-Almendárez, B.E.; Duarte-Vázquez, M.A. Biotechnological applications of peroxidases. Phytochem. Rev., 2004, 3(1-2), 243-256.
[http://dx.doi.org/10.1023/B:PHYT.0000047797.81958.69]
[29]
Caza, N.; Bewtra, J.K.; Biswas, N.; Taylor, K.E. Removal of phenolic compounds from synthetic wastewater using soybean peroxidase. Water Res., 1999, 33(13), 3012-3018.
[http://dx.doi.org/10.1016/S0043-1354(98)00525-9]
[30]
Yadav, A.N.; Mishra, S.; Singh, S.; Gupta, A. Recent advancement in white biotechnology through fungi: Volume 1: Diversity and enzymes perspectives.Springer: Berlin, Heidelberg, 2019.
[31]
Vara, S.; Karnena, M. Fungal enzymatic degradation of industrial effluents – A review. Curr. Res. Environ. Appl. Mycol., 2020, 10(1), 417-442.
[http://dx.doi.org/10.5943/cream/10/1/33]
[32]
Cheng, M.; Chen, D.; Parales, R.E.; Jiang, J. Oxygenases as powerful weapons in the microbial degradation of pesticides. Annu. Rev. Microbiol., 2022, 76(1), 325-348.
[http://dx.doi.org/10.1146/annurev-micro-041320-091758] [PMID: 35650666]
[33]
Shi, T.; Sun, X.; Yuan, Q.; Wang, J.; Shen, X. Exploring the role of flavin-dependent monooxygenases in the biosynthesis of aromatic compounds. Biotechnology for Biofuels and Bioproducts, 2024, 17(1), 46.
[http://dx.doi.org/10.1186/s13068-024-02490-9] [PMID: 38520003]
[34]
Li, Z.; Jiang, Y.; Guengerich, F.P.; Ma, L.; Li, S.; Zhang, W. Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications. J. Biol. Chem., 2020, 295(3), 833-849.
[http://dx.doi.org/10.1016/S0021-9258(17)49939-X] [PMID: 31811088]
[35]
Kaur, T; Lakhawat, SS; Kumar, V; Sharma, V; Neeraj, RRK; Sharma, PK Polyaromatic hydrocarbon specific ring hydroxylating dioxygenases: diversity, structure, function, and protein engineering. Curr Protein Pept Sci., 2023, 24(1), 7-21.
[http://dx.doi.org/10.2174/1389203724666221108114537] [PMID: 36366847]
[36]
Li, X.; Chen, S.; Guo, X. Development and application of TK6-derived cells expressing human cytochrome P450s for genotoxicity testing. Toxicol. Sci., 2020, 175(2), 251-265.
[http://dx.doi.org/10.1093/toxsci/kfaa035] [PMID: 32159784]
[37]
Kumar, S. Engineering cytochrome P450 biocatalysts for biotechnology, medicine and bioremediation. Expert Opin. Drug Metab. Toxicol., 2010, 6(2), 115-131.
[http://dx.doi.org/10.1517/17425250903431040] [PMID: 20064075]
[38]
Sharma, S.; Bhatt, K.; Shrivastava, R.; Nadda, A.K. Tyrosinase and oxygenases: Fundamentals and applications.Biotechnology of Microbial Enzymes; Elsevier: Amsterdam, 2023, pp. 323-340.
[http://dx.doi.org/10.1016/B978-0-443-19059-9.00014-1]
[39]
Andrade-Collantes, E.; Landeros-Rivera, B.; Sixto-López, Y. Molecular insight into endosulfan degradation by Ese protein from Arthrobacter: Evidence‐based structural bioinformatics and quantum mechanical calculations. Proteins, 2024, 92(2), 302-313.
[http://dx.doi.org/10.1002/prot.26610] [PMID: 37864384]
[40]
Lin, Y.W. Biodegradation of aromatic pollutants by metalloenzymes: A structural-functional-environmental perspective. Coord. Chem. Rev., 2021, 434, 213774.
[http://dx.doi.org/10.1016/j.ccr.2021.213774]
[41]
Zubrova, A.; Michalikova, K.; Semerad, J. Biphenyl 2, 3-dioxygenase in Pseudomonas alcaliphila JAB1 is both induced by phenolics and monoterpenes and involved in their transformation. Front. Microbiol., 2021, 12, 657311.
[http://dx.doi.org/10.3389/fmicb.2021.657311] [PMID: 33995321]
[42]
Xu, T.; Liu, T.; Jiang, D.; Yuan, Z.; Jia, X. Attainment and characterization of a microbial consortium that efficiently degrades biphenyl and related substances. Biochem. Eng. J., 2021, 173, 108073.
[http://dx.doi.org/10.1016/j.bej.2021.108073]
[43]
Mutanda, I.; Sun, J.; Jiang, J.; Zhu, D. Bacterial membrane transporter systems for aromatic compounds: Regulation, engineering, and biotechnological applications. Biotechnol. Adv., 2022, 59, 107952.
[http://dx.doi.org/10.1016/j.biotechadv.2022.107952] [PMID: 35398204]
[44]
Medić, A.B.; Karadžić, I.M. Pseudomonas in environmental bioremediation of hydrocarbons and phenolic compounds- key catabolic degradation enzymes and new analytical platforms for comprehensive investigation. World J. Microbiol. Biotechnol., 2022, 38(10), 165.
[http://dx.doi.org/10.1007/s11274-022-03349-7] [PMID: 35861883]
[45]
Karimi, B.; Habibi, M.; Esvand, M. Biodegradation of naphthalene using Pseudomonas aeruginosa by up flow anoxic–aerobic continuous flow combined bioreactor. J. Environ. Health Sci. Eng., 2015, 13(1), 26.
[http://dx.doi.org/10.1186/s40201-015-0175-1] [PMID: 25859393]
[46]
Bilal, M.; Bagheri, A.R.; Bhatt, P.; Chen, S. Environmental occurrence, toxicity concerns, and remediation of recalcitrant nitroaromatic compounds. J. Environ. Manage., 2021, 291, 112685.
[http://dx.doi.org/10.1016/j.jenvman.2021.112685] [PMID: 33930637]
[47]
Avellaneda, H.; Arbeli, Z.; Teran, W.; Roldan, F. Transformation of TNT, 2,4-DNT, and PETN by Raoultella planticola M30b and Rhizobium radiobacter M109 and exploration of the associated enzymes. World J. Microbiol. Biotechnol., 2020, 36(12), 190.
[http://dx.doi.org/10.1007/s11274-020-02962-8] [PMID: 33247357]
[48]
Chakraborty, N.; Begum, P.; Patel, B.K. Counterbalancing common explosive pollutants (TNT, RDX, and HMX) in the environment by microbial degradation.Development in Wastewater Treatment Research and Processes; Elsevier: Amsterdam, 2022, pp. 263-310.
[49]
Monga, D.; Kaur, P.; Singh, B. Microbe mediated remediation of dyes, explosive waste and polyaromatic hydrocarbons, pesticides and pharmaceuticals. Current Research in Microbial Sciences, 2022, 3, 100092.
[http://dx.doi.org/10.1016/j.crmicr.2021.100092] [PMID: 35005657]
[50]
Budikafa, M.J. Rumiyati, Riyanto S, Rohman A. 2,2′-Diphenyl-1-picrylhydrazyl and 2,2′-azinobis-(3-ethyl-benzothiazoline-6-sulfonic acid) scavenging assay of Extract and Fractions of Rambutan (Nephelium Lappaceum L.) Seed. Dhaka Uni J Pharmaceut Sci, 2019, 18(2), 145-152.
[http://dx.doi.org/10.3329/dujps.v18i2.43256]
[51]
Hori, K.; Yamashita, S.; Ishii, S.I.; Kitagawa, M.; Tanji, Y.; Unno, H. Isolation, characterization and application to off-gas treatment of toluene-degrading bacteria. J. Chem. Eng. of Jpn, 2001, 34(9), 1120-1126.
[http://dx.doi.org/10.1252/jcej.34.1120]
[52]
Dölek, GN Evaluation of BTEX concentrations in selected industries producing and applying paint based on human health risks through inhalation, 2014.
[53]
Chandrasekaran, M.; Paramasivan, M. Plant growth-promoting bacterial (PGPB) mediated degradation of hazardous pesticides: A review. Int. Biodeterior. Biodegradation, 2024, 190, 105769.
[http://dx.doi.org/10.1016/j.ibiod.2024.105769]
[54]
Díaz, L.F.; Muñoz, R.; Bordel, S.; Villaverde, S. Toluene biodegradation by Pseudomonas putida F1: Targeting culture stability in long-term operation. Biodegradation, 2008, 19(2), 197-208.
[http://dx.doi.org/10.1007/s10532-007-9126-6] [PMID: 17487552]
[55]
Gupta, S.; Dangi, L.; Patra, J.K.; Rani, R. Application of enzymes in bioremediation of contaminated hydrosphere and soil environment. bioprospecting of enzymes in industry.Bioprospecting of Enzymes in Industry, Healthcare and Sustainable Environment; Springer: Berlin, Heidelberg, 2021, pp. 1-28.
[56]
da Silva Vilar, D.; Bilal, M.; Bharagava, R.N. Lignin‐modifying enzymes: A green and environmental responsive technology for organic compound degradation. J. Chem. Technol. Biotechnol., 2022, 97(2), 327-342.
[http://dx.doi.org/10.1002/jctb.6751]
[57]
Atiwesh, G.; Parrish, C.C.; Banoub, J.; Le, T.A.T. Lignin degradation by microorganisms: A review. Biotechnol. Prog., 2022, 38(2), e3226.
[http://dx.doi.org/10.1002/btpr.3226] [PMID: 34854261]
[58]
Okozide, O.E.; Adebusoye, S.A.; Obayori, O.S.; Rodrigues, D.F. Aerobic degradation of 2,4,6-trinitrophenol by Proteus sp. strain OSES2 obtained from an explosive contaminated tropical soil. Biodegradation, 2021, 32(6), 643-662.
[http://dx.doi.org/10.1007/s10532-021-09958-7] [PMID: 34487282]
[59]
Singh, D.; Gupta, N. Microbial Laccase: A robust enzyme and its industrial applications. Biologia (Bratisl.), 2020, 75(8), 1183-1193.
[http://dx.doi.org/10.2478/s11756-019-00414-9]
[60]
Khatami, S.H.; Vakili, O.; Movahedpour, A.; Ghesmati, Z.; Ghasemi, H.; Taheri-Anganeh, M. Laccase: Various types and applications. Biotechnol. Appl. Biochem., 2022, 69(6), 2658-2672.
[http://dx.doi.org/10.1002/bab.2313] [PMID: 34997643]
[61]
Kaur, M.; Sharma, S.; Sodhi, H. An eco-friendly approach for the degradation of azo dyes and their effluents by Pleurotus florida.Microbial Consortium and Biotransformation for Pollution Decontamination; Elsevier: Amsterdam, 2022, pp. 209-242.
[http://dx.doi.org/10.1016/B978-0-323-91893-0.00006-7]
[62]
Granja-Travez, R.S.; Persinoti, G.F.; Squina, F.M.; Bugg, T.D.H. Functional genomic analysis of bacterial lignin degraders: Diversity in mechanisms of lignin oxidation and metabolism. Appl. Microbiol. Biotechnol., 2020, 104(8), 3305-3320.
[http://dx.doi.org/10.1007/s00253-019-10318-y] [PMID: 32088760]
[63]
Kim, S. Mushroom ligninolytic enzymes—features and application of potential enzymes for conversion of lignin into bio-based chemicals and materials. Appl. Sci. (Basel), 2021, 11(13), 6161.
[http://dx.doi.org/10.3390/app11136161]
[64]
Ferrari, R; Gautier, V; Silar, P Lignin degradation by ascomycetes. Advances in botanical research. Amsterdam: Elsevier, 2021; 99, pp. 77-113.
[65]
Valmaseda, M.; Martínez, M.J.; Martinez, A.T. Kinetics of wheat straw solid-state fermentation with Trametes versicolor and Pleurotus ostreatus—lignin and polysaccharide alteration and production of related enzymatic activities. Appl. Microbiol. Biotechnol., 1991, 35, 817-823.
[http://dx.doi.org/10.1007/BF00169902]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy