Generic placeholder image

Recent Advances in Drug Delivery and Formulation

Editor-in-Chief

ISSN (Print): 2667-3878
ISSN (Online): 2667-3886

Review Article

Current Advancements on Oral Protein and Peptide Drug Delivery Approaches to Bioavailability: Extensive Review on Patents

Author(s): Prasanna Parida*, Amiya Kumar Prusty, Saroj Kumar Patro and Bikash Ranjan Jena

Volume 18, Issue 4, 2024

Published on: 22 July, 2024

Page: [227 - 246] Pages: 20

DOI: 10.2174/0126673878299775240719061653

Price: $65

Open Access Journals Promotions 2
Abstract

Protein and peptide-based drugs have greater therapeutic efficacy and potential application and lower toxicity compared to chemical entities in long-term use within optimum concentration as they are easily biodegradable due to biological origin. While oral administration is preferable, most of these substances are currently administered intravenously or subcutaneously. This is primarily due to the breakdown and poor absorption in the GI tract. Hence, ongoing research is focused on investigating absorption enhancers, enzyme inhibitors, carrier systems, and stability enhancers as potential strategies to facilitate the oral administration of proteins and peptides. Investigations have been directed towards advancing novel technologies to address gastrointestinal (GI) barriers associated with protein and peptide medications. The current review intensifies formulation and stability approaches for oral protein & peptide drug delivery systems with all significant parameters intended for patient safety. Notably, certain innovative technologies have been patented and are currently undergoing clinical trials or have already been introduced into the market. All the approaches stated for the administration of protein and peptide drugs are critically discussed, having their current status, future directions, and recent patents published in the last decades.

Keywords: Active targeting, enzyme inhibitors, prodrug, enteric coating, protein and peptide-based drugs, gastrointestinal (GI).

Next »
Graphical Abstract
[1]
Wang L, Wang N, Zhang W, et al. Therapeutic peptides: Current applications and future directions. Signal Transduct Target Ther 2022; 7(1): 48.
[http://dx.doi.org/10.1038/s41392-022-00904-4] [PMID: 35165272]
[2]
USFDA Administration. Human insulin receives FDA approval. FDA Drug Bull 1982; 12(3): 18-9.
[PMID: 6762312]
[3]
Mahmood A, Bernkop-Schnürch A. SEDDS: A game changing approach for the oral administration of hydrophilic macromolecular drugs. Adv Drug Deliv Rev 2019; 142: 91-101.
[http://dx.doi.org/10.1016/j.addr.2018.07.001] [PMID: 29981355]
[4]
Haddadzadegan S, Dorkoosh F, Bernkop-Schnürch A. Oral delivery of therapeutic peptides and proteins: Technology landscape of lipid-based nanocarriers. Adv Drug Deliv Rev 2022; 182: 114097.
[http://dx.doi.org/10.1016/j.addr.2021.114097] [PMID: 34999121]
[5]
Rossino G, Marchese E, Galli G, et al. Peptides as therapeutic agents: Challenges and opportunities in the green transition era. Molecules 2023; 28(20): 7165.
[http://dx.doi.org/10.3390/molecules28207165] [PMID: 37894644]
[6]
Griesser J, Hetényi G, Moser M, Demarne F, Jannin V, Bernkop-Schnürch A. Hydrophobic ion pairing: Key to highly payloaded self-emulsifying peptide drug delivery systems. Int J Pharm 2017; 520(1-2): 267-74.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.019] [PMID: 28188875]
[7]
Fonte P, Araújo F, Reis S, Sarmento B. Oral insulin delivery: How far are we? J Diabetes Sci Technol 2013; 7(2): 520-31.
[http://dx.doi.org/10.1177/193229681300700228] [PMID: 23567010]
[8]
Meaney CM, O’Driscoll CM. A comparison of the permeation enhancement potential of simple bile salt and mixed bile salt: Fatty acid micellar systems using the CaCo-2 cell culture model. Int J Pharm 2000; 207(1-2): 21-30.
[http://dx.doi.org/10.1016/S0378-5173(00)00526-3] [PMID: 11036226]
[9]
Lane ME, O’Driscoll CM, Corrigan OI. Quantitative estimation of the effects of bile salt surfactant systems on insulin stability and permeability in the rat intestine using a mass balance model. J Pharm Pharmacol 2010; 57(2): 169-75.
[http://dx.doi.org/10.1211/0022357055434] [PMID: 15720779]
[10]
Maher S, Leonard TW, Jacobsen J, Brayden DJ. Safety and efficacy of sodium caprate in promoting oral drug absorption: From in vitro to the clinic. Adv Drug Deliv Rev 2009; 61(15): 1427-49.
[http://dx.doi.org/10.1016/j.addr.2009.09.006] [PMID: 19800376]
[11]
Borchardt RT. Optimizing oral absorption of peptides using prodrug strategies. J Control Release 1999; 62(1-2): 231-8.
[http://dx.doi.org/10.1016/S0168-3659(99)00042-5] [PMID: 10518655]
[12]
Shen WC. Oral peptide and protein delivery: Unfulfilled promises? Drug Discov Today 2003; 8(14): 607-8.
[http://dx.doi.org/10.1016/S1359-6446(03)02692-8] [PMID: 12867138]
[13]
Wang J, Chow D, Heiati H, Shen WC. Reversible lipidization for the oral delivery of salmon calcitonin. J Control Release 2003; 88(3): 369-80.
[http://dx.doi.org/10.1016/S0168-3659(03)00008-7] [PMID: 12644363]
[14]
Vadlapudi AD, Vadlapatla RK, Kwatra D, et al. Targeted lipid based drug conjugates: A novel strategy for drug delivery. Int J Pharm 2012; 434(1-2): 315-24.
[http://dx.doi.org/10.1016/j.ijpharm.2012.05.033] [PMID: 22692074]
[15]
Zhang X, Wu W. Ligand-mediated active targeting for enhanced oral absorption. Drug Discov Today 2014; 19(7): 898-904.
[http://dx.doi.org/10.1016/j.drudis.2014.03.001] [PMID: 24631680]
[16]
Renukuntla J, Vadlapudi AD, Patel A, Boddu SHS, Mitra AK. Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm 2013; 447(1-2): 75-93.
[http://dx.doi.org/10.1016/j.ijpharm.2013.02.030] [PMID: 23428883]
[17]
Pauletti G, Siahaan TJ, Gangwar S, Pauletti GM, Pauletti GM. Improvement of oral peptide bioavailability: Peptidomimetics and prodrug strategies. Adv Drug Deliv Rev 1997; 27(2-3): 235-56.
[http://dx.doi.org/10.1016/S0169-409X(97)00045-8] [PMID: 10837560]
[18]
Bruno BJ, Miller GD, Lim CS. Basics and recent advances in peptide and protein drug delivery. Ther Deliv 2013; 4(11): 1443-67.
[http://dx.doi.org/10.4155/tde.13.104] [PMID: 24228993]
[19]
Ekrami HM, Kennedy AR, Shen WC. Water‐soluble fatty acid derivatives as acylating agents for reversible lipidization of polypeptides. FEBS Lett 1995; 371(3): 283-6.
[http://dx.doi.org/10.1016/0014-5793(95)00910-2] [PMID: 7556611]
[20]
Martins JP, Liu D, Fontana F, et al. Microfluidic nanoassembly of bioengineered chitosan-modified fcrn-targeted porous silicon nanoparticles @ hypromellose acetate succinate for oral delivery of antidiabetic peptides. ACS Appl Mater Interfaces 2018; 10(51): 44354-67.
[http://dx.doi.org/10.1021/acsami.8b20821] [PMID: 30525379]
[21]
Wu L, Liu M, Shan W, et al. Bioinspired butyrate-functionalized nanovehicles for targeted oral delivery of biomacromolecular drugs. J Control Release 2017; 262(262): 273-83.
[http://dx.doi.org/10.1016/j.jconrel.2017.07.045] [PMID: 28774842]
[22]
Azevedo C, Nilsen J, Grevys A, Nunes R, Andersen JT, Sarmento B. Engineered albumin-functionalized nanoparticles for improved FcRn binding enhance oral delivery of insulin. J Control Release 2020; 327: 161-73.
[http://dx.doi.org/10.1016/j.jconrel.2020.08.005] [PMID: 32771477]
[23]
Managuli RS, Raut SY, Reddy MS, Mutalik S. Targeting the intestinal lymphatic system: A versatile path for enhanced oral bioavailability of drugs. Expert Opin Drug Deliv 2018; 15(8): 787-804.
[http://dx.doi.org/10.1080/17425247.2018.1503249] [PMID: 30025212]
[24]
Reddy ST, van der Vlies AJ, Simeoni E, et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 2007; 25(10): 1159-64.
[http://dx.doi.org/10.1038/nbt1332] [PMID: 17873867]
[25]
Ke X, Howard GP, Tang H, et al. Physical and chemical profiles of nanoparticles for lymphatic targeting. Adv Drug Deliv Rev 2019; 151-152: 72-93.
[http://dx.doi.org/10.1016/j.addr.2019.09.005] [PMID: 31626825]
[26]
Prausnitz MR. Engineering microneedle patches for vaccination and drug delivery to skin. Annu Rev Chem Biomol Eng 2017; 8(1): 177-200.
[http://dx.doi.org/10.1146/annurev-chembioeng-060816-101514] [PMID: 28375775]
[27]
Abramson A, Caffarel-Salvador E, Soares V, et al. A luminal unfolding microneedle injector for oral delivery of macromolecules. Nat Med 2019; 25(10): 1512-8.
[http://dx.doi.org/10.1038/s41591-019-0598-9] [PMID: 31591601]
[28]
Lee JW, Prausnitz MR. Drug delivery using microneedle patches: Not just for skin. Expert Opin Drug Deliv 2018; 15(6): 541-3.
[http://dx.doi.org/10.1080/17425247.2018.1471059] [PMID: 29708770]
[29]
Sartawi Z, Blackshields C, Faisal W. Dissolving microneedles: Applications and growing therapeutic potential. J Control Release 2022; 348: 186-205.
[http://dx.doi.org/10.1016/j.jconrel.2022.05.045] [PMID: 35662577]
[30]
Traverso G, Schoellhammer CM, Schroeder A, et al. Microneedles for drug delivery via the gastrointestinal tract. J Pharm Sci 2015; 104(2): 362-7.
[http://dx.doi.org/10.1002/jps.24182] [PMID: 25250829]
[31]
Xu B, Zhang W, Chen Y, Xu Y, Wang B, Zong L. Eudragit® L100-coated mannosylated chitosan nanoparticles for oral protein vaccine delivery. Int J Biol Macromol 2018; 113: 534-42.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.016] [PMID: 29408613]
[32]
Lee YH, Perry BA, Labruno S, et al. Impact of regional intestinal pH modulation on absorption of peptide drugs: Oral absorption studies of salmon calcitonin in beagle dogs. Pharm Res 1999; 16(8): 1233-9.
[http://dx.doi.org/10.1023/A:1014849630520] [PMID: 10468025]
[33]
Binkley N, Bolognese M, Sidorowicz-Bialynicka A, et al. A phase 3 trial of the efficacy and safety of oral recombinant calcitonin: The oral calcitonin in postmenopausal osteoporosis (ORACAL) trial. J Bone Miner Res 2012; 27(8): 1821-9.
[http://dx.doi.org/10.1002/jbmr.1602] [PMID: 22437792]
[34]
Jung KH, Choi YC, Chun JY, Min SG, Hong GP. Effects of concentration and reaction time of trypsin, pepsin, and chymotrypsin on the hydrolysis efficiency of Porcine Placenta. Han-gug Chugsan Sigpum Hag-hoeji 2014; 34(2): 151-7.
[http://dx.doi.org/10.5851/kosfa.2014.34.2.151] [PMID: 26760932]
[35]
Liu C, Kou Y, Zhang X, Cheng H, Chen X, Mao S. Strategies and industrial perspectives to improve oral absorption of biological macromolecules. Expert Opin Drug Deliv 2018; 15(3): 223-33.
[http://dx.doi.org/10.1080/17425247.2017.1395853] [PMID: 29111841]
[36]
Welling SH, Hubálek F, Jacobsen J, Brayden DJ, Rahbek UL, Buckley ST. The role of citric acid in oral peptide and protein formulations: Relationship between calcium chelation and proteolysis inhibition. Eur J Pharm Biopharm 2014; 86(3): 544-51.
[http://dx.doi.org/10.1016/j.ejpb.2013.12.017] [PMID: 24384069]
[37]
Agarwal V, Reddy IK, Khan MA. Oral delivery of proteins: Effect of chicken and duck ovomucoid on the stability of insulin in the presence ofα-chymotrypsin and trypsin. Pharm Pharmacol Commun 2000; 6(5): 223-7.
[http://dx.doi.org/10.1211/146080800128735935]
[38]
Ye C, Chi H. A review of recent progress in drug and protein encapsulation: Approaches, applications and challenges. Mater Sci Eng C 2018; 83: 233-46.
[http://dx.doi.org/10.1016/j.msec.2017.10.003] [PMID: 29208283]
[39]
Onuigbo E, Iseghohimhen J, Chah K, Gyang M, Attama A. Chitosan/alginate microparticles for the oral delivery of fowl typhoid vaccine: Innate and acquired immunity. Vaccine 2018; 36(33): 4973-8.
[http://dx.doi.org/10.1016/j.vaccine.2018.05.087] [PMID: 30017142]
[40]
Banerjee A, Qi J, Gogoi R, Wong J, Mitragotri S. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J Control Release 2016; 238: 176-85.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.051] [PMID: 27480450]
[41]
Nikam VK, Kotade K, Gaware V, Dolas R, Dhamak K, Somwanshi S, et al. Eudragit a versatile polymer: A review. Pharmacologyonline 2011; 1: 152-64.
[42]
Sonaje K, Chen YJ, Chen HL, et al. Enteric-coated capsules filled with freeze-dried chitosan/poly(γ-glutamic acid) nanoparticles for oral insulin delivery. Biomaterials 2010; 31(12): 3384-94.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.042] [PMID: 20149435]
[43]
Komati S, Swain S, Rao MEB, Jena BR, Dasi V. Mucoadhesive multiparticulate drug delivery systems: An extensive review of patents. Adv Pharm Bull 2019; 9(4): 521-38.
[http://dx.doi.org/10.15171/apb.2019.062] [PMID: 31857957]
[44]
Bernkopschnürch A. Thiomers: A new generation of mucoadhesive polymers. Adv Drug Deliv Rev 2005; 57(11): 1569-82.
[http://dx.doi.org/10.1016/j.addr.2005.07.002] [PMID: 16176846]
[45]
Eldridge JH, Hammond CJ, Meulbroek JA, Staas JK, Gilley RM, Tice TR. Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable microspheres target the peyer’s patches. J Control Release 1990; 11(1-3): 205-14.
[http://dx.doi.org/10.1016/0168-3659(90)90133-E]
[46]
Chen F, Zhang ZR, Yuan F, Qin X, Wang M, Huang Y. In vitro and in vivo study of N-trimethyl chitosan nanoparticles for oral protein delivery. Int J Pharm 2008; 349(1-2): 226-33.
[http://dx.doi.org/10.1016/j.ijpharm.2007.07.035] [PMID: 17825506]
[47]
Bernkop-Schnürch A, Hornof M, Zoidl T. Thiolated polymers—thiomers: Synthesis and in vitro evaluation of chitosan–2-iminothiolane conjugates. Int J Pharm 2003; 260(2): 229-37.
[http://dx.doi.org/10.1016/S0378-5173(03)00271-0] [PMID: 12842342]
[48]
Yin L, Ding J, He C, Cui L, Tang C, Yin C. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials 2009; 30(29): 5691-700.
[http://dx.doi.org/10.1016/j.biomaterials.2009.06.055] [PMID: 19615735]
[49]
Lehr CM. Lectin-mediated drug delivery. J Control Release 2000; 65(1-2): 19-29.
[http://dx.doi.org/10.1016/S0168-3659(99)00228-X] [PMID: 10699266]
[50]
Leong KH, Chung LY, Noordin MI, Onuki Y, Morishita M, Takayama K. Lectin-functionalized carboxymethylated kappa-carrageenan microparticles for oral insulin delivery. Carbohydr Polym 2011; 86(2): 555-65.
[http://dx.doi.org/10.1016/j.carbpol.2011.04.070]
[51]
Oral delivery of proteins and peptides. US20160008290A1 2016. Available from: https://patentimages.storage.googleapis.com/2f/7b/f2/4d02a025cb0370/US20160008290A1.pdf
[52]
Anti-radiation oral peptide drug composition for resisting radiation damage. CN108404113A 2018. Available from: https://www.lens.org/lens/patent/139-652-114-604-780/family?l=en
[53]
Liposomes containing cell penetrating peptides and tetraester lipids for oral delivery of macromolecules. RU2743431C2 2021. Available from: https://www.lens.org/lens/patent/037-351-522-463-350/frontpage?l=en
[54]
Oral delivery of nanoparticles for kidney disease. WO2021/231383A2 2021. Available from: https://patentscope. wipo.int/search/es/detail.jsf;jsessionid=CBE69EFD07CB69EB8D39CCA4598
[55]
Microorganism for delivering drug for treatment of gastrointestinal disease, which expresses and secretes P8 protein, and pharmaceutical composition for preventing or treating gastrointestinal disease, which includes the same. WO2019/ 139229A1 2019. Available from: https://www.lens.org/lens/patent/061-459-136-324-488/frontpage?l=en
[56]
Gastro retentive formulations containing protein or peptide. WO2023166224A1 2023. Available from: https://www.lens.org/images/patent/WO/2023166224/A1/WO_2023_166224_A1.pdf
[57]
Dry powder inhaler comprising a serotonin receptor agonist and a diketopiperazine for treating migraines. EP3536368A1 2019. Available from: https://www.lens.org/images/patent/EP/3536368/A1/EP_3536368_A1.pdf
[58]
Polypeptide containing disulfide bonds and capable of inhibiting activity of serine protease, derived hybrid peptide thereof, and use thereof. WO2022/111713A9 2022. Available from: https://www.lens.org/lens/patent/041-037-092-539-915/fulltext?l=en
[59]
Fusion protein for improving oral administration stability of polypeptide drug, and application thereof. WO2022/099963A1 2022. Available from: https://www.lens.org/lens/patent/079-836-505-498-681/frontpage
[60]
Improved oral pharmaceutical formulations of therapeutic peptides and proteins. WO2023/166179A1 2023. Available from: https://www.lens.org/images/patent/WO/2023166179/A1/WO_2023_166179_A1.pdf
[61]
P8 microorganisms which express and secrete p8 protein for delivering drug for treating gastrointestinal diseases and pharmaceutical composition for preventing or treating gastrointestinal diseases comprising the same. KR101915951B1 2018. Available from: https://www.lens.org/lens/patent/164-669-625-757-647/frontpage?l=en
[62]
Pharmaceutical formulations for the oral delivery of peptide or protein drugs. EP3006045B3 2017. Available from: https://www. lens.org/lens/patent/084-403-422-421-248/frontpage?l=en
[63]
Buffered microencapsulated compositions and methods. EP2895323B1 2013. Available from: https://www.lens.org/lens/patent/198-547-170-964-508/frontpage?l=en
[64]
Targeted peptide-drug conjugates. US2022/0265839A1 2022. Available from: https://www.lens.org/lens/patent/026-461-073-469-674/frontpage?l=en
[65]
Delivery of active agents. US2022/0362147A1 2022. Available from: https://www.lens.org/lens/patent/141-675-930-205-634/frontpage?l=en
[66]
Transferrin binding antibodies and use thereof. WO2023/ 097605A1 2023. Available from: https://www.lens.org/images/patent/WO/2023097605/A1/WO_2023_097605_A1.pdf
[67]
Fracture targeted bone regeneration through parathyroid hormone receptor stimulation. US2020/0316174A1 2020. Available from: https://www.lens.org/lens/patent/160-810-331-002-737/frontpage? l=en
[68]
Composition for delivery of protein therapeutics through oral, sublingual and buccal route. US20210121542A1 2021. Available from: https://www.lens.org/images/patent/US/20210121542/A1/US_2021_0121542_A1.pdf
[69]
Oral-taken delivery system for entrapping protein polypeptide drug exosome. CN111569082A 2018. Available from: https://www.lens.org/lens/patent/083-042-748-977-804/frontpage?l=en
[70]
Polypeptide protein medicine oral absorption enhancer as well as preparation method and application thereof. CN116444392A 2022. Available from: https://www.lens.org/lens/patent/166-470-017-579-984/frontpage
[71]
Oral enzyme compositions for intestinal delivery. EP2694098B1 2018. Available from: https://www.lens.org/images/patent/EP/2694098/B1/EP_2694098_B1.pdf
[72]
Oral drug delivery device with expanding band. WO2022/060820A1 2022. Available from: https://www.lens.org/images/patent/WO/2022060820/A1/WO_2022_060820_A1.pdf
[73]
Pharmaceutical compositions and methods for fabrication of solid masses comprising polypeptides and/or proteins. AU2023/200317A1 2023. Available from: https://www.lens.org/lens/patent/018-960-363-152-68X/frontpage?l=en
[74]
Pharmaceutical compositions and methods for fabrication of solid masses comprising tnf-inhibiting antibodies. US2019/0015482A1 2019. Available from: https://www.lens.org/images/patent/US/20190015482/A1/US_2019_0015482_A1.pdf
[75]
Pharmaceutical compositions and methods for fabrication of solid masses comprising glucose regulating proteins. US2019/ 0275116 A1 2019. Available from: https://www.lens.org/images/patent/US/20190275116/A1/US_2019_0275116_A1.pdf
[76]
Pharmaceutical compositions and methods for fabrication of solid masses comprising anti-interleukin antibodies. US10039810B2 2018. Available from: https://www.lens.org/images/patent/US/10039810/B2/US_10039810_B2.pdf
[77]
Shaped mass composition comprising exenatide. US11026998 B2 2021. Available from: https://www.lens.org/images/patent/US/11026998/B2/US_11026998_B2.pdf
[78]
Pharmaceutical compositions for oral treatment of diabetes. WO2014/118774Al 2014. Available from: https://www.lens.org/images/patent/WO/2014118774/A1/WO_2014_118774_A1.pdf
[79]
Oral drug delivery device with expanding arms. WO2022/ 060817A2 2022. Available from: https://www.lens.org/images/patent/WO/2022060817/A2/WO_2022_060817_A2.pdf
[80]
Pharmaceutical preparation for delivery of peptides and proteins. WO2018/005518Al 2018. Available from: https://www.lens.org/images/patent/WO/2018005518/A1/WO_2018_005518_A1.pdf
[81]
Pharmaceutical formulations for the oral delivery of peptide or protein drugs. NZ730599 2017. Available from: https://patentscope.wipo.int/search/en/detail.jsf?docId=NZ316813154&_cid=P12-LNVVCD-19555-1
[82]
A process for preparing hydro-nanogel in powder formulation for oral protein delivery applications. IN202041022745 2020. Available from: https://patentscope.wipo.int/search/en/detail.jsf? docId=IN346037133&_cid=P12-LNVVCD-19555-4
[83]
Polypeptide or protein nanoparticles based on hydrogen-bonded complexation, and preparation method and application thereof. CN109224081 2019. Available from: https://patentscope.wipo.int/search/en/detail.jsf?docId=CN236828421&_cid=P12-LNVVCD-19555-5
[84]
Microorganism for delivering drug for treatment of gastrointestinal disease, which expresses and secretes cystatin, and pharmaceutical composition for preventing or treating gastrointestinal disease, which includes the same. US20190330312 2019. Available from: https://patentscope.wipo.int/search/en/detail.jsf?docId=US275481445&_cid=P12-LNVVCD-19555-6
[85]
Oral administration system for promoting protein drug to permeate across mucus and preparation method thereof. CN111450258A 2019. Available from: https://patents.google.com/patent/CN 111450258A/en?oq=CN+111450258+A
[86]
Polypeptide protein medicine oral absorption promoter and preparation method and application thereof. CN116444392A 2022. Available from: https://patents.google.com/patent/CN 116444392A/en?oq=CN+116444392+A
[87]
Iron-protein succinate oral liquid and preparation method thereof. CN108498454A 2018. Available from: https://www.lens.org/lens/patent/165-545-081-207-517/frontpage?l=en
[88]
Compositions, methods, and systems for orally administrable affinity-based protein. US2021/0188922A1 2021. Available from: https://www.lens.org/images/patent/US/20210188922/A1/US_ 2021_0188922_A1.pdf
[89]
pH-responsive organic-inorganic hybrid nanocomposite for oral delivery of protein drugs and method for preparing the same. KR20200052819A 2020. Available from: https://patents. google.com/patent/KR20200052819A/en?oq=KR+20200052819+A
[90]
Metal organic framework nano particle for oral protein administration and preparation method thereof. CN114344484A 2022. Available from: https://patents.google.com/patent/CN 114344484A/en?oq=+CN+114344484+A
[91]
ROS-responsive monoclonal antibody drug oral nanoparticle and preparation method thereof. CN113577299A 2021. Available from: https://patents.google.com/patent/CN113577299A/en?oq=CN+113577299+A
[92]
Muheem A, Shakeel F, Jahangir MA, et al. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm J 2016; 24(4): 413-28.
[http://dx.doi.org/10.1016/j.jsps.2014.06.004] [PMID: 27330372]
[93]
Zhu Q, Chen Z, Paul PK, Lu Y, Wu W, Qi J. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharm Sin B 2021; 11(8): 2416-48.
[http://dx.doi.org/10.1016/j.apsb.2021.04.001] [PMID: 34522593]
[94]
Naz S, Saeed S, Irfan M. Approaches and recent advances in protein and peptide drug delivery system. Pak J Med Health Sci 2020; 14(2): 257-63.
[http://dx.doi.org/10.47176/PJMHS.2020.257]
[95]
Verma D, Gulati N, Kaul S, Mukherjee S, Nagaich U. Protein based nanostructures for drug delivery. J Pharm 2018; 2018: 1-18.
[http://dx.doi.org/10.1155/2018/9285854] [PMID: 29862118]
[96]
Nikam VK, Suryawanshi S, Khapare J. Protein and peptide drug delivery system: A brief review. Asian J Pharm Pharmacol 2022; 8(3): 66-73.
[http://dx.doi.org/10.31024/ajpp.2022.8.3.1]
[97]
Dhalla AK, Al-Shamsie Z, Beraki S, et al. A robotic pill for oral delivery of biotherapeutics: safety, tolerability, and performance in healthy subjects. Drug Deliv Transl Res 2022; 12(1): 294-305.
[http://dx.doi.org/10.1007/s13346-021-00938-1] [PMID: 33604838]
[98]
Kwon KC, Nityanandam R, New JS, Daniell H. Oral delivery of bioencapsulated exendin‐4 expressed in chloroplasts lowers blood glucose level in mice and stimulates insulin secretion in beta‐ TC 6 cells. Plant Biotechnol J 2013; 11(1): 77-86.
[http://dx.doi.org/10.1111/pbi.12008] [PMID: 23078126]
[99]
Irianti MI, et al. Non-invasive strategies for protein drug delivery: Oral, transdermal, and pulmonary. J Appl Pharm Sci 2020; 10(10): 166-79.
[100]
Cao S, Xu S, Wang H, et al. Nanoparticles: Oral Delivery for protein and peptide drugs. AAPS PharmSciTech 2019; 20(5): 190.
[http://dx.doi.org/10.1208/s12249-019-1325-z] [PMID: 31111296]
[101]
Yadav AR, Mohite SK. Recent advances in protein and peptide drug delivery. Res J Pharm Dos Forms Technol 2020; 12(3): 205-12.
[http://dx.doi.org/10.5958/0975-4377.2020.00035.X]
[102]
Srinivas L, Manikanta V, Jaswitha M. Protein and peptide drug delivery: A brief review. Res J Pharma Technol 2019; 12(3): 1369-82.
[http://dx.doi.org/10.5958/0974-360X.2019.00230.0]
[103]
Verma S, Goand UK, Husain A, Katekar RA, Garg R, Gayen JR. Challenges of peptide and protein drug delivery by oral route: Current strategies to improve the bioavailability. Drug Dev Res 2021; 82(7): 927-44.
[http://dx.doi.org/10.1002/ddr.21832] [PMID: 33988872]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy