Generic placeholder image

Current Artificial Intelligence

Editor-in-Chief

ISSN (Print): 2950-3752
ISSN (Online): 2950-3760

Review Article

Artificial Intelligence in Modernization of Pharmaceutical and Healthcare Industry: A Review

Author(s): Moumita Das Kirtania*, Dibya Sinha, Shreya Biswas, Sania Sultana and Ranjan Kirtania

Volume 2, 2024

Published on: 27 June, 2024

Page: [34 - 43] Pages: 10

DOI: 10.2174/0129503752293246240614073740

Open Access Journals Promotions 2
Abstract

Artificial intelligence (AI) falls under the purview of computer technology, which analyzes complex data and helps solve problems in different segments. Big Data, Machine Learning, and AI are currently being used by the major pharmaceutical industries to minimize time and costs and increase possibilities. Artificial intelligence is used in the pharmaceutical industry in diverse ways, such as drug discovery and development, clinical trials, disease diagnosis, and different stages in pharmaceutical manufacturing, data analysis, and supply management. Most of the cost and time are involved in drug discovery and clinical trials. Artificial intelligence can minimize human error in data processing, documentation, data integrity issues, and data selection throughout the journey. It works in descriptive, diagnostic, predictive, and prescriptive mode. Major pharmaceutical conglomerates like Pfizer, Roche, Novartis, and Johnson & Johnson have already applied Artificial Intelligence in different segments of pharmaceutical and medicinal science. Tech companies like IBM Watson, Catalia Health, Intel, Microsoft, and Google, in collaboration with pharmaceutical companies, are working in the different areas of drug discovery, early diagnosis, and personalized medicine. Further, AI finds application in the health sector for data management, scanning and evaluation of medical history reports, and finding optimum treatment strategies for chronic care patients. Though lots of research and development are being done on the utilization of artificial intelligence in the pharmaceutical industry, it is still in the nascent stage. This article is our endeavor to study, in detail, the present and future opportunities of machine learning and AI in the pharmaceutical industry as a whole.

Keywords: Artificial intelligence, pharmaceutical industry, healthcare, future prospects, drug discovery, cell biology.

« Previous
[1]
Mishra, V. Artificial intelligence: the beginning of a new era in pharmacy profession. Asian J. Pharm., 2018, 12(02)
[2]
Asimov, I. Three laws of robotics. Asimov, I; Runaround, 1941, p. 2.
[3]
Kaul, V.; Enslin, S.; Gross, S.A. History of artificial intelligence in medicine. Gastrointest. Endosc., 2020, 92(4), 807-812.
[http://dx.doi.org/10.1016/j.gie.2020.06.040] [PMID: 32565184]
[4]
Liebman, M. The Role of Artificial Intelligence in Drug Discovery and Development. Chem. Int., 2022, 44(1), 16-19.
[http://dx.doi.org/10.1515/ci-2022-0105]
[5]
Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today, 2021, 26(1), 80-93.
[http://dx.doi.org/10.1016/j.drudis.2020.10.010] [PMID: 33099022]
[6]
Lee, D.; Yoon, S.N. Application of artificial intelligence-based technologies in the healthcare industry: Opportunities and challenges. Int. J. Environ. Res. Public Health, 2021, 18(1), 271.
[http://dx.doi.org/10.3390/ijerph18010271] [PMID: 33401373]
[7]
Saxena, A.K.; Ness, S.; Khinvasara, T. The Influence of AI: The revolutionary effects of artificial intelligence in healthcare sector. J. Eng. Res. Rep., 2024, 26(3), 49-62.
[http://dx.doi.org/10.9734/jerr/2024/v26i31092]
[8]
Ghafari, M.; Mailman, D.; Hatami, P.; Peyton, T.; Yang, L.; Dang, W. A comparison of YOLO and mask-RCNN for detecting cells from microfluidic images in international conference on artificial intelligence in information and communication (ICAIIC); Republic of: Jeju Island, Korea, 2022.
[9]
Tran, T.V.; Khaleghian, S.; Zhao, J.; Sartipi, M. SIMCal: A high-performance toolkit for calibrating traffic simulation in IEEE BigData; Osaka, Japan, 2022.
[10]
Sajedian, A.; Ebrahimi, M.; Jamialahmadi, M. Two-phase Inflow performance relationship prediction using two artificial intelligence techniques: multi-layer perceptron versus genetic programming. Petrol. Sci. Technol., 2012, 30(16), 1725-1736.
[http://dx.doi.org/10.1080/10916466.2010.509074]
[12]
Gaur, N.; Dharwadkar, R.; Thomas, J. Personalized therapy using deep learning advances. Deep Learning for Targeted Treatments: Transformation in Healthcare; Malviya, R.; Ghinea, G.; Dhanaraj, R.K.; Balusamy, B; Sundram, S., Ed.; , 2022, pp. 171-197.
[http://dx.doi.org/10.1002/9781119857983.ch6]
[13]
Haleem, A.; Javaid, M.; Khan, I.H. Current status and applications of Artificial Intelligence (AI) in medical field: An overview. Curr. Med. Res. Pract., 2019, 9(6), 231-237.
[http://dx.doi.org/10.1016/j.cmrp.2019.11.005]
[14]
Deep Mind’s health team. Available from: https://www.deepmind.com/blog/deepminds-healthteam-joins-google-health [cited 2022 13 June].
[15]
AI for Management of Medical Records! Available from: https://www.credo.health/technology/ai-for-management-ofmedical-records/
[16]
IBM. Medical Sieve., Available from: https://researcher.watson.ibm.com/researcher/view_group.php?id=4384 [cited 2022 13 June].
[17]
Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.; Kim, R.; Raman, R.; Nelson, P.C.; Mega, J.L.; Webster, D.R. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 2016, 316(22), 2402-2410.
[http://dx.doi.org/10.1001/jama.2016.17216] [PMID: 27898976]
[18]
EL-Geneedy, M.; Moustafa, H.E.D.; Khalifa, F.; Khater, H.; AbdElhalim, E. An MRI-based deep learning approach for accurate detection of Alzheimer’s disease. Alex. Eng. J., 2023, 63, 211-221.
[http://dx.doi.org/10.1016/j.aej.2022.07.062]
[19]
Bhosale, Y.H.; Patnaik, K.S. PulDi-COVID: Chronic obstructive pulmonary (lung) diseases with COVID-19 classification using ensemble deep convolutional neural network from chest X-ray images to minimize severity and mortality rates. Biomed. Signal Process. Control, 2023, 81, 104445.
[http://dx.doi.org/10.1016/j.bspc.2022.104445] [PMID: 36466567]
[20]
Li, C.; Zhang, Y.; Weng, Y.; Wang, B.; Li, Z. Natural language processing applications for computer-aided diagnosis in oncology. Diagnostics, 2023, 13(2), 286.
[http://dx.doi.org/10.3390/diagnostics13020286] [PMID: 36673096]
[21]
Nordin, N.; Zainol, Z.; Mohd Noor, M.H.; Chan, L.F. An explainable predictive model for suicide attempt risk using an ensemble learning and Shapley Additive Explanations (SHAP) approach. Asian J. Psychiatr., 2023, 79, 103316.
[http://dx.doi.org/10.1016/j.ajp.2022.103316] [PMID: 36395702]
[22]
Chen, Y.; Lin, Y.; Xu, X.; Ding, J.; Li, C.; Zeng, Y.; Xie, W.; Huang, J. Multi-domain medical image translation generation for lung image classification based on generative adversarial networks. Comput. Methods Programs Biomed., 2023, 229, 107200.
[http://dx.doi.org/10.1016/j.cmpb.2022.107200] [PMID: 36525713]
[23]
Pagano, T.P.; Loureiro, R.B.; Lisboa, F.V.N.; Peixoto, R.M.; Guimarães, G.A.S.; Cruz, G.O.R.; Araujo, M.M.; Santos, L.L.; Cruz, M.A.S.; Oliveira, E.L.S.; Winkler, I.; Nascimento, E.G.S. Bias and unfairness in machine learning models: A systematic review on datasets, tools, fairness metrics, and identification and mitigation methods. Big Data and Cognitive Computing, 2023, 7(1), 15.
[http://dx.doi.org/10.3390/bdcc7010015]
[24]
Li, X.; Jiang, Y.; Zhang, J.; Li, M.; Luo, H.; Yin, S. Lesion-attention pyramid network for diabetic retinopathy grading. Artif. Intell. Med., 2022, 126, 102259.
[http://dx.doi.org/10.1016/j.artmed.2022.102259] [PMID: 35346445]
[25]
Ghaffar Nia, N.; Kaplanoglu, E.; Nasab, A. Evaluation of artificial intelligence techniques in disease diagnosis and prediction. Discover Artificial Intelligence, 2023, 3(1), 5.
[http://dx.doi.org/10.1007/s44163-023-00049-5]
[26]
Feeney, T.J.; Sinha, M.S.A.I. Renaissance: Pharmaceuticals and diagnostic medicine.The George Washington Journal of Law and Technology (forthcoming 2025); Saint Louis U. Legal Studies Research Paper., 2024. Feb 15; (2024-04).
[27]
Javanmard, S. Revolutionizing Medical Practice: The impact of artificial intelligence (AI) on Healthcare. OA J Applied Sci Technol., 2024, 2(1), 01-16.
[28]
MOLLY, THE VIRTUAL NURSE. Available from: http://adigaskell.org/2015/03/20/meetmolly-the-virtual-nurse/ [cited 2022 13 June].
[29]
AiCure. The right dose for the right patient. Available from: https://aicure.com/ [cited 2022 13 June].
[33]
Walgreen. Convenient virtual care. Available from: https://www.walgreens.com/findcare/category/acutetelehealth
[34]
Raza, M.A Artificial Intelligence (AI) in Pharmacy: An overview of innovations. Pharmacy practice and practice based research, 2022, 13(2), 1-8.
[35]
Deep Genomics. Programming RNA Therapies Any Gene, Any Genetic Condition. Available from: https://www.deepgenomics.com[cited 2022 13 June].
[36]
Shampo, M.A.; Kyle, R.A.; Craig Venter, J. The human genome project. Mayo Clin. Proc., 2011, 86(4), e26-e27.
[http://dx.doi.org/10.4065/mcp.2011.0160] [PMID: 21584979]
[37]
The international conference on harmonization of technical requirements for registration of pharmaceuticals for human use (ICH);; Quality Guideline Q8 Pharmaceutical Development, 2009.
[38]
Pomerantsev, A.L.; Rodionova, O.Y. Process analytical technology: A critical view of the chemometricians. J. Chemometr., 2012, 26(6), 299-310.
[http://dx.doi.org/10.1002/cem.2445]
[39]
EMA. Guideline on real time release testing (formerly Guideline on parametric release); European Medical Agency, 2012.
[40]
Barenji, R.V.; Akdag, Y.; Yet, B.; Oner, L. Cyber-physical-based PAT (CPbPAT) framework for Pharma 4.0. Int. J. Pharm., 2019, 567, 118445.
[http://dx.doi.org/10.1016/j.ijpharm.2019.06.036] [PMID: 31226474]
[41]
Tilley, J. Automation, Robotics, and the Factory of the Future., 2017. Available from: https://www. mckinsey.com/business-functions/operations/our-insights/automation-robotics-
[42]
Anderson, S. Making Medicines: A Brief History of Pharmacy and Pharmaceuticals; Pharmaceutical Press, 2005.
[43]
Berry, I.R.; Nash, R.A. Pharmaceutical process validation.Nash, Robert A., Wachter; Alfred, H., Ed., 2003.
[44]
FDA. CDER Conversation: Assuring Drug Quality Around the Globe 2019. Available from: https://www.fda.gov/drugs/news-events-human-drugs/cder-conversation-assuring-drug
[45]
Fuhr, T.; Gonce, A.; Positano, L.; Rutten, P.; Tepis, V. Flawless—From Measuring Failure to Building Quality Robustness in Pharma; McKinsey & Company Chicago: IL, 2014.
[46]
Joshi, A.V. Introduction to AI and ML.Machine learning and artificial intelligence; Joshi, A.V., Ed.; Springer International Publishing: Cham, 2020, pp. 3-7.
[http://dx.doi.org/10.1007/978-3-030-26622-6_1]
[47]
Danish Medicines Agency (DKMA) Suggested criteria for using AI/ML algorithms in GxP., 2021. Available from: https://laegemiddelstyrelsen.dk/en/licensing/supervision-and-inspection/inspection-of-authorised-pharmaceuticalcompanies/usingaimlalgorithmsingxp/
[48]
Salehinejad, H.; Sankar, S.; Barfett, J.; Colak, E.; Valaee, S. Recent advances in recurrent neural networks. arXiv:180101078, 2017.
[49]
Debnath, B.; Shakur, M.S.; Bari, A.B.M.M.; Saha, J.; Porna, W.A.; Mishu, M.J.; Islam, A.R.M.T.; Rahman, M.A. Assessing the critical success factors for implementing industry 4.0 in the pharmaceutical industry: Implications for supply chain sustainability in emerging economies. PLoS One, 2023, 18(6), e0287149.
[http://dx.doi.org/10.1371/journal.pone.0287149] [PMID: 37319165]
[50]
Tao, Y.; Bao, J.; Liu, Q.; Liu, L.; Zhu, J. Application of deep-learning algorithm driven intelligent raman spectroscopy methodology to quality control in the manufacturing process of guanxinning tablets. Molecules, 2022, 27(20), 6969.
[http://dx.doi.org/10.3390/molecules27206969] [PMID: 36296563]
[51]
Nagy, B.; Petra, D.; Galata, D.L.; Démuth, B.; Borbás, E.; Marosi, G.; Nagy, Z.K.; Farkas, A. Application of artificial neural networks for Process Analytical Technology-based dissolution testing. Int. J. Pharm., 2019, 567, 118464.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118464] [PMID: 31252145]
[52]
Carter, A.; Briens, L. An application of deep learning to detect process upset during pharmaceutical manufacturing using passive acoustic emissions. Int. J. Pharm., 2018, 552(1-2), 235-240.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.052] [PMID: 30253210]
[53]
Aksu, B.; Paradkar, A.; de Matas, M.; Özer, Ö.; Güneri, T.; York, P. Quality by design approach: application of artificial intelligence techniques of tablets manufactured by direct compression. AAPS PharmSciTech, 2012, 13(4), 1138-1146.
[http://dx.doi.org/10.1208/s12249-012-9836-x] [PMID: 22956056]
[54]
Moghaddam, M.G.; Ahmad, F.B.H.; Basri, M.; Rahman, M.B.A. Artificial neural network modeling studies to predict the yield of enzymatic synthesis of betulinic acid ester. Electron. J. Biotechnol., 2010, 13, 3-4.
[http://dx.doi.org/10.2225/vol13-issue3-fulltext-9]
[55]
Valizadeh, H.; Pourmahmood, M.; Mojarrad, J.S.; Nemati, M.; Zakeri-Milani, P. Application of artificial intelligent tools to modeling of glucosamine preparation from exoskeleton of shrimp. Drug Dev. Ind. Pharm., 2009, 35(4), 396-407.
[http://dx.doi.org/10.1080/03639040802422088] [PMID: 19016101]
[56]
Franco, V.G.; Perín, J.C.; Mantovani, V.E.; Goicoechea, H.C. Monitoring substrate and products in a bioprocess with FTIR spectroscopy coupled to artificial neural networks enhanced with a genetic-algorithm-based method for wavelength selection. Talanta, 2006, 68(3), 1005-1012.
[http://dx.doi.org/10.1016/j.talanta.2005.07.003] [PMID: 18970424]
[57]
Hasani, M.; Moloudi, M. Application of principal component-artificial neural network models for simultaneous determination of phenolic compounds by a kinetic spectrophotometric method. J. Hazard. Mater., 2008, 157(1), 161-169.
[http://dx.doi.org/10.1016/j.jhazmat.2007.12.096] [PMID: 18272286]
[58]
Salami, H.; McDonald, M.A.; Bommarius, A.S.; Rousseau, R.W.; Grover, M.A. In situ imaging combined with deep learning for crystallization process monitoring: Application to cephalexin production. Org. Process Res. Dev., 2021, 25(7), 1670-1679.
[http://dx.doi.org/10.1021/acs.oprd.1c00136]
[59]
Image based measurement of population growth rate for L-glutamic acid crystallization. Chen, S.; Liu, T.; Xu, D.; Huo, Y. Yang, Y., Eds.; Chinese Control Conference (CCC), 2019, 27-30.
[http://dx.doi.org/10.23919/ChiCC.2019.8866441]
[60]
Dou, Y.; Sun, Y.; Ren, Y.; Ren, Y. Artificial neural network for simultaneous determination of two components of compound paracetamol and diphenhydramine hydrochloride powder on NIR spectroscopy. Anal. Chim. Acta, 2005, 528(1), 55-61.
[http://dx.doi.org/10.1016/j.aca.2004.10.050]
[61]
Wang, B.; Liu, G.; Liu, S.; Fei, Q.; Ren, Y. Orthogonal projection to latent structures combined with artificial neural network for quantitative analysis of phenoxymethylpenicillin potassium powder. Vib. Spectrosc., 2009, 51(2), 199-204.
[http://dx.doi.org/10.1016/j.vibspec.2009.04.007]
[62]
Mujumdar, A.; Robi, P.S.; Malik, M.; Horio, M. Artificial neural network (ANN) model for prediction of mixing behavior of granular flows. Int. J. Comput. Methods Eng. Sci. Mech., 2007, 8(3), 149-158.
[http://dx.doi.org/10.1080/15502280701252495]
[63]
Behzadi, S.S.; Klocker, J.; Hüttlin, H.; Wolschann, P.; Viernstein, H. Validation of fluid bed granulation utilizing artificial neural network. Int. J. Pharm., 2005, 291(1-2), 139-148.
[http://dx.doi.org/10.1016/j.ijpharm.2004.07.051] [PMID: 15707740]
[64]
Murtoniemi, E.; Yliruusi, J.; Kinnunen, P.; Merkku, P.; Leiviskä, K. The advantages by the use of neural networks in modelling the fluidized bed granulation process. Int. J. Pharm., 1994, 108(2), 155-164.
[http://dx.doi.org/10.1016/0378-5173(94)90327-1]
[65]
Behzadi, S.S.; Prakasvudhisarn, C.; Klocker, J.; Wolschann, P.; Viernstein, H. Comparison between two types of Artificial Neural Networks used for validation of pharmaceutical processes. Powder Technol., 2009, 195(2), 150-157.
[http://dx.doi.org/10.1016/j.powtec.2009.05.025]
[66]
Sampat, C.; Ramachandran, R. Identification of granule growth regimes in high shear wet granulation processes using a physics- constrained neural network. Processes, 2021, 9(5), 737.
[http://dx.doi.org/10.3390/pr9050737]
[67]
Petrović, J.; Chansanroj, K.; Meier, B.; Ibrić, S.; Betz, G. Analysis of fluidized bed granulation process using conventional and novel modeling techniques. Eur. J. Pharm. Sci., 2011, 44(3), 227-234.
[http://dx.doi.org/10.1016/j.ejps.2011.07.013] [PMID: 21839830]
[68]
Korteby, Y.; Kristó, K.; Sovány, T.; Regdon, G., Jr Use of machine learning tool to elucidate and characterize the growth mechanism of an in-situ fluid bed melt granulation. Powder Technol., 2018, 331, 286-295.
[http://dx.doi.org/10.1016/j.powtec.2018.03.052]
[69]
Ismail, H.Y.; Singh, M.; Darwish, S.; Kuhs, M.; Shirazian, S.; Croker, D.M.; Khraisheh, M.; Albadarin, A.B.; Walker, G.M. Developing ANN-Kriging hybrid model based on process parameters for prediction of mean residence time distribution in twin-screw wet granulation. Powder Technol., 2019, 343, 568-577.
[http://dx.doi.org/10.1016/j.powtec.2018.11.060]
[70]
Ismail, H.Y.; Singh, M.; Shirazian, S.; Albadarin, A.B.; Walker, G.M. Development of high-performance hybrid ANN-finite volume scheme (ANN-FVS) for simulation of pharmaceutical continuous granulation. Chem. Eng. Res. Des., 2020, 163, 320-326.
[http://dx.doi.org/10.1016/j.cherd.2020.09.002]
[71]
Rantanen, J.; Räsänen, E.; Antikainen, O.; Mannermaa, J.P.; Yliruusi, J. In-line moisture measurement during granulation with a four-wavelength near-infrared sensor: an evaluation of process-related variables and a development of non-linear calibration model. Chemom. Intell. Lab. Syst., 2001, 56(1), 51-58.
[http://dx.doi.org/10.1016/S0169-7439(01)00108-3]
[72]
Kachrimanis, K.; Karamyan, V.; Malamataris, S. Artificial neural networks (ANNs) and modeling of powder flow. Int. J. Pharm., 2003, 250(1), 13-23.
[http://dx.doi.org/10.1016/S0378-5173(02)00528-8] [PMID: 12480269]
[73]
Zawbaa, H.M.; Schiano, S.; Perez-Gandarillas, L.; Grosan, C.; Michrafy, A.; Wu, C.Y. Computational intelligence modelling of pharmaceutical tabletting processes using bio-inspired optimization algorithms. Adv. Powder Technol., 2018, 29(12), 2966-2977.
[http://dx.doi.org/10.1016/j.apt.2018.11.008]
[74]
Belič, A.; Škrjanc, I.; Božič, D.Z.; Karba, R.; Vrečer, F. Minimisation of the capping tendency by tableting process optimisation with the application of artificial neural networks and fuzzy models. Eur. J. Pharm. Biopharm., 2009, 73(1), 172-178.
[http://dx.doi.org/10.1016/j.ejpb.2009.05.005] [PMID: 19465122]
[75]
Atomwise. Artificial Intelligence for Drug Discovery. Available from: https://www.atomwise.com/
[76]
Arnold, C. Inside the nascent industry of AI-designed drugs. Nat. Med., 2023, 29(6), 1292-1295.
[http://dx.doi.org/10.1038/s41591-023-02361-0] [PMID: 37264208]
[77]
How Artificial Intelligence is Revolutionizing Drug Discovery. Available from: https://blog.petrieflom.law.harvard.edu/2023/03/20/how-artificial-intelligence-is-revolutionizing-drug-discovery/
[78]
Zhu, H. Big data and artificial intelligence modeling for drug discovery. Annu. Rev. Pharmacol. Toxicol., 2020, 60(1), 573-589.
[http://dx.doi.org/10.1146/annurev-pharmtox-010919-023324] [PMID: 31518513]
[79]
Chan, H.C.S.; Shan, H.; Dahoun, T.; Vogel, H.; Yuan, S. Advancing drug discovery via artificial intelligence. Trends Pharmacol. Sci., 2019, 40(8), 592-604.
[http://dx.doi.org/10.1016/j.tips.2019.06.004] [PMID: 31320117]
[80]
Pereira, J.C.; Caffarena, E.R.; dos Santos, C.N. Boosting docking-based virtual screening with deep learning. J. Chem. Inf. Model., 2016, 56(12), 2495-2506.
[http://dx.doi.org/10.1021/acs.jcim.6b00355] [PMID: 28024405]
[81]
Ciallella, H.L.; Zhu, H. Advancing computational toxicology in the big data era by artificial intelligence: data-driven and mechanism-driven modeling for chemical toxicity. Chem. Res. Toxicol., 2019, 32(4), 536-547.
[http://dx.doi.org/10.1021/acs.chemrestox.8b00393] [PMID: 30907586]
[82]
Brown, N. In Silico Medicinal Chemistry: Computational Methods to Support Drug Design; Royal Society of Chemistry, 2015, pp. 1-232.
[84]
Pinheiro, F.; Santos, J.; Ventura, S. AlphaFold and the amyloid landscape. J. Mol. Biol., 2021, 433(20), 167059.
[http://dx.doi.org/10.1016/j.jmb.2021.167059] [PMID: 34023402]
[85]
Neural Graph Fingerprints. Available from: https://github.com/HIPS/neural-fingerprint
[86]
croningp/ChemputerSoftware: Chemputer first release. Available from: https://zenodo.org/record/1481731
[87]
Luo, M.; Feng, Y.; Wang, T.; Guan, J. Micro-/nanorobots at work in active drug delivery. Adv. Funct. Mater., 2018, 28(25), 1706100.
[http://dx.doi.org/10.1002/adfm.201706100]
[88]
Fu, J.; Yan, H. Controlled drug release by a nanorobot. Nat. Biotechnol., 2012, 30(5), 407-408.
[http://dx.doi.org/10.1038/nbt.2206] [PMID: 22565965]
[89]
Calzolari, D.; Bruschi, S.; Coquin, L.; Schofield, J.; Feala, J.D.; Reed, J.C.; McCulloch, A.D.; Paternostro, G. Search algorithms as a framework for the optimization of drug combinations. PLOS Comput. Biol., 2008, 4(12), e1000249.
[http://dx.doi.org/10.1371/journal.pcbi.1000249] [PMID: 19112483]
[90]
Wilson, B.; Km, G. Artificial intelligence and related technologies enabled nanomedicine for advanced cancer treatment. Nanomedicine, 2020, 15(5), 433-435.
[http://dx.doi.org/10.2217/nnm-2019-0366] [PMID: 31997697]
[91]
Tsigelny, I.F. Artificial intelligence in drug combination therapy. Brief. Bioinform., 2019, 20(4), 1434-1448.
[http://dx.doi.org/10.1093/bib/bby004] [PMID: 29438494]
[92]
Abràmoff, M.D.; Lavin, P.T.; Birch, M.; Shah, N.; Folk, J.C. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit. Med., 2018, 1(1), 39.
[http://dx.doi.org/10.1038/s41746-018-0040-6] [PMID: 31304320]
[93]
Kanagasingam, Y.; Xiao, D.; Vignarajan, J.; Preetham, A.; Tay-Kearney, M.L.; Mehrotra, A. Evaluation of artificial intelligence-based grading of diabetic retinopathy in primary care. JAMA Netw. Open, 2018, 1(5), e182665.
[http://dx.doi.org/10.1001/jamanetworkopen.2018.2665] [PMID: 30646178]
[94]
Bellemo, V.; Lim, Z.W.; Lim, G.; Nguyen, Q.D.; Xie, Y.; Yip, M.Y.T.; Hamzah, H.; Ho, J.; Lee, X.Q.; Hsu, W.; Lee, M.L.; Musonda, L.; Chandran, M.; Chipalo-Mutati, G.; Muma, M.; Tan, G.S.W.; Sivaprasad, S.; Menon, G.; Wong, T.Y.; Ting, D.S.W. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: A clinical validation study. Lancet Digit. Health, 2019, 1(1), e35-e44.
[http://dx.doi.org/10.1016/S2589-7500(19)30004-4] [PMID: 33323239]
[95]
Liu, Y.; Kohlberger, T.; Norouzi, M.; Dahl, G.E.; Smith, J.L.; Mohtashamian, A.; Olson, N.; Peng, L.H.; Hipp, J.D.; Stumpe, M.C. Artificial intelligence-based breast cancer nodal metastasis detection: Insights into the black box for pathologists. Arch. Pathol. Lab. Med., 2019, 143(7), 859-868.
[http://dx.doi.org/10.5858/arpa.2018-0147-OA] [PMID: 30295070]
[96]
Steiner, D.F.; MacDonald, R.; Liu, Y.; Truszkowski, P.; Hipp, J.D.; Gammage, C. Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer. Am. J. Surg. Pathol., 2018, 42(12), 1636-1646.
[http://dx.doi.org/10.1097/PAS.0000000000001151]
[97]
Lindsey, R.; Daluiski, A.; Chopra, S.; Lachapelle, A.; Mozer, M.; Sicular, S.; Hanel, D.; Gardner, M.; Gupta, A.; Hotchkiss, R.; Potter, H. Deep neural network improves fracture detection by clinicians. Proc. Natl. Acad. Sci., 2018, 115(45), 11591-11596.
[http://dx.doi.org/10.1073/pnas.1806905115] [PMID: 30348771]
[98]
Nestor, B.; McDermott, M.B.A.; Chauhan, G.; Naumann, T.; Hughes, M.C.; Goldenberg, A. Rethinking clinical prediction: why machine learning must consideryear of care and feature aggregation. In: Machine Learning for Health (ML4H):NeurIPS. arXiv:1811.12583, 2018. Available from: https://arxiv.org/abs/1811.12583
[99]
Crawford, K.; Calo, R. There is a blind spot in AI research. Nature, 2016, 538(7625), 311-313.
[http://dx.doi.org/10.1038/538311a] [PMID: 27762391]
[100]
Barocas, S.; Selbst, A.D. Big Data’s Disparate Impact. SSRN Electr. J., 2016, 671.
[http://dx.doi.org/10.2139/ssrn.2477899]
[101]
Finlayson, S.G.; Bowers, J.D.; Ito, J.; Zittrain, J.L.; Beam, A.L.; Kohane, I.S. Adversarial attacks on medical machine learning. Science, 2019, 363(6433), 1287-1289.
[http://dx.doi.org/10.1126/science.aaw4399] [PMID: 30898923]
[102]
Mandel, J.C.; Kreda, D.A.; Mandl, K.D.; Kohane, I.S.; Ramoni, R.B. SMART on FHIR: A standards-based, interoperable apps platform for electronic health records. J. Am. Med. Inform. Assoc., 2016, 23(5), 899-908.
[http://dx.doi.org/10.1093/jamia/ocv189] [PMID: 26911829]
[103]
Hersh, W.R.; Weiner, M.G.; Embi, P.J.; Logan, J.R.; Payne, P.R.O.; Bernstam, E.V.; Lehmann, H.P.; Hripcsak, G.; Hartzog, T.H.; Cimino, J.J.; Saltz, J.H. Caveats for the use of operational electronic health record data in comparative effectiveness research. Med. Care, 2013, 51(8 Supplement 8 Suppl 3), S30-S37.
[http://dx.doi.org/10.1097/MLR.0b013e31829b1dbd] [PMID: 23774517]

© 2024 Bentham Science Publishers | Privacy Policy