[1]
Ji, G. Biopolymer immune implants’ sequential activation of innate and adaptive immunity for colorectal cancer postoperative immunotherapy. Adv. Mater., 2021, 33(3), 2004559.
[2]
Bulfoni, M. In patients with metastatic breast cancer the identification of circulating tumor cells in epithelial-to-mesenchymal transition is associated with a poor prognosis. Breast Cancer Res., 2016, 18(1), 1-15.
[3]
Sun, Y.F. Circulating stem cell–like epithelial cell adhesion molecule–positive tumor cells indicate poor prognosis of hepatocellular carcinoma after curative resection. Hepatology, 2013, 57(4), 1458-1468.
[4]
Li, X.; Lee, S.; Yoon, J. Supramolecular photosensitizers rejuvenate photodynamic therapy. Chem. Soc. Rev., 2018, 47(4), 1174-1188.
[5]
Luby, B.M.; Walsh, C.D.; Zheng, G. Advanced photosensitizer activation strategies for smarter photodynamic therapy beacons. Angew. Chem. Int. Ed., 2019, 58(9), 2558-2569.
[6]
Celli, J.P. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem. Rev., 2010, 110(5), 2795-2838.
[7]
Hu, J-J.; Lei, Q.; Zhang, X-Z. Recent advances in photonanomedicines for enhanced cancer photodynamic therapy. Prog. Mater. Sci., 2020, 114, 100685.
[8]
Pham, T.C. Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy. Chem. Rev., 2021, 121(21), 13454-13619.
[9]
Rautio, J. Prodrugs: design and clinical applications. Nat. Rev. Drug Discov., 2008, 7(3), 255-270.
[10]
Rautio, J. The expanding role of prodrugs in contemporary drug design and development. Nat. Rev. Drug Discov., 2018, 17(8), 559-587.
[11]
van der Meel, R. Smart cancer nanomedicine. Nat. Nanotechnol., 2019, 14(11), 1007-1017.
[12]
Luo, D. Chemophototherapy: an emerging treatment option for solid tumors. Adv. Sci., 2017, 4(1), 1600106.
[13]
Cao, Z. ROS-sensitive polymeric nanocarriers with red light-activated size shrinkage for remotely controlled drug release. Chem. Mater., 2018, 30(2), 517-525.
[14]
Yang, X. Photo-triggered self-destructive ROS-responsive nanoparticles of high paclitaxel/chlorin e6 co-loading capacity for synergetic chemo-photodynamic therapy. J. Control. Release, 2020, 323, 333-349.
[15]
Rosenberg, B.; VanCamp, L.; Trosko, J.E.; Mansour, V.H. Platinum compounds: A new class of potent antitumour agents. Nature, 1969, 222(5191), 385-386.
[16]
Wheate, N.J. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans., 2010, 39(35), 8113-8127.
[17]
Wong, E.; Giandomenico, C.M. ChemInform abstract: Current status of platinum-based antitumor drugs. Chem. Rev., 1999, 99(9)), 2451-2466.
[18]
Kelland, L.; Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer, 2007, 7(8), 573-584.
[19]
Tixier, F. Comparative toxicities of 3 platinum-containing chemotherapy regimens in relapsed/refractory lymphoma patients. Hematol. Oncol., 2017, 35(4), 584-590.
[20]
Langer, T. Understanding platinum-induced ototoxicity. Trends Pharmacol. Sci., 2013, 34(8), 458-469.
[21]
Park, S.B. Oxaliplatin-induced neurotoxicity: changes in axonal excitability precede development of neuropathy. Brain, 2009, 132(10), 2712-2723.
[22]
Aguilar, A. OCT2 demethylation cracks open oxaliplatin resistance. Nat. Rev. Nephrol., 2016, 12(10), 581-581.
[23]
Lasorsa, A. Mechanistic and structural basis for inhibition of copper trafficking by platinum anticancer drugs. J. Am. Chem. Soc., 2019, 141(30), 12109-12120.
[24]
Fuertes, M.A.; Alonso, C.; Pérez, J.M. Biochemical modulation of cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. Chem. Rev., 2003, 103(3), 645-662.
[25]
Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The next generation of platinum drugs: targeted Pt (II) agents, nanoparticle delivery, and Pt (IV) prodrugs. Chem. Rev., 2016, 116(5), 3436-3486.
[26]
Hall, M.D. Basis for design and development of platinum (IV) anticancer complexes. J. Med. Chem., 2007, 50(15), 3403-3411.
[27]
Pendyala, L. Studies on the human metabolism of iproplatin. Cancer Chemother. Pharmacol., 1989, 25, 10-14.
[28]
Awuah, S.G. A Pt (IV) pro-drug preferentially targets indoleamine-2, 3-dioxygenase, providing enhanced ovarian cancer immuno-chemotherapy. J. Am. Chem. Soc., 2015, 137(47), 14854-14857.
[29]
Gandioso, A. An integrin-targeted photoactivatable Pt (IV) complex as a selective anticancer pro-drug: synthesis and photoactivation studies. Chem. Commun., 2015, 51(44), 9169-9172.
[30]
Qi, D. A GSH-depleted platinum(IV) prodrug triggers ferroptotic cell death in breast cancer. Chin. Chem. Lett., 2022, 33(10), 4595-4599.
[31]
Dixon, S.J. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072.
[32]
Ma, L. A cancer cell-selective and low-toxic bifunctional heterodinuclear Pt(IV)–Ru(II) aAnticancer prodrug. Inorg. Chem., 2018, 57(5), 2917-2924.
[33]
Mao, X. Synthesis and validation of a bioinspired catechol-functionalized Pt(IV) prodrug for preclinical intranasal glioblastoma treatment. Cancers (Basel), 2022, 14(2), 410.
[34]
Butler, J.S.; Sadler, P.J. Targeted delivery of platinum-based anticancer complexes. Curr. Opin. Chem. Biol., 2013, 17(2), 175-188.
[35]
Hall, M.D.; Hambley, T.W. Platinum (IV) antitumour compounds: their bioinorganic chemistry. Coord. Chem. Rev., 2002, 232(1-2), 49-67.
[36]
Graf, N.; Lippard, S.J. Redox activation of metal-based prodrugs as a strategy for drug delivery. Adv. Drug Deliv. Rev., 2012, 64(11), 993-1004.
[37]
Chen, C.K. Influence of equatorial and axial carboxylato ligands on the kinetic inertness of platinum (IV) complexes in the presence of ascorbate and cysteine and within DLD-1 cancer cells. J. Med. Chem., 2013, 56(21), 8757-8764.
[38]
Kastner, A. A dogma in doubt: hydrolysis of equatorial ligands of PtIV complexes under physiological conditions. Angew. Chem. Int. Ed., 2019, 58(22), 7464-7469.
[39]
Spector, D. Pt (IV) prodrugs with NSAIDs as axial ligands. Int. J. Mol. Sci., 2021, 22(8), 3817.
[40]
Imran, M. Photoactivated platinum-based anticancer drugs. Coord. Chem. Rev., 2018, 376, 405-429.
[41]
Kratochwil, N.A.; Bednarski, P.J. Relationships between Reduction Properties and Cancer Cell Growth Inhibitory Activities of cis-Dichloro- and cis-Diiodo-Pt(IV)-ethylenediamines. Arch. Pharm. (Weinheim), 1999, 332(8), 279-285.
[42]
Neumann, C.; Grünert, R.; Bednarski, P.J. Nicotinamide adenine dinucleotide phosphate-regenerating system coupled to a glutathione-reductase microtiter method for determination of total glutathione concentrations in adherent growing cancer cell lines. Anal. Biochem., 2003, 320(2), 170-178.
[43]
Kratochwil, N.A.; Bednarski, P.J. Effect of thiols exported by cancer cells on the stability and growth-inhibitory activity of Pt (IV) complexes. J. Cancer Res. Clin. Oncol., 1999, 125, 690-696.
[44]
Kratochwil, N.A. Electron-transfer-driven trans-ligand labilization: a novel activation mechanism for Pt (IV) anticancer complexes. J. Am. Chem. Soc., 1998, 120(32), 8253-8254.
[45]
Lemma, K. Kinetics and mechanism for reduction of anticancer-active tetrachloroam (m) ine platinum (IV) compounds by glutathione. J. Biol. Inorg. Chem., 2000, 5, 300-306.
[46]
Bednarski, P.J. Light-activated destruction of cancer cell nuclei by platinum diazide complexes. Chem. Biol., 2006, 13(1), 61-67.
[47]
Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol., 2001, 19(4), 316-317.
[48]
Wang, X. Stimuli-responsive therapeutic metallodrugs. Chem. Rev., 2018, 119(2), 1138-1192.
[49]
Xiao, H. Maximizing synergistic activity when combining RNAi and platinum-based anticancer agents. J. Am. Chem. Soc., 2017, 139(8), 3033-3044.
[50]
Spector, D.V. Pt(IV) Prodrugs with Non-Steroidal Anti-inflammatory Drugs in the Axial Position. J. Med. Chem., 2022, 65(12), 8227-8244.
[51]
Spector, D.V. Electrochemical Detection of a Novel Pt(IV) Prodrug with the Metronidazole Axial Ligand in the Hypoxic Area. Inorg. Chem., 2022, 61(37), 14705-14717.
[52]
Yuan, Y. Pt(IV) Prodrug as a Potential Antitumor Agent with APE1 Inhibitory Activity. J. Med. Chem., 2022, 65(22), 15344-15357.
[53]
Tsipis, A.C.; Karapetsas, I.N. Prediction of 195Pt NMR of photoactivable diazido-and azine-Pt (IV) anticancer agents by DFT computational protocols. Magn. Reson. Chem., 2017, 55(2), 145-153.
[54]
Wei, D. Photo-Reduction with NIR Light of Nucleus-Targeting PtIV Nanoparticles for Combined Tumor-Targeted Chemotherapy and Photodynamic Immunotherapy. Angew. Chem. Int. Ed., 2022, 61(20), e202201486.
[55]
Imberti, C. Facile protein conjugation of platinum for light-activated cytotoxic payload release. Chem. Commun., 2021, 57(62), 7645-7648.
[56]
Min, Y. Near-infrared light-mediated photoactivation of a platinum antitumor prodrug and simultaneous cellular apoptosis imaging by upconversion-luminescent nanoparticles. Angew. Chem. Int. Ed., 2014, 53(4), 1012-1016.
[57]
Tang, D. NIR-II Light Accelerated Prodrug Reduction of Pt (IV)-Incorporating Pseudo-Semiconducting Polymers for Robust Degradation and Maximized Photothermal/Chemo-immunotherapy. Adv. Mater., 2023, 35(28), 2300048.
[58]
Li, Y. A red-light activatable and mitochondrion-targeting Pt IV complex to overcome drug resistance. Chem. Commun., 2022, 58(60), 8404-8407.
[59]
Gandioso, A. Unexpected photoactivation pathways in a folate-receptor-targeted trans-diazido Pt (IV) anticancer pro-drug. Dalton Trans., 2020, 49(34), 11828-11834.
[60]
Krasnovskaya, O.O. Photoinduced Reduction of Novel Dual-Action Riboplatin Pt(IV) Prodrug. ACS Appl. Mater. Interfaces, 2023, 15(10), 12882-12894.
[61]
Ma, Z. Differentiated oxidation modes of guanine between CpG and 5m CpG by a photoactivatable Pt (iv) anticancer prodrug. Dalton Trans., 2023, 52(9), 2786-2798.
[62]
Shi, H. DNA-Intercalative Platinum Anticancer Complexes Photoactivated by Visible Light. Chemistry, 2021, 27(41), 10711-10716.
[63]
Romero-Canelón, I.; Mos, M.; Sadler, P.J. Enhancement of selectivity of an organometallic anticancer agent by redox modulation. J. Med. Chem., 2015, 58(19), 7874-7880.
[64]
Weiss, J.T. Extracellular palladium-catalysed dealkylation of 5-fluoro-1-propargyl-uracil as a bioorthogonally activated prodrug approach. Nat. Commun., 2014, 5(1), 3277.
[65]
Völker, T. Progress towards bioorthogonal catalysis with organometallic compounds. Angew. Chem. Int. Ed., 2014, 53(39), 10536-10540.
[66]
Massey, V. The chemical and biological versatility of riboflavin. Biochem. Soc. Trans., 2000, 28(4), 283-296.
[67]
Srivastava, V. Synthetic applications of flavin photocatalysis: a review. RSC Advances, 2021, 11(23), 14251-14259.
[68]
Gurruchaga-Pereda, J. Flavin Bioorthogonal Photocatalysis Toward Platinum Substrates. ACS Catal., 2020, 10(1), 187-196.
[69]
Sánchez-Camacho, J. Flavin-Conjugated Pt(IV) Anticancer Agents. Inorg. Chem., 2023, 62(14), 5644-5651.
[70]
Canil, G. Synthesis, Characterization and Photoactivation Studies on the Novel Pt(IV)-Based [Pt(OCOCH3)3(phterpy)] Complex. Int. J. Mol. Sci., 2023, 24(2), 1106.
[71]
Lo, P-C. The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer. Chem. Soc. Rev., 2020, 49(4), 1041-1056.
[72]
De Groof, T.W.M. Nanobody-Targeted Photodynamic Therapy Selectively Kills Viral GPCR-Expressing Glioblastoma Cells. Mol. Pharm., 2019, 16(7), 3145-3156.
[73]
Lourenço, L.M. Thioglycerol-porphyrin,-chlorin, and-phthalocyanine derivatives for photodynamic therapy of UM-UC-3 bladder cancer cells. J. Photochem. Photobiol. Chem., 2023, 442, 114768.
[74]
Chen, D. Photocyanine: A novel and effective phthalocyanine-based photosensitizer for cancer treatment. J. Innov. Opt. Health Sci., 2020, 13(03), 2030009.
[75]
Norman, D.J. A Dual Killing Strategy: Photocatalytic Generation of Singlet Oxygen with Concomitant PtIV Prodrug Activation. Angew. Chem. Int. Ed., 2019, 58(40), 14189-14192.
[76]
Mazzei, L.F. Toward supramolecular nanozymes for the photocatalytic activation of Pt (iv) anticancer prodrugs. Chem. Commun., 2020, 56(72), 10461-10464.
[77]
Alonso-de Castro, S. Bioorthogonal catalytic activation of platinum and ruthenium anticancer complexes by FAD and flavoproteins. Angew. Chem., 2018, 130(12), 3197-3201.
[78]
Deng, Z.; Li, C.; Chen, S.; Zhou, Q.; Xu, Z.; Wang, Z.; Yao, H.; Hirao, H.; Zhu, G. An intramolecular photoswitch can significantly promote photoactivation of Pt(iv) prodrugs. Chem. Sci., 2021, 12(19), 6536-6542.
[79]
Wang, Z. Phorbiplatin, a highly potent Pt (IV) antitumor prodrug that can be controllably activated by red light. Chem, 2019, 5(12), 3151-3165.
[80]
Stamati, I. Novel photosensitisers derived from pyropheophorbide-a: uptake by cells and photodynamic efficiency in vitro. Photochem. Photobiol. Sci., 2010, 9(7), 1033-1041.
[81]
Duan, X. Photodynamic therapy mediated by nontoxic core–shell nanoparticles synergizes with immune checkpoint blockade to elicit antitumor immunity and antimetastatic effect on breast cancer. J. Am. Chem. Soc., 2016, 138(51), 16686-16695.
[82]
He, C. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat. Commun., 2016, 7(1), 12499.
[83]
Xu, J. Selective photoactivation: From a single unit monomer insertion reaction to controlled polymer architectures. J. Am. Chem. Soc., 2016, 138(9), 3094-3106.
[84]
Yao, H. BODI-Pt, a Green-Light-Activatable and Carboplatin-Based Platinum(IV) Anticancer Prodrug with Enhanced Activation and Cytotoxicity. Inorg. Chem., 2020, 59(16), 11823-11833.
[85]
Spikes, J.D. New trends in photobiology: Chlorins as photosensitizers in biology and medicine. J. Photochem. Photobiol. B, 1990, 6(3), 259-274.
[86]
Goląb, J. Potentiation of the anti-tumour effects of Photofrin®-based photodynamic therapy by localized treatment with G-CSF. Br. J. Cancer, 2000, 82(8), 1485-1491.
[87]
Overholt, B.F. Photodynamic therapy with porfimer sodium for ablation of high-grade dysplasia in Barrett’s esophagus: international, partially blinded, randomized phase III trial. Gastrointest. Endosc., 2005, 62(4), 488-498.
[88]
Dougherty, T.J.; Cooper, M.T.; Mang, T.S. Cutaneous phototoxic occurrences in patients receiving Photofrin®. Lasers Surg. Med., 1990, 10(5), 485-488.
[89]
Xiao, Z. Whole bladder photodynamic therapy for orthotopic superficial bladder cancer in rats: a study of intravenous and intravesical administration of photosensitizers. J. Urol., 2003, 169(1), 352-356.
[90]
Lim, W.Q. Self-Assembled Oxaliplatin(IV) Prodrug–Porphyrin Conjugate for Combinational Photodynamic Therapy and Chemotherapy. ACS Appl. Mater. Interfaces, 2019, 11(18), 16391-16401.
[91]
Su, R. Self-assembling porphyrin conjugate-carboplatin(IV) prodrug nanoparticles for enhancing high efficacy nasopharyngeal cancer and low systemic toxicity. J. Biomater. Sci. Polym. Ed., 2022, 33(14), 1828-1844.
[92]
Hu, X.; Li, R.; Wu, W.; Fang, K.; Zhu, Z.; Wang, Y.; Zhou, L.; Chen, M.; Dong, C.; Shi, S. A Fe(III)-porphyrin-oxaliplatin(IV) nanoplatform for enhanced ferroptosis and combined therapy. J. Cont. Rel., 2022, 348, 660-671.
[93]
Song, H. Light triggered release of a triple action porphyrin-cisplatin conjugate evokes stronger immunogenic cell death for chemotherapy, photodynamic therapy and cancer immunotherapy. J. Nanobiotechnology, 2022, 20(1), 329.
[94]
Grabowska, E. Metal oxide photocatalysts; , 2018.
[95]
Khan, M.M.; Adil, S.F.; Al-Mayouf, A. Metal oxides as photocatalysts. J. Saudi Chem. Soc., 2015, 19(5), 462-464.
[96]
Karges, J. Clinical development of metal complexes as photosensitizers for photodynamic therapy of cancer. Angew. Chem. Int. Ed., 2022, 61(5), e202112236.
[97]
Karges, J.; Yempala, T.; Tharaud, M.; Gibson, D.; Gasser, G. A Multi-action and multi-target Ru II -Pt IV conjugate combining cancer-activated chemotherapy and photodynamic therapy to overcome drug resistant cancers. Angew. Chem. Int. Ed. Engl., 2020, 59(18), 7069-7075.
[98]
Scoditti, S. Computational Exploration of the Synergistic Anticancer Effect of a Multi-Action Ru(II)–Pt(IV) Conjugate. Inorg. Chem., 2022, 61(32), 12903-12912.
[99]
Yang, Y. Photodynamic Therapy with Liposomes Encapsulating Photosensitizers with Aggregation-Induced Emission. Nano Lett., 2019, 19(3), 1821-1826.
[100]
Yao, C. Near-infrared-triggered azobenzene-liposome/upconversion nanoparticle hybrid vesicles for remotely controlled drug delivery to overcome cancer multidrug resistance. Adv. Mater., 2016, 28(42), 9341-9348.
[101]
Rwei, A.Y. Repeatable and adjustable on-demand sciatic nerve block with phototriggerable liposomes. Proc. Natl. Acad. Sci. USA, 2015, 112(51), 15719-15724.
[102]
Yang, Y. Light-activatable liposomes for repetitive on-demand drug release and immunopotentiation in hypoxic tumor therapy. Biomaterials, 2021, 265, 120456.
[103]
Zhang, Q. Pt(IV) prodrug initiated microparticles from microfluidics for tumor chemo-, photothermal and photodynamic combination therapy. Bioact. Mater., 2023, 24, 185-196.
[104]
Zhang, Q.; Wang, X.; Kuang, G.; Yu, Y.; Zhao, Y. Photopolymerized 3D printing scaffolds with Pt (IV) prodrug initiator for postsurgical tumor treatment. Research (Wash D C), 2022, 9784510.
[105]
Yang, Y.; Mu, J.; Xing, B. Photoactivated drug delivery and bioimaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(2), , e1408.
[106]
Alonso-de Castro, S. Catalysis concepts in medicinal inorganic chemistry. Chemistry, 2019, 25(27), 6651-6660.
[107]
Szaciłowski, K. Bioinorganic photochemistry: frontiers and mechanisms. Chem. Rev., 2005, 105(6), 2647-2694.
[108]
Bednarski, P.J.; Mackay, F.S.; Sadler, P.J. Photoactivatable platinum complexes. ANTI-CANCER AGENT ME, 2007, 7(1), 75-93.
[109]
Scoditti, S. Flavin-mediated photoactivation of Pt (iv) anticancer complexes: computational insights on the catalytic mechanism. Phys. Chem. Chem. Phys., 2022, 24(9), 5323-5329.
[110]
Tan, P. Artificial intelligence aids in development of nanomedicines for cancer management. Seminars in Cancer Biology., 2023, 89, 61-75.
[111]
Jordan, M.I. Artificial intelligence—the revolution hasn’t happened yet. Harv. Data Sci. Rev., 2019, 1(1), 1-9.
[112]
Lavecchia, A. Deep learning in drug discovery: opportunities, challenges and future prospects. Drug Discov. Today, 2019, 24(10), 2017-2032.
[113]
Beirne, D.F.; Farkaš, B.; Donati, C. Novel design of dual-action Pt (IV) anticancer pro-drugs based on cisplatin and derivatives of the tyrosine kinase inhibitors imatinib and nilotinib. Dalton Trans., 2023, 52(39), 14110-14122.
[114]
Shi, H.; Ponte, F.; Grewal, J.S. Tuning the photoactivated anticancer activity of Pt (IV) compounds via distant ferrocene conjugation. Chem. Sci., 2024, 15(11), 4121-4134.
[115]
Zheng, P. Artificial intelligence-enhanced quantum chemical method with broad applicability. Nat. Commun., 2021, 12(1), 7022.